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Evidence for specific protein–protein interactions is increasingly available from both small- and large-scale studies,
and can be viewed as a network. It has previously been noted that errors are frequent among large-scale studies, and
that error frequency depends on the large-scale method used. Despite knowledge of the error-prone nature of
interaction evidence, edges (connections) in this network are typically viewed as either present or absent. However,
use of a probabilistic network that considers quantity and quality of supporting evidence should improve inference
derived from protein networks. Here we demonstrate inference of membership in a partially known protein complex
by using a probabilistic network model and an algorithm previously used to evaluate reliability in communication
networks.

[Supplemental material is available online at www.genome.org. Software called Complexpander, which predicts new
members of partially known protein complexes, is available at the authors’ Web site http://llama.med.
harvard.edu/Software.html.]

In the past few years, much effort has gone into developing and
applying methods for discovering the complete set of protein–
protein interactions in an organism—the interactome. The re-
sults of both large- and small-scale studies have been collected
into databases (Hodges et al. 1999; Mewes et al. 2002; Xenarios et
al. 2002; Bader et al. 2003), and it is apparent that the number of
interactions derived from small-scale methods, such as affinity
chromatography and cosedimentation, is now low compared
with those derived from high-throughput techniques such as
large-scale yeast two-hybrid (Y2H) screens (Uetz et al. 2000; Ito et
al. 2001) and affinity purification with mass spectrometric iden-
tification (APMS) methods (Gavin et al. 2002; Ho et al. 2002).

Although these large-scale methods offer vast improve-
ments in efficiency for identifying protein interactions, they are
also prone to higher error rates than are conventional small-scale
studies, and some large-scale methods are more reliable than oth-
ers (Mrowka et al. 2001; Deane et al. 2002; Edwards et al. 2002;
von Mering et al. 2002; Deng et al. 2003; Sprinzak et al. 2003).
Notwithstanding high error rates, it seems likely that high-
throughput studies will continue to be the largest source of in-
formation about protein–protein interactions.

Analyses of protein interaction evidence have generally
treated interaction evidence as binary. By this, we mean that
interaction data are often represented as a network in which
edges are either present or absent based on the existence of sup-
porting evidence. Conclusions are then drawn from this network
without accounting for the quality or quantity of evidence sup-
porting each interaction. This binary approach has been used
previously in predicting protein function (Marcotte et al. 1999;
Schwikowski et al. 2000) in predicting co-complexed proteins
(Bader and Hogue 2003; Bu et al. 2003; Rives and Galitski 2003;
Spirin and Mirny 2003).

Given the generally error-prone nature of high-throughput
protein interaction evidence, it may be more appropriate to treat
protein interactions probabilistically. Probabilistic networks
have previously been used to examine the reliability of commu-
nications networks (for review, see Ball 1986). A communications

network can be represented as a weighted graph, in which each
node represents a computer (terminal) and each edge represents
a network connection (wire) between two terminals. Edge
weights are assigned that represent the reliability of the connec-
tion—the probability that the wire is functioning at any given
time.

Several publications from the Gerstein group at Yale (Ed-
wards et al. 2002; Jansen et al. 2002, 2003) have assigned prob-
abilities to individual protein pairs based on amount and type of
supporting evidence. Such a collection of probabilities may be
viewed as a probabilistic network. Here, we demonstrate the util-
ity of such a probabilistic network in predicting new members of
a partially known protein complex. In this application, a particu-
lar “core” set of proteins is known to form a protein complex, but
we are not confident that this core set is complete. Given a col-
lection of error-prone protein interaction data, how might we
obtain a list of candidate proteins, ranked by probability of mem-
bership in a partially known protein complex?

RESULTS AND DISCUSSION
In the commonly used binary representation of protein interac-
tions, there is no particular distinction afforded to those edges
with support from multiple evidence types, or a distinction be-
tween edges supported by evidence of differing quality. Although
binary representations have been used with some success to pre-
dict protein complexes (Jansen et al. 2002; Bader and Hogue
2003; Bu et al. 2003; Rives and Galitski 2003) and protein func-
tion (Marcotte et al. 1999; Schwikowski et al. 2000), we expected
that information about quality and quantity of evidence lost in
constructing a binary network could prove useful in improving
these predictions.

We used a probabilistic model for protein interaction net-
works that accounts for quality of supporting evidence for each
interaction. In this model, each pair of proteins with supporting
evidence of interaction was assigned a weight, representing the
probability that the two proteins interact directly and stably.
Because no unbiased reference set of directly- and stably-
interacting proteins exists, parameters in the probabilistic model
were chosen to optimize performance of our method (see below),
using a training set of protein complexes as described in the
Methods section.
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We applied an algorithm that uses this probabilistic network
model to generate a list of candidate proteins ranked according to
the probability that each “connects” to one or more proteins in
a query list—the core protein set. Here a protein is said to connect
to the core if there is at least one path of direct and stable inter-
actions between it and one of the core proteins. The algorithm
we developed uses a large collection of networks, in which each
edge is a binary interaction with existence that is determined by
a Bernoulli trial using the probability from the corresponding
edge in the probabilistic network. The probability that a given
candidate protein connects to the core set is estimated as the
fraction of sampled networks that contains a path connecting
the candidate to the core. A probabilistic network and two
sampled binary networks are illustrated in Figure 1.

Software called Complexpander, which implements this al-
gorithm, was developed, allowing a user to submit a core set of
proteins and obtain additional candidate members of this core
complex using an evaluation of 10,000 sampled networks. In
addition to returning a list of candidate proteins ranked by prob-
ability of connecting to the core complex, the software returns a
graph representing the interaction neighborhood of the core set
of proteins. Visualization of such graphs using Pajek (Batagelj
and Mrvar 1998) is shown in Figure 2 for four example queries,
each using a protein complex from the MIPS catalog (Mewes et al.
2002) as the “core” protein set. For each query, we used the MIPS
complex catalog database as of June 20, 2003.

Results of a query with the SAGA complex (according to
MIPS) are shown in Figure 2A. The top-ranked three candidate
proteins returned (most reliably connected to core) were the
TATA-binding protein associated factors Taf19, Taf145, and
Taf40. Although none of these proteins are currently thought to
be members of the SAGA complex, they are each members of the
TFIID and the TBP-associated TAF[II] complexes, each of which
has substantial overlap with the SAGA complex (Hodges et al.
1999). The fourth-ranked protein is Sgf29, a known member of
the SAGA complex (Sanders et al. 2002), despite not being listed
in MIPS. Other known members of the SAGA complex that are
not listed in MIPS were also retrieved in the top 50: Sgf73 (Sand-
ers et al. 2002), ranked 12th; Hfi1 (Grant et al. 1998), ranked 31st;
and Ubp8 (Sanders et al. 2002), ranked 39th.

Results of a query with the NOT (negative on TATA) com-
plex, as defined in the MIPS catalog, is shown in Figure 2B. The
NOT complex was originally identified as a global negative regu-
lator of transcription (Collart and Struhl 1994; Oberholzer and

Collart 1998). Our query retrieved Ccr4 (ranked first) and Pop2
(ranked third), both known members of this complex—now
more commonly called the Ccr4-NOT complex (Tucker et al.
2002)—that were not listed as NOT members in MIPS.

Results of a query with the replication factor C (RFC) com-
plex, as defined by MIPS, are shown in Figure 2C. RFC is a “clamp
loader” for the Proliferating Cell Nuclear Antigen (PCNA) repli-
cation processivity factor (Cullmann et al. 1995; Zhang et al.
1999) and is normally formed from proteins Rfc1-5 (the query
set). Ctf18, ranked second, is an Rfc1-like protein that has been
suggested to complex with Rfc2-5 (Hanna et al. 2001). Elg1,
ranked third, participates in an alternate RFC with Rfc2-5 that
has a role in DNA damage repair (Bellaoui et al. 2003). Rad24,
ranked 12th, is also known to form an alternative complex with
Rfc2-5 (Majka and Burgers 2003).

As a final example, the results of a query with the Arp2/Arp3
complex, integrally involved in actin polymerization, are shown
in Figure 2D. The top-ranked candidate protein was Arc40, a
known member of the Arp2/Arp3 complex not listed in MIPS
(Winter et al. 1999).

To rigorously assess the performance of our software in pre-
dicting new complex members, we examined a validation set of
27 complexes from the MIPS database of yeast protein complexes
(see Methods). For each complex in the validation set, we left
each protein out in turn and used the remaining proteins as the
core set in a trial query for new complex members. The fraction
of trial queries in which the target protein was found above a
threshold rank R was assessed.

We wished to compare the performance of our “probabilis-
tic network” (ProNet) method to an alternative method that uses
a binary protein interaction network, in which an edge between
two proteins exists if there is any evidence supporting their in-
teraction. As no algorithm for ranking candidate members in a
partially known protein complex was known to us (with one
exception discussed below), we developed the “shortest path
with evidence” (SPE) method. In the SPE method, the ranking of
candidate protein members is simply by length of the shortest
path through the binary network to one of the core proteins,
with ties broken randomly.

The results for both ProNet and SPE methods are shown in
Figure 3. In this graph, the fraction of correctly returned proteins
above threshold rank R is plotted as a function of R. Because only
one protein was left out of the known complex for each query,
the best fraction of correctly returned proteins that any algo-
rithm could hope to achieve is 1/R. As shown in Figure 3, the
ProNet method outperformed the SPE method at every choice of
threshold rank.

Despite the success of our approach, there are several issues
that might be addressed in the future to improve identification of
new protein complex members. It should be noted that in our
methodology for predicting protein complex membership, we
assume that complex membership is transitive across edges, that
is, if protein A and B are co-complexed and B and C are co-
complexed, then A and C are co-complexed. This is not neces-
sarily the case, because there can be alternative complexes in
which either A or C (but not both) are bound to B. However, it is
not clear how or if such information can be extracted from cur-
rently available protein interaction information, and our model
did not account for potential intransitivity of complex member-
ship.

In developing our probabilistic network model, we made the
simplifying assumption that the types of evidence we used may
be treated as independent. This is an oversimplification, because
biases inherent in one of the Y2H methods are likely to be pre-
sent in the other. A similar statement applies to the two APMS
methods. In addition, we assume that a given method treats all

Figure 1 Probabilistic versus binary networks. (A) Schematic illustration
of a probabilistic network, with higher edge weight (probability) repre-
sented by darker coloring. (B, C) Binary networks randomly sampled from
the probabilistic network in A.
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classes of protein interactions identically; in fact, a particular
method may have reporting biases, for example, against interac-
tions involving membrane proteins. Despite these potential
weaknesses, we have shown that our approach outperforms an
alternative binary network-based approach. Improved models of
dependence between interaction evidence types, and the use of
additional evidence types (e.g., Jansen et al. 2003), should im-
prove the performance of the network reliability approach de-
scribed here.

During preparation of this manuscript, we became aware of
a Markov random field (MRF) approach that predicts new mem-
bers of partially known functional categories or protein com-
plexes (Letovsky and Kasif 2003). This approach, as imple-
mented, was unsuitable for our task because it does not accom-
modate multiple evidence types with varying reliability and
more importantly because it requires that probability models be
retrained for each query complex. A small or moderately sized
complex provides few positive examples for training, and a query
of one protein would provide none. However, an MRF approach
with an alternative scheme for learning probability models is
promising and merits further study.

In summary, we applied a network reliability approach pre-
viously applied in the field of communications theory to a proba-
bilistic protein network model in order to predict new members

of protein complexes. Furthermore, we showed that our proba-
bilistic network approach was better than an alternative ap-
proach based on binary protein interactions.

METHODS
The probability that a given candidate protein is in the same
protein complex with a known core set of proteins may be ex-
pressed (to first approximation) as the probability that there ex-
ists a path of direct and stable protein interactions between that
candidate and some member of the known complex. How can we
estimate this probability? This problem is analogous to one pre-
viously considered in the theory of communications networks:
the two-terminal network reliability problem (Colbourn 1987).
In this case, one wishes to assess the probability that some path
of functioning wires connects two terminals at any given time,
given a graph of connections, each weighted by the probability
that the corresponding wire is functioning at any given time.
Although an exact solution to the two-terminal network reliabil-
ity problem has been shown to be NP-hard (Valiant 1979), reli-
ability can be approximated using Monte Carlo simulation and
other approaches (Karger 1999). Here, we apply a Monte Carlo
approach to the two-terminal network reliability problem to pro-
tein interaction networks.

A prerequisite to this approach is the existence of a weighted
graph model of the protein interaction network, in which nodes

Figure 2 Results of several examples using MIPS complexes (Mewes et al. 2002) as “core complex” queries. Probabilistic interaction subgraphs are
visualized by the software Pajek (Batagelj and Mrvar 1998). Query proteins are marked in red, and the top 50 proteins returned are colored in grayscale
according to rank, with lighter coloring indicating better rank. Each edge is given thickness proportional to its posterior probability. Shown are SAGA
complex (A), NOT complex (B), replication factor C complex (C), and the Arp2/Arp3 complex (D).
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represent proteins and edges represent protein pairs that might
stably interact. Edge weights represent the posterior probability
that the two proteins interact stably and directly given available
evidence. Assigning probability of interaction to protein pairs
has been previously described (Edwards et al. 2002), and we fol-
low a somewhat similar approach in constructing a probabilistic
network model.

We first assembled a database of yeast protein interactions.
Our interactome database consisted of the following four evi-
dence types: (1 and 2) two high-throughput studies based on Y2H
methods (Uetz et al. 2000; Ito et al. 2001); and (3 and 4) two
high-throughput studies based on APMS methods (Gavin et al.
2002; Ho et al. 2002). For one of the Y2H studies (Ito et al. 2001),
we used only interactions for which three or more “hits” have
been observed (Ito et al. 2001); for both APMS studies, we only
considered bait-to-prey interactions because these are thought to
be more reliable (Bader and Hogue 2002).

The posterior probability P+ that a pair of proteins interact
directly and stably (i.e., physically contact one another and are
contained within the same protein complex) can be calculated
according to Bayes’ rule:

P+ = p�y = 1|z� =
��

i=1

T

p�zi|y = 1�� � p�y = 1�

�
j�0,1

���
i=1

T

p�zi|y = j�� � p�y = j��
Here y is an indicator variable for interaction (y = 1 if the

pair of proteins interacts directly and stably, and y = 0 otherwise),
z is a vector of indicator variables for the presence or absence of
evidence of each available type, and T is the number of evidence
types. For example, z = (0,0,1,0) represents a pair of proteins for
which evidence of interaction is derived only from the APMS
method of Gavin et al. (2002). The equation above makes the
naive Bayes assumption that different evidence types are inde-
pendent of one another given the truth about stable interaction
(discussed further below).

Unfortunately, there is no widely accepted and precise defi-
nition of what constitutes a stable interaction, or in fact what
constitutes a protein complex. Furthermore, there exists no un-
biased reference set of protein pairs for which the truth or false-
hood of stable and direct interaction is known from which we
might extract p(y), the prior probability of interaction, and p(zi|y),
likelihoods corresponding to each evidence type i. Below, we
make a reasonable estimate of p(y) and determine values for

p(zi|y) that optimize performance of our algorithm according to a
training set of protein complexes. No protein in the training set
of complexes is used subsequently for testing purposes.

We model the prior probability that two arbitrary pro-
teins stably interact, p(y = 1), according to p(y = 1) = p(c = 1,d = 1)
= p(d = 1) p(c = 1|d = 1), where d is an indicator variable for
whether the two proteins interact directly, and c is an indicator
variable for whether the two proteins are co-complexed. To cal-
culate p(d = 1), we divide a previous estimate of the number of
protein interactions in yeast (von Mering et al. 2002) by the
number possible (2 � 107). We calculate the probability
p(c = 1|d = 1) by determining what fraction of those interactions
supported by conventional studies (small-scale, non–high-
throughput studies) are members of the same complex according
to the MIPS complex catalog (Mewes et al. 2002). This resulted in
a prior p(y = 1) probability of 7 � 10�3, with p(y = 0) calculated
according to p(y = 0) = 1 � p(y = 1).

The likelihood p(zi|y) for each evidence type i can be written
in terms of prior probability p(y = 1), evidence type-specific error
rate Ei = p(y = 0|zi = 1), and the fraction of gene pairs Fi = p(zi = 1)
with supporting evidence of type i as follows:

p�zi = 1|y = 1� =
�1 − Ei� � Fi

p�y = 1�
;

p�zi = 1|y = 0� =
Ei � Fi

p�y = 0�
; p�zi = 0|y = 1� = 1 − p�zi = 1|y = 1�;

and p(zi = 0|y = 0) = 1 � p(zi = 1|y = 0). Each Fi value is calculated
directly from a count of the number of edges supported by each
evidence type, and each Ei is estimated using an optimization
procedure described below at the end of the Methods section.

With estimates of p(y) and p(zi|y) in hand, we can calculate
P+ for each edge. To reduce subsequent computation, we set edge
weights to zero for those edges with no supporting evidence of
interaction. From this probabilistic network model, we sample
many binary networks by using a Monte Carlo approach. Each
sampled network represents a possible state of the actual network
of stably interacting proteins. Sampled networks are obtained
according to a Bernoulli trial on each edge, with probability of
success equal to edge weight. Figure 1 illustrates a probabilistic
network and two sampled binary networks. We sampled 10,000
networks for all results described here.

We count the fraction Ci of sampled binary networks in
which a path exists from a candidate protein i to any protein in
the core complex. The fraction Ci is our estimate of the probabil-
ity that the protein i is a member of the core complex. Determin-
ing the existence of a path between two nodes in a sampled
network reduces to a breadth-first search through this sparse net-
work. To reduce computation, we restrict breadth-first searches
to a maximum depth. The maximum depth is an adjustable pa-
rameter for which we used a default value of four. This was es-
tablished by leaving each protein, in turn, out of a test set of 12
complexes and finding that in all cases a depth of four was suf-
ficient to find a path back from the given protein to its parent
complex, if such a path existed at all in the network. A user-
defined core set of proteins is given as input, and a list of candi-
date proteins ranked by Ci is returned as output. Candidate pro-
teins above a user-defined rank threshold R are displayed graphi-
cally along with all edges with nonzero weight. An example of a
query with members of the SAGA complex is shown in Figure 2.

We used an optimization procedure to estimate the error
rate vector E used above. Although estimates of error rate for
some of these evidence types are available (Mrowka et al. 2001;
Deane et al. 2002; Edwards et al. 2002; von Mering et al. 2002;
Deng et al. 2003; Sprinzak et al. 2003), the error rates of each
evidence type in predicting direct and stable interaction have not
previously been estimated. We therefore sought to find an esti-
mate for the E vector that optimized performance of our algo-
rithm, searching the space of possible values using a steepest
ascent method. As an objective function for optimization, we
used area under the success rate versus rank curves. Success rate
versus rank curves are calculated by using a cross-validation pro-

Figure 3 Success rate versus rank for ProNet and SPE methods. Success
rate is the number of correct predictions found at or above the threshold
rank R in all the cross-validation trials divided by the total number of
predictions above the specified rank.
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cedure in which each protein in a set of complexes is left out in
turn, a ranked list of candidate proteins is obtained, and the
success rate for candidate proteins ranked at or below R is as-
sessed (examples in Fig. 3).

To optimize our choice of error rate vector entries, we used
a training set of seven protein complexes. These were chosen at
random from among complexes listed in MIPS, subject to con-
straints that no protein appear in more than one complex and
that each complex must contain at least six proteins. The follow-
ing Ei values were obtained: 0.893 for Ito-core Y2H (Ito et al.
2001), 0.998 for Y2H from Uetz et al. (2000), 0.957 for APMS data
from Gavin et al. (2002), and 0.996 for APMS data from Ho et al.
(2002).

A validation set of 27 complexes was chosen by using the
same selection constraints used to choose the training set of com-
plexes. There was no overlap between proteins in training and
validation sets. Complete lists of the proteins in complexes used
for testing and training are available in the Supplemental mate-
rial.
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NOTE ADDED IN PROOF
After submission of our manuscript, another work was published
with the same goal of predicting membership in partially known
protein complexes (Bader, J.S. 2003. Greedily building protein
networks with confidence. Bioinformatics. 19: 1869–1874). One
important difference is that the work by Bader ranks protein
candidates according to the probability of their connection to
the core complex via the single most probable path, while the
ProNet method ranks according to the probability of connection
via any path.
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