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Disease heterogeneity presents a formidable challenge for
clinical medicine. We are unlikely to develop success-

ful, targeted treatments unless diagnostic schemes begin to
reflect the biological complexity underlying superficially
similar disease phenotypes. To address heterogeneity, there is
an increasing recognition that realistic disease models need to
be built on a foundation of quantitative molecular informa-
tion.1 Such a “systems medicine” approach should ultimately
allow classification into biologically more homogeneous
groups, with similar prognosis and treatment response.
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Oncology has been among the first specialties to embrace

molecular profiling to improve clinical decision making.
Today, a wealth of expression profiling information exists for
tumors, and early efforts are being made to classify patients
into likely treatment responders for specific chemotherapeu-
tics.2 The investigation of complex multisystem pathologies,
such as cardiovascular disease, has been slower to incorporate
molecular profiling, in part, because of the involvement of
multiple tissues, many of which are not readily accessible.
Moreover, cardiovascular disease, unlike cancer, is not clonal
in origin, making experimental analyses more challenging. It
is clear, however, that broadly defined diseases such as the
cardiomyopathies are the product of diverse genetic and
environmental agents3; one can expect that quantitative mo-
lecular profiling will shed light on distinct, pathological
activities underlying these conditions, thus allowing more
meaningful classification schemes beyond those that are
solely based on anatomic or hemodynamic considerations.

The article by Barth et al4 in this issue of Circulation:
Cardiovascular Genetics represents such a broadened search
for molecular correlates of cardiovascular disease. The au-
thors focus on the problem of heart failure with mechanical
dyssynchrony (DHF) and its treatment by cardiac resynchro-
nization therapy (CRT). Clinically, CRT has been a remark-
able success, with significant gains in quality of life and
mortality.5 Multiple studies have investigated the physiolog-
ical consequences of dyssynchrony and the improvements
resulting from CRT; however, the underlying molecular
processes largely remain unclear. This study is unique in its

use of DNA microarrays to ask whether heterogeneity result-
ing from DHF and the physiological benefits from CRT are
broadly reflected at a molecular level.

DNA microarrays allow scientists to simultaneously sur-
vey the expression level of thousands of mRNAs under a
variety of experimental conditions. A key strength of mi-
croarray technology is that it is inherently free of inspection
or ascertainment biases—a “transcriptome-wide” approach
does not require preconceived notions of which biological
processes are important. Unbiased approaches, including
genome-wide association and metabolomics studies, have the
potential to lead us to entirely unexpected disease mecha-
nisms. However, large-scale (‘omic) data presents analysis
challenges of its own—requiring an understanding of mea-
surement error, detection limits, and problems that arise when
a plethora (sometimes thousands) of hypotheses are tested.
Any of these issues can lead to erroneous conclusions and
compromise the generalizability of the results. Fortunately,
bioinformatics research has focused on these issues for more
than a decade, and many solutions have become available.

Armed with ‘omic data sets and bioinformatics tools, Barth
et al tackle the hypothesis that CRT reduces the regional
heterogeneity in gene expression induced by DHF. The
experimental design (Figure) features 3 groups:

1. DHF: produced by experimental left bundle-branch
block followed by rapid, sustained right atrial pacing.

2. CRT: produced by synchronized biventricular pacing of
the DHF model (at the same rate as atrial pacing in DHF).

3. NF: normal controls.

Tissue samples from the anterior and lateral segments of the
left ventricle of each dog were subjected to microarray
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Figure. Experimental design of Barth et al. For clarity, some
analytic comparisons have been omitted. r indicates right; ant,
anterior; lat, lateral).
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profiling, and comparisons were made within and across
groups. Bioinformatics methods, including pathway enrich-
ment analysis and hierarchical clustering, were used to
analyze the microarray data. Each of these will be discussed.

Pathway Enrichment Analysis
Typical ‘omics experiments generate lists of significantly
changed genes, proteins, or metabolites. In the usual microar-
ray experiment, these lists include hundreds of genes, only a
handful of which are well known to a given experimenter. It
is difficult for the researcher to see the forest for the trees in
a long list of changed genes, a problem exacerbated by the
fact that nearly every method in experimental molecular
biology yields a mixture of true and spurious results. Because
the usual goal of such experiments is to understand what
biological processes differentiate the groups under compari-
son, new analytic techniques were required. Pathway analysis
has emerged as such a tool.

Many properties are known or measured for genes and
their encoded mRNAs and protein products, including tissue
expression patterns, interactions partners, and molecular
functions. Systematic efforts have been made to compile such
properties into databases, with a vocabulary of gene ontology
(GO) terms (http://www.geneontology.org/) being the most
widely used. Both automated and manual efforts have
annotated genes with GO terms in dozens of organisms.
GO terms cover a range of gene properties, including
cellular location (eg, mitochondria), molecular function
(eg, transcription factor), and involvement in biological
processes (eg, apoptosis). Related to biological processes,
biological pathways comprise groups of genes that partic-
ipate toward a common cellular function such as “oxida-
tive phosphorylation.” The Kyoto Encyclopedia of Genes
and Genomes is a commonly used database of biological
pathways and currently contains hundreds of groupings of
genes (http://www.genome.jp/kegg/pathway.html).

This wealth of information defines many “gene sets” and
we can ask whether a “query list” of changed genes from a
microarray experiment shares significant similarity with any
of these sets. A number of software packages have been
designed to perform this type of analysis. These broadly
differ by the statistic used to measure enrichment of a gene
property within a query gene list and the method used to
determine statistical significance. In this article, Barth et al
use 2 such packages: FatiGO (http://babelomics.bioinfo.
cipf.es/EntryPoint?loadForm�fatigo) and gene set analysis
(http://www-stat.stanford.edu/�tibs/GSA/), which illustrate 2
categories of pathway enrichment analysis.

FatiGO, FuncAssociate,6 and several other applications use
the hypergeometric test as a measure of how well one’s query
list overlaps with each predefined gene set. The relevant
analytic parameters include the number of total genes in the
“universe” to be considered (in this case, all the genes on the
microarray), the number of genes in the query list, the number
of universe genes corresponding to the gene set of interest,
and the number of genes in the query list corresponding to
that same gene set. Fisher Exact Test is used to calculate a P
value measuring significance of the overlap. For example, if
the canine microarray includes 20 000 genes, 500 of which

correspond to the pathway oxidative phosphorylation and
your query list of 100 genes includes 10 genes corresponding
to the same pathway, your query list would be significantly
enriched for oxidative phosphorylation (P�0.0002).

A caveat to this analysis is the fact that one is often testing
one’s gene list against hundreds of pathways or thousands of
GO terms. Clearly, low P values will arise simply by chance
and some correction for multiple hypothesis testing is essen-
tial. Simple Bonferroni approaches are often applied, but
these incorrectly assume that GO terms are independent and
are therefore unnecessarily conservative. FatiGO outputs an
adjusted P value for several methods of false-discovery rate
estimation. FatiGo uses The well-known Benjamini-
Hochberg method to estimate the false-discovery rate. Alter-
natively, both FatiGO and FuncAssociate use resampling-
based testing to develop the distribution of Fisher exact test
results for many GO terms under the null hypothesis. In this
case, the label “in the query list” and “not in the query list”
are permuted randomly among the genes in the universe and
an enrichment P value is computed for overlap of the random
query list with each gene set. In principle, FatiGO and
FuncAssociate can be used to find any type of overrepresent-
ed gene property, such as promoter elements and protein
domains. Many packages allow you to supply your own
annotations for other types of ‘omic data; the results of the
analyses (including those using GO terms or Kyoto Encyclo-
pedia of Genes and Genomes pathways) will, of course,
depend on the completeness and quality of the annotations.

A second general approach to pathway enrichment is used
in Gene Set Enrichment Analysis (http://www.broad.mit.edu/
gsea) and gene set analysis. In these packages, a statistic is
computed for each gene set that captures the degree to which
genes in the set are statistical outliers in the experimental
microarray comparison data. The null distribution for each
statistic is generated by permuting the class labels for each
microarray (eg, shuffling case and control status) and/or the
gene membership of the various gene sets.

In this article, Barth et al use the FatiGO tool to evaluate
pathway enrichment in the list of the significantly changed
genes in their comparison of the anterior wall (DHF versus
NF) and find multiple overrepresented pathways, including
metabolic (eg, oxidative phosphorylation) and signaling path-
ways (eg, Wnt and vascular endothelial growth factor). The
pathways listed are consistent across at least 2 experiments,
reinforcing their validity. The utility of an enriched pathway
or GO term, of course, depends on whether it can motivate a
testable hypothesis. For example, knowing that a specific
kinase pathway seems to be activated might lead one to
evaluate the biological effects of specific kinase inhibitors.
Enrichment for vague pathways may not represent an imme-
diately testable hypothesis.

In addition to identifying underlying biological processes
in a set of changed genes, pathway analysis can be used to
compare different microarray experiments for “biological
similarity.” Pathway-based comparisons can be used to test
the generalizability of one’s results (as performed by Barth et
al) or to search for other perturbations that are similar to the
one under consideration (a pathway “signature”).7 When
performing comparisons, one should choose a quantitative
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measure for comparison that allows establishment of statisti-
cal significance. Many measures are “nonclassical” in that
they lack established null distributions, but resampling can
generate empirical distributions of the measure and enable
one to estimate whether the observed similarity is significant.
Typically, such pathway-focused analyses base comparisons
on normalized gene expression values for genes in the
pathway,8 or, if case-control experiments are to be compared,
a fold-change value or t-statistic is used for individual genes.7

Hierarchical Clustering
A key conclusion of the Barth et al article is that CRT reduces
the heterogeneity in gene expression across the left ventricle
introduced by dyssynchronous heart failure. If so, CRT hearts
would more closely resemble NF than DHF hearts. As one
method to evaluate this hypothesis, the authors use hierarchi-
cal clustering to look for natural groupings of NF, DHF, and
CRT microarray samples. Hierarchical clustering is a power-
ful, potentially unbiased method of looking for similarities
among experimental samples.9 It has been applied success-
fully to microarray data to identify genomic features of
cancers that predict mortality and chemotherapy response10

and to identify likely gene targets for established drugs.11 All
forms of clustering require a metric for comparison (usually
Euclidean Distance or some type of correlation coefficient)
and a method of grouping similar samples. Hierarchical
clustering works by first clustering the most similar samples
and then successively grouping small clusters into larger
ones.

Hierarchical clustering is unbiased only when clustering is
performed across all genes in the array. However, there are
many potential sources of both technical and biological
variance in microarray analysis that are unrelated to the
biological differences of interest, and it is notoriously diffi-
cult to cluster biological samples. In a tour de force microar-
ray analysis of 300 genetic and experimental perturbations in
yeast, Hughes et al11 accounted for the intrinsic variability of
genes in 63 control samples to greatly improve clustering
ability. For practical reasons, most microarray studies (mam-
malian or otherwise) have not included the large number of
control samples needed to establish baseline variance for each
gene. As one solution, in a large series of cancer profiling
experiments, Brown and coworkers10 limited cluster analysis
to those “interesting” genes showing a 2-fold deviation from
background in some minimum fraction (�10% to 15%) of
microarrays. In the study by Barth et al, hierarchical cluster-
ing was limited to a subset of genes identified by ANOVA to
discriminate among the 3 comparison groups. This method
seems to have selected hundreds of genes that discriminated
NF from DHF and very few distinguishing NF from CRT,
such that pairwise similarity measures and thus clustering
results were likely dominated by the preponderance of genes
that discriminate between NF and DHF. Failure of a gene to
discriminate between 2 samples may stem from biological
similarity between 2 samples or, alternatively, can arise if the
gene is one or both samples highly variable, leading to
reduced power to detect significant differences. In either case,
clustering based on this gene subset showed NF and CRT

groups to be indistinguishable and found both to be markedly
different from DHF. Although promising in support of the
hypothesis that CRT regularizes heterogeneity in ventricular
gene expression, it will be important to see whether this
observation extends over a broader set of genes.

Conclusions
Although CRT has proven remarkably successful in treating
heart failure patients, up to a quarter of individuals still fail to
respond.5 Well-designed microarray experiments along with
rigorous bioinformatics analyses may identify biological
pathways that remain dysregulated even after CRT, and thus
could be targeted by adjunct pharmacological therapy. Such a
discovery would truly represent a triumph for a systems
medicine approach to complex, cardiovascular disease.
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