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Although numerous fundamental aspects of development have
been uncovered through the study of individual genes and pro-
teins, system-level models are still missing for most developmen-
tal processes. The first two cell divisions of Caenorhabditis elegans
embryogenesis constitute an ideal test bed for a system-level
approach. Early embryogenesis, including processes such as cell
division and establishment of cellular polarity, is readily amenable
to large-scale functional analysis. A first step toward a system-level
understanding is to provide ‘first-draft’ models both of the
molecular assemblies involved1 and of the functional connections
between them. Here we show that such models can be derived
from an integrated gene/protein network generated from three
different types of functional relationship2: protein interaction3,
expression profiling similarity4 and phenotypic profiling simi-
larity5, as estimated from detailed early embryonic RNA inter-
ference phenotypes systematically recorded for hundreds of early
embryogenesis genes6. The topology of the integrated network
suggests that C. elegans early embryogenesis is achieved through
coordination of a limited set of molecular machines. We assessed
the overall predictive value of such molecular machine models by
dynamic localization of ten previously uncharacterized proteins
within the living embryo.
Global correlations between transcriptome profiling and interac-

tome data sets have been used to derive network graphs that combine
similarity relationships from transcription profiling with physical
interactions between proteins3,7–13. Suggestive correlations between
interactome or transcriptome data and phenotypic data sets5,10,14,15

support the notion that these three types of data might complement
one another in predicting functional relationships.
To model C. elegans early embryogenesis globally, we generated

network graphs in which each node represents an early embryogen-
esis gene6 and its product(s), and each edge represents a potential
functional connection based on one of three data sets (Fig. 1a): (1)
6,572 binary physical interactions between 3,848 C. elegans proteins
(WI7 data set; Supplementary Methods and Supplementary Table
S1)3; (2) expression profiling similarity above a given threshold
(transcriptional Pearson correlation coefficients (transcriptional
PCCs) from a compendium of C. elegans microarray profiles4); and
(3) phenotypic similarity above another threshold (described below).
For each of the 661 early embryogenesis genes identified6, we used

an RNA interference (RNAi) phenotypic signature5 consisting of a
vector describing specific cellular defects in early embryogenesis6. We
defined a measure of phenotypic similarity between early embryo-
genesis genes as the uncentred Pearson correlation coefficient (phe-

notypic PCC) for each pair of signatures (Supplementary Methods).
The level of phenotypic similarity correlates with similar functional
attributes (Fig. 1b, top right), as measured by shared Gene Ontology
(GO) terms (which provide a controlled vocabulary for gene func-
tion)16. We performed hierarchical clustering to group genes by
phenotypic similarity, and observed that clusters tend to show
significant enrichment for specific gene functions (Fig. 1b; see also
SupplementaryMethods, Supplementary Fig. S1 and Supplementary
Table S2). These results suggest that phenotypic PCC derived from
RNAi data represents a reasonable way to compare phenotypes
quantitatively.
To evaluate whether all three functional relationships (physical

interaction, expression similarity and phenotypic similarity) can be
merged into predictive models, we asked whether they show corre-
lations among early embryogenesis genes/proteins (Fig. 2). First, we
found that the products of early embryogenesis genes are more
interconnected by direct protein interactions than expected by
chance (Fig. 2a; see also SupplementaryMethods and Supplementary
Table S3). Second, compared to genes partitioned randomly (Fig. 2b,
right), genes clustered by phenotypic similarity encode proteins that
are more likely to interact physically with one another, either directly
(Fig. 2b, top left) or indirectly through a single shared interactor (Fig.
2b, bottom left). Third, expression correlations are significantly
higher between protein interactors, early embryogenesis gene pairs
and pairs in the same phenocluster (mean transcriptional
PCC ¼ 0.17, 0.16 and 0.19, respectively) relative to gene pairs
selected at random from the genome (mean transcriptional
PCC ¼ 0.05) (Fig. 2c). An even more notable increase in expression
correlation (ten times the level between random pairs) is seen among
early embryogenesis or intra-phenocluster pairs that also interact
directly (Fig. 2c).
Consistent with these global correlations, we found that the

proportion of direct interactors rises as a function of both phenotype
correlation (Fig. 2d) and expression correlation (Fig. 2e). Similarly,
there is a positive relationship between phenotype and expression
correlation values, particularly when only direct protein interactions
are considered (Fig. 2f). Notably, interactors with strong expression
correlation show strong phenotype correlation, suggesting member-
ship in a common molecular assembly; interactors with low corre-
lations of both types may represent either false positives or a different
relationship (for example, a regulatory interaction). Overall, pheno-
typic and expression correlations both show a strong inverse relation-
ship with distance in the interactome network (Fig. 2g). On the basis
of the above correlations, we assigned edges between pairs of nodes
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based on expression similarity (transcriptional PCC $ 0.7) or phe-
notypic similarity (phenotypic PCC $ 0.5).
The integrated early embryogenesis network—joining all 661 early

embryogenesis genes/proteins by the union of all three types of
relationship (Fig. 3a)—contains a main component with 31,173
edges characterized by an average of 0.9, 5.0 and 44 edges per node
for protein interaction (Int), expression similarity (Tr) and pheno-
typic similarity (Ph), respectively. In this network, the number of
gene/protein pairs with doubly supported edges is significantly
higher than expected by chance (P ¼ 10234, 10261 and 102109 for
Int–Tr, Ph–Tr and Int–Ph associations, respectively). We examined
the portion of this integrated early embryogenesis network contain-

ing only links with two or more types of functional support (Fig. 3b).
In contrast to the full network, the topology of this ‘multiple support
network’—which contains about half (305) of the early embryogen-
esis genes/proteins—reveals distinct groups of highly interconnected
genes/proteins and few or no links between the groups. To assess the
predictive value of the early embryogenesis network on a global scale,
we analysed the individual and combined networks for their ability to
predict a specific shared function between two linked gene pairs
using GO annotations (Supplementary Methods). Each individual
network has significant power to detect shared function between
linked gene pairs, and combining data types generally results in

Figure 1 | Integrated networks and phenotypic profiling. a, Pairwise
relationships between genes/proteins are determined from correlated
transcript abundance (transcriptional PCC) (left), physical protein–protein
interactions (centre) and phenotypic correlation (phenotypic PCC) (right).
Graphs represent genes/proteins as nodes and relationships (transcriptional
PCCs above threshold x, physical interactions, and phenotypic PCCs above
threshold y) as edges. Highly interconnected regions represent models of
molecular machines or processes (bottom). b, Six-hundred and sixty-one
early embryogenesis genes clustered by phenotypic similarity using high-
content early embryogenesis phenotypes (left; see also Supplementary Fig.
S1). The fraction of shared functional annotations increases with
phenotypic similarity (top right); most phenoclusters (indicated by cluster
number, C#) are enriched for specific GO functional annotations (bottom
right; see also Supplementary Table S1). Error bars represent standard errors
of the mean.

Figure 2 | Correlations between data sets (see also Supplementary Fig.
S2). a, The early embryogenesis interactome subnetwork from WI7 (left)
exhibits higher connectivity than networks of proteins chosen randomly
(example at right; see also Supplementary Table S3). b, The early
embryogenesis interactome subnetwork is enriched for interactions within
the same phenocluster (A–A and A–x–A) relative to interactions between
phenoclusters (A–B and A–x–B). c, Interacting proteins (WI7), random
early embryogenesis (EE) pairs, intra-phenocluster early embryogenesis
pairs (PC), pairs of interacting early embryogenesis proteins (WI7_EE) and
interacting early embryogenesis proteins from common phenoclusters
(WI7_PC) all show higher expression correlation than random pairs. d, e,
The proportion of physical interactions increases with phenotypic (d) and
expression correlation (e). f, Early embryogenesis genes with similar
expression profiles are more likely to share similar RNAi phenotypes. All
early embryogenesis gene pairs (open bars) and interacting early
embryogenesis proteins (filled bars) were binned by expression correlation
and plotted against average phenotypic correlation. g, Phenotype and
expression correlation increase with interactome proximity. Average
phenotype (black) and expression (grey) correlation decrease for early
embryogenesis protein pairs as their distance (shortest path) increases.
Error bars in c–g represent standard errors of the mean.
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higher accuracy but lower sensitivity (Supplementary Tables S4 and
S5). Considering only pairs for which both members have some GO
annotation, the accuracy of the multiple support network is very
high, with 88% of the links sharing a specific functional annotation.
To generate models representing the higher-level organization

underlying early embryogenesis, we identified densely intercon-
nected regions in the multiple support network using a graph
theoretic clustering algorithm17 followed by manual refinement
based on functional annotations (Fig. 3b; see also Supplementary
Table S6). We distinguished two types of highly interconnected
regions among the resulting models. The first type of model contains
a high density of links supported by both protein interactions and
phenotypic correlations. These models represent known molecular
complexes that constitute discrete molecular machines within the
cell, such as the ribosome, proteasome, mitochondrial F1F0 ATPase,
vacuolar Hþ ATPase, anaphase-promoting complex (APC) and
COPI coatomer, as well as complexes involved in translation
initiation, nucleocytoplasmic transport and cell polarity. Virtually
all of the edges in the graph that are supported by all three types of
evidence (41 out of 43 edges between 50 nodes) fall into such
complexes. Proteins within such complexes function together as
one physical unit, and depletion of any single member is likely to
result in a very similar phenotypic profile.
The second type of model is dominated by edges supported by

both phenotypic and expression correlations, containing few physi-
cal interactions. These models harbour genes that participate in
distinct yet functionally interdependent cellular processes. Examples
include messenger RNA/protein metabolism (mRNA transcription
and processing, translational control, and protein modification and
trafficking), chromosome maintenance/nucleocytoplasmic trans-
port (DNA replication licensing and synthesis, chromosome segre-
gation, nucleoporins and importins), and oocyte integrity/meiosis
(oocyte development, extra-embryonic matrix and eggshell for-
mation, and regulation of meiotic events). Within these models
smaller molecular machines are found, supported by physical inter-
actions and phenotypic similarity, such as the translation initiation,
COPI coatomer, DNA replication licensing and importin complexes.
Because current interactome maps have sampled only a small
fraction of true interactions3,18, such coordinated process models
may serve to predict undiscovered protein interactions. Alternatively,
these models may represent a qualitatively different type of func-
tional unit, in which the phenotypic and expression profiling links
reflect functional interdependencies dictated by the logical structure
of the network, while the few protein interactions represent the
physical path of information flow.
Putative functional interdependency, or cross-talk, between cellu-

lar events is evidenced in the multiple support network by links
connecting distinct cellular processes. For instance, multiple edges

Figure 3 | Integrated network analysis. a, Entire early embryogenesis
network graph (see also the Supplementary Data files). A Venn diagram
(inset) shows the colour system for labelling edges based on available
evidence: phenotypic profiling similarity (Phe; green), expression profiling
similarity (Tr; red), physical interaction (Int; blue) and overlapping
combinations of data types (intersecting regions). b, Multiple support
network containing 305 nodes joined by 1,036 edges, each supported by two
or three types of functional evidence. Predicted molecular machines are
encircled (Supplementary Table S6 provides details). Nodes are colour-
coded by function: 1, proteasome; 2, protein degradation; 3, ribosome/
protein synthesis; 4, translational control; 5, protein/vesicular trafficking; 6,
RNA synthesis/processing/binding; 7, histone; 8, DNA synthesis/replication

and chromosome segregation; 9, nucleocytoplasmic transport; 10, APC; 11,
mitochondrial F1F0 ATPase; 12, vacuolar Hþ ATPase; 13, cell polarity; 14,
microtubule cytoskeleton; 15, actin cytoskeleton; 16, cell cycle; 17, signal
transduction; 18, metabolism; 19, other/unknown; 20, analysed by protein
localization. c–e, Subnetworks with proteins of unknown function (yellow
nodes) analysed by localization (Fig. 4). c, Centrosome model. d, PAR cell
polarity model. e, Nuclear function model. Fifty-five genes/proteins in four
functional categories were grouped into ‘metanodes’ (with each metanode
representing a collection of individual nodes). Line weights and metanode
sizes approximate the number of underlying individual links and nodes,
respectively. Four unknowns in this model are present in the multiple
support network (asterisks in e).
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are observed between DNA replication, DNA synthesis and nuclear
membrane functions, and between regulation of protein synthesis,
protein and vesicular trafficking, and protein degradation. We also
observe connections and some overlap between genes required for
oocyte integrity (oocyte development, extra-embryonic matrix and
eggshell formation) and regulation of meiosis.
To investigate predictions from the early embryogenesis models,

we selected ten genes of unknown function linked to groups of

functionally characterized genes. To analyse potential participation
in a molecular machine using an assay that was independent of the
data used to generate the models, we used green fluorescent protein
(GFP)-tagged proteins and visualized in vivo dynamic subcellular
localization during early embryogenesis (Fig. 4; see also Supplemen-
tary Movies). We tested proteins with connections to three different
early embryogenesis models: centrosomal function (Fig. 3c), cell
polarity (Fig. 3d) and an elaborate network of molecular assemblies
involved in DNA replication, chromatin architecture and nucleocy-
toplasmic transport (Fig. 3e).
The centrosomal function model (Fig. 3c) connects several cen-

triolar proteins (ZYG-1, AIR-1, SAS-4)19–22 and FZY-1, a C. elegans
homologue of Cdc20, which regulates the APC and is required for
proper chromosome separation23. Remarkably, two of the three
proteins we targeted (F35B12.5 and Y45F10D.9) localized to a pair
of perinuclear puncta with dynamic behaviour matching that of
centrioles (Fig. 4e–l; see also Supplementary Movies S2 and S3).
These dynamics have subsequently been confirmed indepen-
dently24–26. The third protein (T26A5.8) instead localized to the
nucleus and faintly to metaphase chromosomes (Fig. 4a–d; see also
Supplementary Movie S1); the nature of its apparent connection to
centrosomal function remains to be elucidated.
The cell polarity model (Fig. 3d) contains all of the PAR proteins

(partitioning-defective regulators of polarity) present in the early
embryogenesis data set, as well as additional proteins known to be
important for establishing polarity in C. elegans27. Interestingly, links
in this subnetwork resemble mass spectrometry results for mamma-
lian PAR homologues28, and both implicate a homologue of Sacchar-
omyces cerevisiae Cdc37 (W08F4.8 in Fig. 3d) in polarity. GFP–
W08F4.8 did not reveal any asymmetric localization (a prominent
feature of several PAR proteins), but appeared to fill the nucleus at
prophase and be excluded from the nucleus at telophase (Fig. 4m–p;
see also Supplementary Movie S4). The mammalian homologue of
W08F4.8 (Cdc37) binds to the PAR-4 homologue (tumour suppres-
sor LKB1), which shuttles in and out of the nucleus to regulate
polarity29. The localization pattern of W08F4.8 suggests that it may
participate in the nuclear shuttling of PAR-4 (PAR-4 is not shown
because it is not in the early embryogenesis data set).
In each of six tests for the nuclear function model (Fig. 3e), the

localization pattern of the targeted protein was consistent with its
predicted role. The first, C38D4.3, is linked by expression and
phenotypic similarity to members of the nuclear pore complex
(npp-2 and npp-10), a homologue of the centromere protein
CENP-C (hcp-4) and DNA synthesis components (mcm-2, DNA
polymerase B and a DNA topoisomerase II homologue). GFP–
C38D4.3 localized in a remarkable dynamic pattern (Fig. 4q–t; see
also Supplementary Movie S5), shuttling between the nuclear mem-
brane (during interphase) and the chromosomes (during mitosis),
appearing to coalesce at the nuclear envelope onto chromosomes
(Fig. 4q), and then during metaphase forming a double-line pattern
reminiscent of centromere/kinetochore proteins (Fig. 4r). The
second protein, T24F1.2, is linked to several nuclear pore complex
components by phenotypic similarity and to ran-1, a nuclear trans-
port control factor, via expression correlation. Consistent with these
connections, GFP–T24F1.2 localized to the nuclear envelope
throughout the cell cycle (Fig. 4u–x; see also SupplementaryMovie S6).
The last four genes/proteins tested have multiple links to the DNA

synthesis and histone subnetworks (Fig. 3e). One of these, F55C5.4, is
linked by both expression and phenotype to several DNA replication
licensing factors (mcm-3, mcm-5, mcm-6, mcm-7) and DNA syn-
thesis components (lig-1, rnr-2). GFP-tagged C29E4.2 and F55C5.4
both localized to condensing chromosomes exclusively around
metaphase (Fig. 4g 0–j 0 and y–b 0 , respectively; see also Supplementary
Movies S7 and S9). In contrast, GFP–Y55B1BR.3 showed a diffuse
nuclear localization that peaked during S phase (Fig. 4c 0–f 0 ; see also
Supplementary Movie S8). Finally, T10B5.6 is linked by phenotype
and expression to both hcp-4 (CENP-C) and npp-19 (a nucleoporin),

Figure 4 | Embryonic localization patterns of GFP-tagged fusion proteins
analysed by time-lapse microscopy are largely consistent with model
predictions. Arrows indicate areas expanded in insets (except in n, p). a–d,
GFP–T26A5.8: nuclear during interphase and chromosomal during mitosis.
e–h, GFP–F35B12.5 (SAS-5): appears on centriole and spindle. i–l, GFP–
Y45F10D.9 (SAS-6): centriolar.m–p, GFP–W08F4.8: weakly nuclear (arrows
in n, p) during mitosis but excluded from nucleus during interphase
(compare two cells in p). q–t, GFP–C38D4.3: shuttles between nuclear
periphery during interphase onto chromosomes during mitosis (double line
at metaphase suggests kinetochore localization). u–x, GFP–T24F1.2:
enriched on nuclear membrane. y–b 0 , GFP–C29E4.2: transient
chromosomal localization (arrow in z). c 0 –f 0 , GFP–Y55B1BR.3: nuclear
signal peaking during S phase (f 0 ). g 0 –n 0 , GFP–F55C5.4 (g 0 –j 0 ) and GFP–
T10B5.6 (KNL-3) (k 0 –n 0 ): transient chromosomal localization peaking at
metaphase (double-line pattern suggests kinetochore localization). See
Supplementary Movies for corresponding time-lapse recordings.

LETTERS NATURE|Vol 436|11 August 2005

864
© 2005 Nature Publishing Group 

 



and the GFP-tagged protein showed diffuse nuclear localization
alternating with a double-line pattern typical of kinetochore/
centromere proteins (Fig. 4k

0
–n

0
; see also Supplementary Movie

S10). This protein’s dynamic localization pattern and its function at
the kinetochore was recently confirmed independently30. In total,
eight out of ten experimental tests for potential new components of
molecular machines gave rise to supportive evidence. Two localiz-
ation experiments remain inconclusive, although for one (W08F4.8),
proteomic experiments28 support the hypothesis formulated here.
We have shown that phenotypic profiling data can be combined

with interactome and expression profiling data to generate a network
of functional relationships for C. elegans early embryogenesis. The
combined evidence network suggests that the molecular machines
acting in early embryogenesis are highly interconnected, and are
likely to operate together through regulatory molecules that coordi-
nate their activities. We have tested ten predictions from this
integrated network by observing the dynamic in vivo localization
pattern of GFP fusion proteins. The integrated network is a potential
reservoir for hundreds of testable predictions about cellular processes
in the early embryo. The approach presented here is scalable and can
be extended to include additional data types. This general strategy is
applicable to other biological processes and other organisms, includ-
ing humans.

METHODS
Clustering and network analysis. Agglomerative hierarchical clustering of
genes based on phenotypic similarity, construction of network graphs from
protein–protein interaction data and similarity in expression and phenotypic
profiles and corresponding statistical analyses are described in Supplementary
Methods. GO annotations from WormBase version WS100 were used to test
phenoclusters for functional enrichment and to test the integrated early
embryogenesis network for its ability to predict a shared function between
two linked gene/protein pairs, as detailed in Supplementary Methods.
Localization studies. For each gene selected, the sequence between the predicted
initiation and termination codons was cloned into GFP vectors driving
expression in the germ line and soma. Transgenic animals expressing extra-
chromosomal arrays were generated by injection, and animals from the F2
generation were assayed for localization. Microscopy was carried out on Leica
DMLAorDMRAmicroscopes using £ 100 (1.3 N.A.) objectives andGFP filters.
(See Supplementary Methods for details.)
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