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ABSTRACT
Motivation: Predicting the outcome of specific experi-
ments (such as the growth of a particular mutant strain in a
particular medium) has the potential to allow researchers
to devote resources to experiments with higher expected
numbers of ‘hits’.
Results: We use decision trees to predict phenotypes
associated with Saccharomyces cerevisiae genes on the
basis of Gene Ontology (GO) functional annotations from
the Saccharomyces Genome Database (SGD) and other
phenotypic annotations from the Yeast Phenotype Catalog
at the Munich Information Center for Protein Sequences
(MIPS). We assess the methodology in three ways: (1) we
use cross-validation on the phenotypic annotations listed
in MIPS, and show ROC curves indicating the tradeoff
between true-positive rate and false-positive rate; (2) we
do a literature-search for 100 of the predicted gene-
phenotype associations that are not listed in MIPS, and
find evidence for 43 of them; (3) we use deletion strains
to experimentally assess 61 predicted gene-phenotype
associations not listed in MIPS; significantly more of these
deletion strains show abnormal growth than would be
expected by chance.
Contact: fritz roth@hms.harvard.edu
Supplementary Information: Complete results are avail-
able at http://llama.med.harvard.edu/∼king/pheno.html
Keywords: decision trees; phenotype; gene function

INTRODUCTION
When an organism’s genome has been sequenced and its
genes identified, there remains the task of determining
the role of each gene in the organism, aspects of which
include the gene’s molecular function and the phenotypes
associated with the gene’s disruption. There is an interplay
between a gene’s functional attributes and phenotypic
attributes, with each providing information about the
other—see Hampsey (1997) for an overview of Saccha-
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romyces cerevisiae phenotypes and their relationships to
function.

Efforts to standardize the vocabulary of function and
phenotype have facilitated the use of statistical methods
to infer function from phenotype and vice-versa. In Clare
and King (2002), decision trees were used to extract rules
for inferring function from phenotype in S.cerevisiae. In
this paper we build decision trees for inferring phenotype
from function in S.cerevisiae. Our approach differs in
many details from the approach in Clare and King (2002),
but closely follows the approach used in King et al.
(2003) for predicting functional annotations on the basis of
other functional annotations. As genes may have multiple
phenotypic annotations, and as there may be informative
patterns among these annotations, in this paper we predict
phenotype not on the basis of annotated function alone,
but on the basis of both function and other phenotypic
annotations.

The training data we use consists of the Gene Ontology
(GO; The Gene Ontology Consortium, 2000) annotations
of function from the Saccharomyces Genome Database
(SGD; Cherry et al., 1998), and the annotations of
phenotype from the Yeast Phenotype Catalog at the
Munich Information Center for Protein Sequences (MIPS;
Mewes et al., 2002).

We assess our methodology using three approaches:
cross-validation; a literature-search on top-scoring pre-
dictions of gene-phenotype associations that are not listed
in MIPS; and comparison with a high-throughput exper-
imental determination of phenotype for a comprehensive
collection of yeast deletion strains.

METHODS
Training data
We downloaded the MIPS phenotypic annotations from
http://mips.gsf.de/proj/yeast/catalogues/phenotype and
the SGD GO annotations from http://www.geneontology.
org. The versions of the files that we used were down-
loaded on October 10, 2002.
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The 180 MIPS phenotypes are organized as a hierarchy,
with more specific phenotypes descending from more
general phenotypes. We associated with each phenotype
j an indicator random variable X j , with X j (i) = 1 if
gene i is annotated as having phenotype j and X j (i) = 0
otherwise.

The GO attributes are organized as a directed acyclic
graph (DAG) (like a hierarchy, but in which attributes may
have multiple parents, not just multiple children) consist-
ing of three branches: cellular component, molecular func-
tion, and biological process. The GO consists of roughly
13 000 terms, 3051 of which were associated with at least
one yeast gene. We excluded annotations for the three at-
tributes ‘biological process unknown’, ‘molecular func-
tion unknown’, and ‘cellular component unknown’, and
we associated with each of the other 3048 attributes j an
indicator random variable X j , with X j (i) = 1 if gene i is
annotated as having attribute j and X j (i) = 0 otherwise.

Note that the files from MIPS and SGD usually contain
explicit annotations only at the most specific levels that are
supported by the literature. In defining X j we also include
those annotations logically implied by the structure of
the MIPS hierarchy and the GO DAG, so that X j (i) =
1 if gene i is explicitly annotated with term j or any
descendant of term j in the MIPS hierarchy or GO DAG.

We made predictions for only the 130 most specific
phenotypes, although we allowed all 180 phenotypes, as
well as the 3048 GO attributes, to be used as predictors.
Let X∼ j denote the vector consisting of all those random
variables Xk for which k �= j and k not an ancestor of j
in the MIPS hierarchy, and let X∼ j (i) denote the vector of
values of these random variables for the gene i . For each
of the 130 most specific phenotypes j we built a decision
tree for predicting X j from X∼ j , and we used this decision
tree to compute

q(i, j) = Pr(X j = 1|X∼ j = X∼ j (i))

for each gene i . (Note that when making a prediction
about whether a gene has a certain phenotype j , we
do not use the ancestors of j in the MIPS hierarchy as
predictors.) The score q(i, j) may be interpreted as the
probability that a randomly selected gene is annotated
as having phenotype j , given that its other annotations,
ignoring those for phenotype j and its ancestors in the
MIPS hierarchy, agree with those for gene i .

Decision trees
(The presentation in this section is adapted from King et
al., 2003.)

See (Breiman et al., 1984) or (Quinlan, 1993) for an
overview of decision trees and their applications. For our
purposes, the decision tree for phenotype j prescribes a
sequence of tests to apply to a gene to aid in predicting

whether the gene is annotated as having phenotype j . The
tests are all of the form ‘Is the gene annotated as having
function or phenotype attribute k?’ for some GO attribute
k or MIPS phenotype k �= j , with k not an ancestor of j in
the MIPS hierarchy. Which test is applied depends on the
result of previous tests—hence the tree structure.

We constructed the decision tree for phenotype j
greedily, by starting with all genes g in the training set in a
single root node, and then recursively splitting each node
N by testing on the attribute k for which the information
gain for phenotype j is maximal.

If we test on attribute k, splitting N into two nodes N0
and N1 where Nt = {g ∈ N : Xk(g) = t}, then the
information gain is defined to be

HN (X j ) − Pr(g ∈ N0|g ∈ N ) HN0(X j )

− Pr(g ∈ N1|g ∈ N ) HN1(X j ).

Here HN (X j ) is the entropy of X j at node N , which is
defined to be −pN log(pN )−(1−pN ) log(1−pN ), where
pN is the probability that a gene g ∈ G at a node N is
annotated as having j (see e.g. Cover and Thomas, 1991).
As in (Niblett and Bratko 1986), we used the estimate

pN = #{g ∈ N : X j (g) = 1} + m p( j)

#{g ∈ N } + m
,

where p( j) is the fraction of the genes in the entire
training set that are annotated as having phenotype j , and
m is an adjustable parameter. The term m p( j) is used as
a pseudocount—a small sample-size regularization term,
with an interpretation as a prior probability in a Bayesian
framework (see e.g. Ewans and Grant, 2001)—with m
being the total number of pseudocounts; we set m = 2.
We used #{g ∈ Nt }/#{g ∈ N } as an estimate for Pr(g ∈
Nt |g ∈ N ) for t = 0 and t = 1, again following (Niblett
and Bratko, 1986).

When no test at a node N provides a positive informa-
tion gain, the node is not split, but becomes a leaf. It is la-
belled with the estimate pN of the probability that a gene
at node N has phenotype j , as defined above.

A tree grown in this manner will usually overfit the
training data, and consequently perform poorly on the
held-out test data. A standard way of combating this is to
prune away some of the branches after the tree is grown.
We used the Bayesian Information Criterion

BIC = −2 ln Pr(data | model) + (ln M)K ,

which is asymptotically equivalent to the Minimum
Description Length (MDL) (Schwartz 1978), for model
selection during pruning (see e.g. Friedman and Gold-
szmidt, 1996). Here K is the number of free parameters in
the model (which in our case coincides with the number
of leaves in the decision tree), and M is the number of
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samples in the data-set (which in our case is the number
of genes in the training set). The first term measures the
goodness-of-fit of the model to the data, and the second
term penalizes model-complexity. We pruned the tree in
a bottom-up fashion, starting at the leaves and working
toward the root, pruning away any branch whose removal
caused the tree’s BIC score to decrease. In computing the
BIC score we treated the genes as independent, so that the
likelihood Pr(data | model) factored as the product of the
likelihood for each gene. (This may not be strictly true,
due to homology between genes for example.)

The score q(i, j) was then just pN , where N is the leaf
that gene i ends up at in the decision tree for phenotype j .

One notable difference between our approach and the
approach used in Clare and King (2002) to predict
gene function is that they built a single decision tree to
predict what combination of functions a gene has, whereas
we build a separate decision tree for predicting each
phenotype.

RESULTS
Cross-validation
Let G denote the set of 6898 yeast genes listed in the
SGD and T the set of 130 most-specific MIPS yeast
phenotypes. We assessed our decision trees using 10-fold
cross-validation. We randomly partitioned the set G of
yeast genes into 10 sets of equal size (±1). For each of
the 10 sets of genes, we built 130 decision trees using the
remaining nine sets (combined) as training data. Then for
each gene i in the held-out set, we used these decision
trees to compute q(i, j) for each phenotype j in T .

The scores q(i, j) for each of the 10 folds of the cross-
validation were pooled together, and for each threshold
t ∈ [0, 1] we computed the true-positive rate

TPt = #{(i, j) ∈ G × T : q(i, j) ≥ t & X j (i) = 1}
#{(i, j) ∈ G × T : X j (i) = 1}

and the false-positive rate

FPt = #{(i, j) ∈ G × T : q(i, j) ≥ t & X j (i) = 0}
#{(i, j) ∈ G × T : X j (i) = 0} .

Figure 1 shows Receiver Operating Characteristic
(ROC) curves, plotting TPt versus FPt . To demonstrate
the value of using MIPS phenotypes combined with GO
attributes as predictors, we have included ROC curves for
decision trees in which only GO attributes were used as
predictors and in which only MIPS phenotypes were used
as predictors. We have also included the ROC curve for a
model in which all phenotypes and attributes are treated
as mutually independent, so that q(i, j) is just the fraction
of the genes in the training set that are annotated as having
phenotype j . (This gives higher scores for predictions of
more common phenotypes, independent of gene.)

Of the 6898 × 130 = 896 510 examples (i, j) in the set
G × T , 3029 were positive (i.e. had X j (i) = 1) and the
remaining 893 481 were negative. Thus, for example, in
the top graph in Figure 1, when using MIPS phenotypes
combined with GO attributes as predictors, at the point
on the ROC curve where the true-positive rate is 0.1,
303 of the 3029 positive examples are correctly classified
as such, and 307 of the 893 481 negative examples are
misclassified.

There is the possibility of some circularity in this cross-
validation, since certain GO annotations are informed by
phenotype annotations. When predicting whether gene i
has phenotype j , we do not look at whether gene i is
annotated as having phenotype j or any of the ancestors
of phenotype j in the MIPS hierarchy, since annotations
for these ancestral phenotypes might be derived from an
annotation for phenotype j , which we are trying to predict.
Similarly, there might be GO annotations for gene i that
are derived from an annotation for phenotype j , and using
these as predictors for phenotype j could give artificially
inflated performance.

SGD curators use ten evidence codes when assigning
GO annotations (see http://www.geneontology.org/GO.
evidence.html). Phenotype-derived SGD GO annotations
should usually have evidence code IMP (inferred from
mutant phenotype), TAS (traceable author statement),
NAS (non-traceable author statement), IC (inferred by
curator), or NR (not recorded), as opposed to other codes
such as IPI (inferred from physical interaction). To reduce
the influence of phenotype-derived GO annotations, we
re-ran the cross-validation, this time making predictions
only for the 4835 genes with no annotations of type IMP,
TAS, NAS or NR. (This left 1318 positive examples and
627 232 negative examples.) The resulting ROC curves
(the lower two graphs in Figure 1) show only a slight
reduction in prediction performance. (Note also that in the
top graph, circularity is not an issue when we use only
MIPS phenotypes as predictors.)

Literature-based assessment
While the cross-validation performed above demonstrates
that gene-phenotype associations may often be predicted
accurately on the basis of other annotations, this would
be of little use if all of the phenotypes associated with
each gene were already known. But this is almost certainly
not the case, and we operate under the premise that
those genes i and phenotypes j for which q(i, j) is
large are good candidates for being genuinely associated,
even if the association is not listed in MIPS. While the
present method is not the ideal way to deal with missing
phenotypic data, as discussed in King et al. (2003) it
has the virtue of being computationally tractable, and is
formally identical to a treatment of missing data that has
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Fig. 1. ROC curves for cross-validation of phenotype predictions
(1) using both MIPS annotations and SGD GO annotations as
predictors; (2) using just MIPS annotations as predictors; (3) using
just SGD GO annotations as predictors; and (4) modeling all MIPS
phenotypes and GO attributes as independent. In the top figure we
use all genes for testing, and in the middle figure we use only those
genes with no SGD GO annotations of type IMP, TAS, NAS, IC or
NR, to avoid circularity. The bottom figure is a detail of the middle
figure at low false-positive rates, with the axes rescaled.

been used profitably in collaborative filtering applications
(see e.g. Breese et al., 1998).

To test the approach, in the process of doing the
cross-validation we also compiled a list of the gene-
phenotype pairs (i, j) ∈ G × T for which X j (i) =
0 but q(i, j) > 0.5. There were 542 such pairs,
160 of which were for ‘other’ phenotypes (such as
‘other DNA replication mutant’ and ‘other cytoskeleton
mutants’) and were removed. Of the remaining 382
pairs (i, j), we looked at the 100 with the highest
scores q(i, j) and manually assessed the plausibility of
gene i being associated with phenotype j by looking
up gene i in the Yeast Proteome Database (Costanzo
et al., 2001; http://www.incyte.com/sequence/proteome/
databases/TPD.shtml), following up in MEDLINE when
warranted.

We used a four-level rating scheme. The highest-scoring
50 pairs (i, j) and their ratings are given in Table 1—the
full list of 100 ratings, along with other supplementary
data, is available at http://llama.med.harvard.edu/∼king/
pheno.html; below we summarize the number of gene-
phenotype pairs that received each rating:

Rating Number

(1) Null mutant has phenotype 17
(2) (Non-null) mutant has phenotype 26
(3) No decisive evidence 50
(4) Contradictory evidence 7

These results indicate that our success rate for these 100
predictions was at least 43% and at most 93%.

Experimental assessment
We also experimentally assessed 61 of the predicted gene-
phenotype associations not listed in MIPS. These were
not the 61 predictions with the highest q scores, but were
those predictions with q(i, j) > 0.5 and with phenotype j
among eleven phenotypes (listed in Table 2) with available
high-throughput assay results. These eleven phenotypes
were tested in 4710 yeast deletion mutants (Winzeler et
al., 1999; Giaever et al., 2002) (Research Genetics), based
on growth on solid agar media in various conditions.
Further details on the phenotype screens, including the
quantitation and normalization of mutant growth, will
be given in a separate publication (Dudley, Janse, and
Church; manuscript in preparation), but are available upon
request. We briefly describe the methodology below.

All phenotypes were examined in a homozygous diploid
background (BY4743). With the exception of YPG, which
contained 3% glycerol as the sole carbon source, all media
were prepared as YPD (Rose et al., 1990) containing 2%
glucose with the concentration of drugs or chemicals as
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Table 1. List of the 50 highest-scoring gene-phenotype pairs (among those
not already listed in MIPS) and their ratings based on Yeast Proteome
Database and MEDLINE searches

Gene name or ORF MIPS phenotype Rating

CDC10 Actin cytoskeleton mutants 2
PPH22 Actin cytoskeleton mutants 2
HKR1 Actin cytoskeleton mutants 3
SEC3 Actin cytoskeleton mutants 3
TWF1 Actin cytoskeleton mutants 4
MHP1 Actin cytoskeleton mutants 3
BUD4 Actin cytoskeleton mutants 3
CKA2 Actin cytoskeleton mutants 3
BEM4 Actin cytoskeleton mutants 3
MSH1 Alkylating agents sensitivity 3
RAX2 Bud localization 1
RAX1 Bud localization 1
PKC1 Calcofluor white sensitivity 2
LRE1 Calcofluor white sensitivity 3
PSA1 Calcofluor white sensitivity 3
OST4 Calcofluor white sensitivity 3
MSS4 Calcofluor white sensitivity 4
HKR1 Calcofluor white sensitivity 3
YGR166W Calcofluor white sensitivity 3
YGR229C Calcofluor white sensitivity 1
SLT2 Calcofluor white sensitivity 1
SET1 Calcofluor white sensitivity 3
LAS21 Calcofluor white sensitivity 2
FPS1 Calcofluor white sensitivity 3
RPL10 Calcofluor white sensitivity 3
BNI4 Calcofluor white sensitivity 3
YNL322C Calcofluor white sensitivity 3
PFY1 Calcofluor white sensitivity 3
HHT1 Heat-sensitivity (ts) 3
MSS4 Heat-sensitivity (ts) 2
CDH1 Heat-sensitivity (ts) 3
YGR099W Heat-sensitivity (ts) 3
CAP2 Heat-sensitivity (ts) 3
DOM34 Heat-sensitivity (ts) 3
SSN3 Heat-sensitivity (ts) 2
ECM15 hygromycin B sensitivity 2
ECM2 hygromycin B sensitivity 2
ECM33 hygromycin B sensitivity 2
ECM31 hygromycin B sensitivity 2
ECM11 hygromycin B sensitivity 2
ECM29 Hygromycin B sensitivity 4
ECM14 Hygromycin B sensitivity 2
YMR308C Nuclear mutants 2
CBS1 Respiratory deficiency 1
CBS2 Respiratory deficiency 1
COX20 Respiratory deficiency 1
DNM1 Respiratory deficiency 1
MDJ2 Respiratory deficiency 4
TFB3 UV light sensitivity 2
TFB2 UV light sensitivity 2

A rating of 1 means that evidence was found that null mutants have the
phenotype; 2 means that evidence was found that (non-null) mutants have
the phenotype; 3 means that no decisive evidence was found; and 4 means
that contradictory evidence (i.e. evidence that mutants do not have the
phenotype) was found. The list is sorted alphabetically by phenotype

indicated in Table 2, following (Hampsey, 1997). UV
sensitivity was measured by growth on YPD following
UV irradiation with 100 Joules/m2. All growth mea-
surements were repeated twice using fresh strains from
a frozen stock. Mutant growth on each medium was
quantitated by image analysis of agar plate images using
GenePix 4.0 (Axon Instruments). The growth of each
mutant in each condition was normalized to growth in the
control condition (YPD) by computational comparison
of the image analysis results files. The normalized scores
took five possible values (−2, −1, 0, 1, 2), with negative
scores indicating decreased growth in the condition tested
(sensitivity) and positive scores indicating increased
growth in the condition tested (resistance).

In the following analysis, we use a fairly relaxed
standard of evidence and consider a predicted gene-
phenotype association to be validated if either of the two
replicates of a screen for sensitivity has a negative score,
or if either of the two replicates of a screen for resistance
has a positive score. Using this criterion, 12 of the 61
predictions we tested were validated.

To confidently conclude that a gene is associated with a
phenotype, one would want to use more stringent criteria
and additional controls as in Bianchi et al. (2001), but
we account for the relaxed standard when assessing the
statistical significance of our results:

Let tk denote the number of predictions tested for the
kth phenotype (k = 1, . . . , 11), let vk denote the number
of predictions validated from among these tk predictions,
and let uk denote the total number of the 4710 deletion
mutants that displayed the kth phenotype using our relaxed
standard of evidence. (The values of tk , vk and uk are listed
in Table 2.) Suppose we were to exchange the tk genes
we predicted to be associated with the kth phenotype with
tk genes selected at random (from among the 4710 genes
tested for phenotype k) for each k, to get a new set of
61 predictions. Then by the linearity of expectations, the
expected number of these random predictions that would
be validated is

∑11
k=1 tk uk/4710 = 2.6.

The probability that exactly i of the tk random
predictions for the k-th phenotype are validated is
C(uk, i) C(4710 − uk, tk − i)/C(4710, tk), where
C(r, s) = r !/(s!(r − s)!) is the binomial coefficient. (The
number of validated predictions for the k-th phenotype
follows a hypergeometric distribution, as we are picking tk
genes without replacement.) We computed a p-value—the
probability that 12 or more of these random predictions
are validated—via a Monte Carlo simulation, by summing
samples from the eleven appropriate hypergeometric
distributions ten million times; the p-value is 9 × 10−6.

It should be noted that this p-value is conservative, since
we are assessing predictions only for gene-phenotype
associations not listed in MIPS, but our totals uk include
those associations that are listed in MIPS. If we adjust for
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Table 2. List of the eleven phenotypes assayed experimentally

MIPS phenotype Assay t v u

Benomyl sensitivity 15 µg/ml benomyl 9 0 125
Caffeine sensitivity 2 mg/ml caffeine 5 2 303
Cycloheximide resistance 0.18 µg/ml cycloheximide 1 0 91
Cycloheximide sensitivity 0.18 µg/ml cycloheximide 1 0 260
Divalent cations and

heavy metals sensitivity
0.7 M CaCl2 11 2 224

Hygromycin B sensitivity 50 µg/ml hygromycin B 6 0 361
Osmotic sensitivity (Osm) 1.2 M sorbitol 4 0 40
Rapamycin resistance 0.1 µg/ml rapamycin 1 0 113
Rapamycin sensitivity 0.1 µg/ml rapamycin 2 0 166
Respiratory deficiency YPG (3% glycerol) 12 6 275
UV light sensitivity 100 Joules/m2 UV 9 2 95

The column headed t gives the number of predictions we tested for the
phenotype, the column headed v gives the number of these predictions that
were validated, and the column headed u gives the total number of the 4710
deletion mutants screened that displayed the phenotype

this, the expected number of random predictions validated
drops to 2.4, and our p-value drops to 3 × 10−6.

It should also be noted that here we are just testing null
mutants. Since a prediction by our approach is a prediction
that some allele of gene i has phenotype j , our estimate of
success using assays of null mutants is conservative in the
sense that some predictions not confirmed by assay of a
null allele might be confirmed with some other allele.

CONCLUSIONS
We have demonstrated using cross-validation that our
models can be useful for predicting gene-phenotype
associations already listed in MIPS. We have also demon-
strated that they are useful for predicting gene-phenotype
associations not listed in MIPS: over 40% of the top
100 predictions for associations not listed in MIPS were
supported by a literature-search, and high-throughput
experimental phenotype assays using deletion strains
were successful significantly more often than would be
expected by chance.

One might ask ‘What is the use of predicting yeast
phenotypes, given that deletion strains are readily avail-
able and that the phenotype assays described here are
relatively straightforward and are being performed in
high-throughput for all genes?’ We expect that phenotype
prediction will be particularly useful for organisms in
which mutant strains are less available and for phenotypes
that are more difficult to assay (e.g. the inattentive mother
phenotype in mouse Brown et al., 1996).
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