### Regulons Revealed with Gene Expression Data and Studies on DNA Sequencing via Ion Conductance

A thesis presented

by

Frederick Phillip Roth

to

the Committee on Higher Degrees in Biophysics

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

**Biophysics** 

Harvard University

Cambridge, Massachusetts

May 1998

© 1998 by Frederick Phillip Roth

I dedicate this thesis to my wife, Becca Marsh Roth,

who means more to me than any of it.

## Table of Contents

| Abstract                                                                     | 1    |
|------------------------------------------------------------------------------|------|
| Acknowledgments                                                              | 3    |
| Chapter 1 — Introduction                                                     | 1-1  |
| Chapter 2 — Analyzing Affymetrix DNA microarrays                             | 2-1  |
| Overview of Affymetrix microarrays                                           | 2-2  |
| Overview of data analysis                                                    | 2-7  |
| The GeneChip algorithm                                                       | 2-8  |
| Concerns with the GeneChip algorithm                                         | 2-14 |
| An alternative method using median and median ratio                          | 2-16 |
| Chapter 3 — Revealing regulons with transcript data and sequence alignment   | 3-1  |
| Credits                                                                      | 3-2  |
| Introduction                                                                 | 3-3  |
| Results and Discussion                                                       | 3-4  |
| Whole genome expression monitoring                                           | 3-4  |
| Sequence motifs found                                                        | 3-9  |
| False positive and false negative motifs                                     | 3-19 |
| Candidate sets of co-regulated genes                                         | 3-23 |
| Experimental protocol                                                        | 3-34 |
| Chapter 4 — Prospects for DNA sequencing using ion conductance               | 4-1  |
| Credits                                                                      | 4-2  |
| Introduction                                                                 | 4-3  |
| Results and Discussion                                                       | 4-5  |
| Modeling channel conductance                                                 | 4-5  |
| Conductance measurements of <i>Shigella</i> LamB and $\lambda$ bacteriophage | 4-9  |
| Experimental Protocol                                                        | 4-18 |
| Appendix A — Guide to Software                                               | A-1  |
| Applications for analyzing Affymetrix microarray data                        | A-2  |
| Applications for noncoding DNA sequences                                     | A-8  |
| Appendix B — Assessing Similarity between Intergenic DNA Motifs              | B-1  |
| Appendix C — Absolute and Relative Abundance of Detectable Transcipts of     | C-1  |
| Four S. cerevisiae Cultures, Ranked Alphabetically                           |      |
| Appendix D — ORFs Not Detected                                               | D-1  |
| ORFs not assayed by the Affymetrix microarrays used                          | D-2  |
| Detection thresholds for each microarray experiment                          | D-3  |

| ORFs assayed and not detected among any of four cultures        | D-4  |
|-----------------------------------------------------------------|------|
| Appendix E — ORFs with the Highest Average Abundance            | E-1  |
| Appendix F — ORFs Most Changed in Abundance                     | F-1  |
| In mating type $\alpha$ relative to mating type <b>a</b> strain | F-4  |
| In mating type <b>a</b> relative to mating type $\alpha$ strain | F-6  |
| In glucose-fed relative to galactose-fed culture                | F-8  |
| In galactose-fed relative to glucose-fed culture                | F-10 |
| In heat-shocked relative to 30 °C culture                       | F-12 |
| In 30 °C relative to heat-shocked culture                       | F-14 |
| Appendix G — Sizes of Intergenic Regions in S. cerevisiae,      | G-1  |
| E. coli and H. influenzae                                       |      |
| Intergenic regions in S. cerevisiae                             | G-5  |
| Intergenic regions in E. coli                                   | G-7  |
| Intergenic regions in <i>H. influenzae</i>                      | G-9  |

#### Abstract

The first part of this thesis contributes methods for the analysis of genome-scale transcript abundance data using oligonucleotide microarrays ('DNA chips'). This technique can reveal the genes most responsive to environmental or genotypic change. By searching for conserved elements among the upstream DNA sequences of these genes, one can identify candidate regulatory elements and corresponding candidate sets of coregulated genes. This strategy was applied to three extensively studied regulatory systems in the yeast *Saccharomyces cerevisiae*. Galactose-response data yielded the known binding site of Gal4, and six of nine genes known to be induced by galactose, as well as two ORFs that are good candidates for galactose regulation. Heat shock data yielded a set of histone genes and CCA, a DNA element known to mediate cell-cycle dependent activation. Mating type a and  $\alpha$ -specificity data yielded most of the known a- and  $\alpha$ -specific genes and all of the four relevant DNA elements. This work validates a rapid approach for discovery of regulation mechanism and introduces 'AlignACE', a tool for extracting conserved motifs from unaligned DNA sequence.

In the second part of the thesis, a novel method for sequencing single molecules of DNA is proposed based on the hypothesis that DNA passing through a membranespanning channel can disrupt the flow of ions in a sequence-dependent fashion. The method's prospects are examined and an experimental system is suggested which uses bacteriophage  $\lambda$  and the outer-membrane protein LamB from *Shigella sonnei*. To characterize the components of this experimental system, the ion conductance through single channels of *Shigella* LamB was measured to be  $88 \pm 5$  picoSiemens (pS) and the

1

ion conductance through single channels associated with purified bacteriophage  $\lambda$  was measured to be 2.1 ± 0.7 nS. The  $\lambda$  channels are present in the absence of LamB, suggesting that bacteriophage  $\lambda$ —rather than its receptor—provides the channel used for DNA transfer across the *E. coli* outer membrane.

#### <u>Acknowledgments</u>

For the work of finding motifs from expression data described in Chapter 1, I have many people to thank. The direct and integral roles of Jason Hughes and Pete Estep are described in more detail in the preface to Chapter 1. Our collaborators at Affymetrix—particularly David Lockhart, Janet Warrington, Lisa Wodicka and Bob Blalock—made this work possible and shared a preprint of their yeast expression analysis article with us. George Church brought the Gibbs motif sampling algorithm to our attention initially, and Andrew Neuwald provided the Gibbs motif sampling computer code and advice in compiling it. Keith Robison brought DNA weight matrix methods and their power to my attention. Nearly every member of our lab contributed to conversations on how to analyze expression data from Affymetrix microarrays, but particularly Jason Hughes, Pete Estep, Saeed Tavazoie, George Church, John Aach, Jason Johnson, Martin Steffen and Tom Blackwell. Fred Winston and Aimee Dudley shared their expertise in yeast biology, with which we had little previous experience. Saeed Tavazoie suggested the use of clustering methods in the analysis of multiple gene expression data sets, an idea which is mentioned but not explored in Chapter 1. Temple Smith, Tom Schneider, and John Aach contributed to ideas on assessing similarity between sets of aligned sites. Dereth Phillips, Martha Bulyk, Saeed Tavazoie, Mark Johnston, Fred Winston, Temple Smith, Kevin Struhl, David Lockhart and Janet Warrington were kind enough to critically review our manuscript.

For the work on a single molecule method for DNA sequencing, I am indebted to many people. The central contributions of Richard Baldarelli and George Church are described in detail in a preface to Chapter 2. Chuck Schultz aided Rich Baldarelli in making a working apparatus for measuring small electrical currents on a picoampere scale. Julie Gastier, Dereth Phillips, Martha Bulyk, Pete Estep were all laboratory rotation students involved at one time on this or related projects and provided enthusiastic help and advice. Pete Estep helped in developing a purification scheme for LamB porins. James Chou did some exploratory work on modeling of ion conductance in transmembrane channels. Laura Richterich helped with figures used in earlier manuscript versions. I am indebted to Magdalena Tosteson for her help with planar bilayer methods. Jim Horn aided in design and constructed a Faraday cage and planar bilayer apparatus. Martin Steffen shared his knowledge of density gradient centrifugation. John Kasianowicz and Daniel Branton provided advice and collaboration. Howard Berg helped with DNA thermal motion calculations. Cliff Christian and Axon Instruments gave equipment and advice. John Greci and New England Biolabs generously supplied  $\lambda$ bacteriophage.

Through my graduate career, Matt Temple, Kristen Landry, and Paul Johnson have been invaluable in keeping things moving more smoothly than one could possibly expect and were tolerant of ambushes as they walked into their offices.

Support for the work described in this thesis came from a variety of sources. The National Science Foundation gave funding in the form of graduate fellowships for Jason Hughes and myself. George Church was an investigator with the Howard Hughes Medical Institute. Generous support came from the Department of Energy (grant # DE-FG02-87-ER60565), Office of Naval Research (grant # N00014-97-1-0865), National

4

Institutes of Health (grant # HG000811) and Lipper Foundation. Use of an SGI Power ChallengeArray was provided by the NCSA at the Univ. of Illinois at Urbana-Champaign.

Mary Beth Shertick, Abby Jacobs, Eva Marie Hylen and Bob Tanis have juggled our finances with humor and grace, and kept me replete with toys. Terri Broderick put up stoically with my tendency to ask for a FedEx package at exactly the last minute.

Members of the Church lab have been both good colleagues and good friends. In particular, Dereth Phillips has been my neighbor leading a parallel existence, and is always good for a spontaneous aria or a fierce hug. I owe Rich Baldarelli not only for allowing me to join his project, but for late night pizzas and conversation, and for dragging me out on a bike ride once in a while. Andy Link shared his knowledge of molecular biology, his skills in tequila concoctions and his many ideals, and gave me my first experience in thesis-writing. Pete Estep has been always willing to share his bagels and his hot stock tips while challenging my every scientific assumption. Jason Johnson and Martha Bulyk introduced me to the joys of ultimate frisbee, while Keith Robison, Cory Kostrub, and Eugene Chang helped divert me with competitive hand-eye coordination exercises. Saeed Tavazoie was always good for a pleasant conversation or a physics lesson. Martin Steffen was a source of motivation and enthusiasm. Mark Poritz gave lessons in bacteriology and in how to search for a job. Chris Harbison kept the shouting to a minimum. It has been a pleasure working in the past year in the close company of John Aach, Jason Hughes, Jason Johnson and Jong Park. They have been remarkably patient with me. Ting Wu, an honorary member of the Church Lab, gave praise and encouragment in some of my darkest moments in graduate school.

5

For what I have learned and accomplished in graduate school, thanks are due most to my advisor, George Church, who is remarkable man in that he ranks among both the kindest and most intelligent people I have ever known. George has created a chaotic place filled with creative people—a fantastic setting for thinking about science.

Meredith Wynne and Jim Hogle made me welcome in the Harvard Biophysics program. Jim and Gina DeVivo ('GB') have continued to make this program great and have always made time for helping and advising. Since arriving in graduate school, I've become indebted in the friendship of Stephen Chan, Shashi Mathew, Eliza and Paresh Shah, and Michelle Milne, Susan Alderman, Paul Diamond and Brian Gladstone. I thank Dan Jay and Jack Szostak for welcoming me into their laboratories.

Mentors, teachers and role models prior to graduate school include Irene MacKay, D. L. Smith, Barbara Woll, Craig Taylor, Richard Packard, Art Rosenfeld, Sumner Davis, Jasper Rine, Kevin Hurley, Alex Nichols, Adrianus Kalmijn, and Robert Saul.

I thank my mother, Uta, who gave me the confidence to think I could play the game of science, for knitting sweaters and sending cookies and calling often. I thank my father, John, for being a role model who makes a career in science look both fun and easy. He has given me good advice. Chapter 1

## An Introduction

The nature of an introduction encourages me to relate the two distinct parts of this thesis to one another. If there is one theme to this thesis, it is that both parts were motivated by a desire to develop more efficient methods in experimental molecular biology. One might also say that the two parts are complementary, in that one method uses DNA sequence information to develop hypotheses and guide experiments while the other method seeks more DNA sequence information. However, since unifying these two rather distinct topics seems contrived, I will treat them as the distinct subjects that they are.

<u>Revealing Regulons</u>. The first chapter of this thesis describes a method for developing hypotheses about the coordinate regulation of sets of genes, and the specific mechanisms that might regulate them. The first step in the approach is to measure the abundance of transcripts for every gene or putative gene in a genome (the yeast *Saccharomyces cerevisiae* was examined for the present study) under two or more conditions.

Recent technological developments have made the simultaneous quantitation of many mRNA transcripts more tractable. Although, it has long been possible to measure mRNA levels by a Northern blot assay<sup>1</sup>, scaling this approach up to thousands of genes is quite impractical. Currently, there are two general approaches to the problem of mRNA quantitation—hybridization-based methods and counting methods.

Hybridization-based methods involve a surface with arrayed nucleic acid, either oligonucleotides or larger gene fragments. These oligonucleotides or gene fragments are deposited in a known arrangement and are generally of known sequence. The mRNA to be quantitated is labeled fluorescently (or radioactively) and hybridized to the surface.

The level of fluorescence intensity (or radioactivity) is then used to infer the amount of each transcript in the mRNA population. Hybridization-based methods can be subclassified by the method used in producing the hybridization arrays. So-called 'spotting methods' produce DNA—generally by PCR—for deposition and subsequent cross-linking to the surface. This method was originally employed on the scale of hundreds of genes by Chuang et al.<sup>2</sup>, has been further miniaturized and refined in the laboratory of Patrick Brown <sup>3-6</sup>, and is currently commercially available from Incyte Pharmaceuticals and Molecular Dynamics, among others. *In situ*-synthesis methods involve synthesis of oligonucleotides in place, i.e., directly onto the surface on which hybridization will later occur. This method was developed by Affymetrix <sup>7-9</sup> and is also currently commercially available.

Counting methods are based on the determination of RNA sequences sampled randomly from the mRNA population to be quantitated. Sequence fragments of sufficient length can be uniquely assigned to a transcript, so that relative abundance can be calculated by simply counting the number of fragments obtained from each transcript. One example of this approach is the 'shotgun' sequencing of expressed sequence tags, assembly of these sequence fragments into contiguous sequences, and calculation of abundance for each contiguous sequence based on the number fragments assigned to each. Another example is the serial analysis of gene expression (SAGE) approach developed by Velculescu et al. <sup>10; 11</sup>, whereby very short sequence fragments are subcloned on the basis of neighboring restriction sites. These fragments are then concatenated and sequenced in a high-throughput manner. A third counting method has been developed by Lynx and has been mentioned in print <sup>12-14</sup>, although some details of

the method's capabilities remain obscure. The approach requires the creation of many beads, each bead containing many copies of a single DNA fragment isolated from an mRNA population. The sequence corresponding to each bead is sequenced by a clever process involving Type IIS restriction enzymes and sequence-dependent ligation of a Type IIS restriction site-containing linker.

Once one of these methods has been applied to cells grown in two or more conditions or to cells of two or more genotypes, relative transcript abundance in these mRNA populations can be examined. A set of genes which are similar in relative abundance are more likely to be coordinately regulated than a randomly chosen set of genes. Although not discussed here, there has been recent work on quantitating protein abundance on a whole-genome (or -proteome) scale. Finding a set of genes of similar relative protein abundance is another approach to finding a set of coordinately regulated genes. Whole-genome relative abundance approaches to finding a biologically interesting set of genes are comparable and complementary to genetic approaches which might be guided by isolation and identification of mutant genes. For example, a genetic approach to the study of gene regulation of galactose response (in the absence of prior knowledge) might be the isolation of mutants which will not grow in the presence of galactose, separation of mutant strains into complementation groups, and subsequent cloning and sequencing of the genes corresponding to complementation groups. The set of genes which, when mutated, impair growth on galactose is a biologically interesting set of genes.

Given a biologically interesting set of genes, we can ask if there is a subset of these genes that has a common DNA element in their upstream non-coding regions. Such

a subset is likely to be further enriched for coordinately regulated genes. There are several algorithms which have been previously developed for the purpose of finding conserved elements in unaligned sequence data. A recent review by Frech et al. <sup>15</sup> compared the methods CONSENSUS, WCONSENSUS <sup>16</sup>, Gibbs Site Sampling <sup>17</sup> and Gibbs Motif Sampling <sup>18</sup>, having found these to be the only algorithms that were readily available, currently recommended by their inventors, and which did not rely heavily on prior knowledge of the sought-after conserved element. A more recent method called Multiple Expectation Maximization for Motif Elicitation (MEME) <sup>19</sup> has been developed but has not been compared independently with other methods.

CONSENSUS and WCONSENSUS are based on a clustering algorithm for multiple sequence alignment, wherein the starting point is a pairwise comparison of all potentially conserved sites. The best-matching pairs are kept, and every possible comparison with a third sequence is made and the best sets of three are kept. This continues until one of several stopping criteria are met. A clustering algorithm is an example of a greedy algorithm, discussed further below.

MEME is based on expectation maximization, which is another example of a greedy algorithm. MEME chooses a number of starting estimates for the weight matrix describing a set of aligned site, each starting estimate being derived from one of the sites in the input set. Then, it calculates the probability that each site is a match to this matrix. Next, it updates the matrix based on these probabilities, with the greatest contribution to the weight matrix coming from the most probable sites. The preceding two steps are repeated until a locally optimal solution is reached.

A greedy algorithm assumes that a locally optimal solution is part of the globally optimal solution. In the case of CONSENSUS and WCONSENSUS this is the assumption that the best pair of sites (or one of the best pairs) will be a part of the best set of multiple aligned sites. In the case of MEME, it is the assumption that the globally optimal weight matrix will be reached by locally optimizing weight matrices derived from each site in the input set. That neither of these assumptions are necessarily true for subtle sequence motifs is a disadvantage. However, greedy algorithms are quite efficient and both CONSENSUS and MEME have had demonstrated success.

Gibbs Site Sampling and Gibbs Motif Sampling are both stochastic sampling approaches, i.e., unlike the greedy algorithms described above they do not proceed deterministically to a local optimum from a given starting point. The Gibbs sampling algorithm is similar to an expectation maximization approach except that it has an element of randomness, so that usually—but not always—it proceeds toward an optimal solution.

This allows the discovery of subtle sequence motifs, where the globally optimal alignment may be difficult to find using a deterministic greedy algorithm. One might think that this comes at some expense in efficiency for an exhaustive search, but Gibbs Site Sampling performs comparably to CONSENSUS using approximate 10 times fewer CPU cycles <sup>15</sup>.

Once a conserved DNA element has been found and a hypothesis has been generated that a set of genes is coordinately regulated, the hypothesis can guide experiments for verifying the functional importance of the conserved DNA element. Oligonucleotide-directed mutagenesis is a technique which allows one to make point

mutations at specific, desired locations. One can then assay for impaired gene regulation in the mutated strain.

We can contrast this approach to cases where there are no guiding hypotheses about the locations of regulatory DNA elements. There are two commonly used approaches in this case, both called 'promoter-bashing' in the common parlance. Promoter-bashing consists of creating many strains, each having a different mutation in the upstream region of the gene of interest. Linker-scanning mutagenesis is one such mutagenic approach where each strain has a different region deleted in its upstream sequence. Deletion strains in which differential transcription of a gene has been abolished can thus identify regions important to regulation. Smaller deletions are then constructed until the critical region(s) has been narrowed to a few base pairs. Once the size of the critical region(s) has been narrowed down sufficiently, oligonucleotidedirected mutagenesis can be used to make specific point mutations to determine the critical bases of the DNA element. Another promoter-bashing approach is cassette mutagenesis, wherein the upstream region is randomly point-mutagenized extensively and then used to replace the upstream sequence in an unmutagenized strain, so that any impairment of regulatory function can be attributed to mutations in this cassette region. Mutant strains impaired for gene regulation are then sequenced to identify critical regions. Both of the approaches described above are laborious, and would not be preferred in cases where there exist strong hypotheses for the location of regulatory sites.

Little or nothing is known about the transcriptional (or post-transcriptional) regulation of most *S. cerevisiae* genes, so that more efficient methods for developing and testing hypotheses about gene regulation are needed.

<u>Single-molecule DNA sequencing</u>. The second chapter of this thesis is an exploration of a method for sequencing single molecules of DNA that was first proposed by George Church in 1989.

At the time of this proposal, it was generally accepted that a dramatically improved method of DNA sequencing would be required to determine the sequence of the entire human genome at reasonable cost within a reasonable period of time <sup>20</sup>. Today's DNA sequencing technology of choice, Sanger dideoxy sequencing, was first described in 1977 <sup>21</sup>. Radioactivity-based detection has evolved into fluorescence-based detection, different DNA polymerases have been employed and the method has become more automated, but the underlying method remains essentially the same <sup>22</sup>. Automation of the multiple steps required for Sanger dideoxy sequencing and the need for significant quantities of reagents contribute to the cost of this method. Methods which directly determine the sequence of a single molecule of DNA have the potential to reduce these costs significantly.

George Church's proposal was based on the principle that DNA passing through a transmembrane channel will impede ion flow through that channel. So, if each of the four (possibly modified) nucleotides block the channel to a unique extent, then the DNA can be sequenced by measuring ion conductance. George Church and Richard Baldarelli began exploring this idea and settled on a biological system for effecting DNA transport across a membrane—bacteriophage  $\lambda$ . Bacteriophage  $\lambda$  infects *E. coli* cells and is known to require a membrane receptor, the bacterial LamB porin, in order to inject its DNA

across the *E. coli* membrane. It has not been shown whether bacteriophage  $\lambda$  creates its own channel, or if it widens a pre-existing channel in the LamB pore.

That it is possible to measure ion current through a single molecular 'hole' in a lipid membrane has been long established <sup>23</sup>. Current blockages in single channels have previously been observed, e.g., in the case of a protein-conducting channel in the endoplasmic reticulum <sup>24</sup>. More critical questions to the proposed method are: Can nucleic acids be 'threaded' into a channel under suitable experimental conditions? Will different nucleotides block channel conductance to measurably different extents? If not, can modified nucleotides be used to achieve this aim? Will thermal diffusion of nucleic acids cause back-and-forth motion on the scale of single bases that will be more rapid than the time resolution in current measurement we are able to achieve?

Independently, another research group, consisting of David Deamer, Daniel Branton, John Kasianowicz and Eric Brandin, hit upon the same idea of using ion conductance to sequence nucleic acids. They decided to use *S. aureus*  $\alpha$ -hemolysin, a large channel which does not naturally transport nucleic acids, and use electrophoresis as a means to drive the nucleic acid (either RNA or DNA in this case) through the channel <sup>25</sup>.

I will briefly discuss the results of Kasianowicz et al. here, though since their results were published after completion of the work described in Chapter 2, this discussion might properly belong in an epilogue <sup>25</sup>. When ion current through a single channel of  $\alpha$ -hemolysin was measured in the presence of poly(U) single-stranded RNA, transient decreases of ion current were seen. These transient decreases were not seen in the absence of poly(U), so these decreases were attributed to channel blockage by the

nucleic acid. This was confirmed by repeating the experiment with poly(U) ranging in length from 150 to 450 nucleotides, and finding that the duration of channel blockage was proportional to poly(U) sequence length. Recently, it was reported that the same group was able to discern the difference between poly(A) and poly(C) by measuring ion current<sup>26</sup>. Using an RNA sequence of 70 As followed by 30 Cs, it was found that conductance changed during the transient decrease in ion current.

Apart from the proposed method of sequencing by ion conductance outlined in Chapter 2 and the method of Kasianowicz et al. discussed above, proposals for singlemolecule sequencing fall into two categories. The first of these seeks to sequence DNA directly using scanning tunneling microscopy (STM). STM is a technique which uses a conductive probe to scan a surface. When the probe is in contact with the surface, there is a measurable electric current due to electrons 'tunneling' through the surface. If the probe is moved up and down so that the tunneling current remains constant, and the height of the probe is known, a topographical map of the surface can be constructed. Double-stranded DNA has been imaged by STM in aqueous solution with high enough resolution to resolve helical pitch <sup>27</sup>. Subsequently, individual adenine bases were resolved in single-stranded poly(dA), lending credence to the idea that DNA might be sequenced <sup>28</sup>. Since that time, there has been little reported progress towards sequencing DNA directly by STM. In 1994, a related proposal was made to cleave surface-deposited DNA at specific positions using incorporation of <sup>32</sup>P, and sequence by measuring the lengths of cleaved fragments using STM <sup>29</sup>. To date, no DNA sequencing by STM methods has been reported.

The second category of single-molecule DNA sequencing relies on the fluorescence-based detection of single-molecules in a flowing solution. It also requires that a DNA or RNA polymerase faithfully incorporate and extend from nucleotides that have been modified to be fluorescent. A single-stranded nucleic acid, having each of its four bases modified with one of four spectrally distinct fluorophores, is attached to a solid support. Fluid is passes across this solid support, with the flow leading to a sensitive fluorescence detector. A  $3' \rightarrow 5'$  exonuclease is used to remove bases sequentially from one end, and as the fluorescent bases are removed they are carried past the detector  $^{30}$ . The sequence of the four different fluorescent bases moving past the detector will then correspond to the nucleic acid sequence.

Single-molecule fluorescence detection has been accomplished in a flow system using the fluorescent dye rhodamine-6G, with about 85% of molecules in the flow being detected <sup>30</sup>. Incorporation and extension of fluorescently labeled nucleotides has been accomplished, but low efficiency incorporation of modified nucleotides remains a technical problem <sup>31</sup>. No DNA sequence has yet been determined using this method.

In 1995, sequencing of the human genome began on a production scale using the conventional Sanger dideoxy method <sup>22</sup>. Incremental improvements in this method had made it possible to consider using this approach to complete the genome. At the same time, however, it was noted that uses for DNA sequencing would not end with completion of an individual human genome. Improved DNA sequencing would lead to improved methods for measuring mRNA expression levels, using the counting methods like the SAGE approach described above. Increased interest in genetic variation among

humans, and in genomes in all branches of life guarantees continued interest in revolutionary approaches to DNA sequencing.

#### References

1. **Alwine, J.C., Kemp, D.J. and Stark, G.R.,** Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes, *Proceedings of the National Academy of Sciences of the United States of America*, 74(12), 5350-4, 1977.

2. **Chuang, S.E., Daniels, D.L. and Blattner, F.R.,** Global regulation of gene expression in Escherichia coli, *Journal of Bacteriology*, 175(7), 2026-2036, 1993.

3. **Shalon, D., Smith, S.J. and Brown, P.O.,** A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization, *Genome Research*, 6(7), 639-45, 1996.

4. Schena, M., Shalon, D., Heller, R., Chai, A., Brown, P.O. and Davis, R.W., Parallel human genome analysis: microarray-based expression monitoring of 1000 genes, *Proceedings of the National Academy of Sciences of the United States of America*, 93(20), 10614-10619, 1996.

5. Schena, M., Shalon, D., Davis, R.W. and Brown, P.O., Quantitative monitoring of gene expression patterns with a complementary DNA microarray [see comments], *Science*, 270(5235), 467-470, 1995.

DeRisi, J., Penland, L., Brown, P.O., Bittner, M.L., Meltzer, P.S., Ray, M.,
 Chen, Y., Su, Y.A. and Trent, J.M., Use of a cDNA microarray to analyse gene

expression patterns in human cancer [see comments], *Nature Genetics*, 14(4), 457-460, 1996.

 Chee, M., Yang, R., Hubbell, E., Berno, A., Huang, X.C., Stern, D., Winkler,
 J., Lockhart, D.J., Morris, M.S. and Fodor, S.P., Accessing genetic information with high-density DNA arrays, *Science*, 274(5287), 610-614, 1996.

8. Lockhart, D.J., Dong, H.L., Byrne, M.C., Follettie, M.T., Gallo, M.V., Chee, M.S., Mittmann, M., Wang, C.W., Kobayashi, M., Horton, H. and Brown, E.L., Expression monitoring by hybridization to high-density oligonucleotide arrays, *Nature Biotechnology*, 14(13), 1675-1680, 1996.

9. Wodicka, L., Dong, H., Mittmann, M., Ho, M.-H. and Lockhart, D.J., Genome-wide expression monitoring in *Saccharomyces cerevisiae*, *Nature Biotechnology*, 15(13), 1359-1366, 1997.

Velculescu, V.E., Zhang, L., Zhou, W., Vogelstein, J., Basrai, M.A., Bassett,
 D., Jr., Hieter, P., Vogelstein, B. and Kinzler, K.W., Characterization of the yeast
 transcriptome, *Cell*, 88(2), 243-51, 1997.

Zhang, L., Zhou, W., Velculescu, V.E., Kern, S.E., Hruban, R.H., Hamilton,
 S.R., Vogelstein, B. and Kinzler, K.W., Gene expression profiles in normal and cancer cells, *Science*, 276(5316), 1268-72, 1997.

12. **Marshall, A. and Hodgson, J.,** DNA chips: an array of possibilities. [Review] [4 refs], *Nature Biotechnology*, 16(1), 27-31, 1998.

13. **Brenner, S.,** Massively parallel sequencing of sorted polynucleotides, in *www.patents.ibm.com*, U.S., Lynx Therapeutics, Inc., 1997.

14. **Brenner, S.,** DNA sequencing by stepwise ligation and cleavage, in *www.patents.ibm.com*, U.S., Lynx Therapeutics, Inc., 1998.

15. Frech, K., Quandt, K. and Werner, T., Software for the analysis of DNA sequence elements of transcription, *Computer Applications in the Biosciences*, 13(1), 89-97, 1997.

16. Hertz, G.S. and Stormo, G.D., Identification of consensus patterns in unaligned DNA and protein sequences: a large deviation statistical basis for penalizing gaps., in *Proceedings of the 3rd International Conference on Bioinformatics and Genome Research*, Lim, H.A. and Cantor, C.R., Eds., Singapore, World Scientific Publishing Co.,

1995, 201-216.

17. Lawrence, C.E., Altschul, S.F., Boguski, M.S., Liu, J.S., Neuwald, A.F. and Wootton, J.C., Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment, *Science*, 262(5131), 208-214, 1993.

18. **Neuwald, A.F., Liu, J.S. and Lawrence, C.E.,** Gibbs motif sampling: detection of bacterial outer membrane protein repeats, *Protein Science*, 4(8), 1618-1632, 1995.

 Bailey, T.L. and Elkan, C., Unsupervised learning of multiple motifs in biopolymers using expectation maximization, *Machine Learning Journal*, 21, 51-83, 1995.

20. **Olson, M.V.,** The human genome project. [Review] [80 refs], *Proceedings of the National Academy of Sciences of the United States of America*, 90(10), 4338-44, 1993.

21. Sanger, F., Nicklen, S. and Coulson, A.R., DNA sequencing with chainterminating inhibitors, *Proceedings of the National Academy of Sciences of the United States of America*, 74(12), 5463-7, 1977. 22. Olson, M.V., A time to sequence, *Science*, 270(5235), 394-6, 1995.

23. Bean, R.C., Shepherd, W.C., Chan, H. and Eichner, J., Discrete conductance fluctuations in lipid bilayer protein membranes, *J. Gen. Physiol.*, 53(6), 741-757, 1969.

24. **Simon, S.M. and Blobel, G.,** A protein-conducting channel in the endoplasmic reticulum, *Cell*, 65(3), 371-380, 1991.

Kasianowicz, J.J., Brandin, E., Branton, D. and Deamer, D.W.,
 Characterization of individual polynucleotide molecules using a membrane channel,
 *Proc. Natl. Acad. Sci. USA*, 93, 13770-13773, 1996.

26. Zacks, R., Hole in the wall offers cheaper sequencing, *Technology Review*(May/June), 26, 1998.

27. Lindsay, S.M. and Barris, B., Images of the DNA double helix in water, *Science*, 244, 1063-1064, 1989.

28. **Dunlap, D.D. and Bustamante, C.,** Images of single-stranded nucleic acids by scanning tunnelling microscopy, *Nature*, 342, 204-206, 1989.

29. **Kelson, I. and Nussinov, S.,** A scheme for sequencing large DNA molecules by identifying local nuclear-induced effects, *Proceedings of the National Academy of Sciences of the United States of America*, 91(15), 6963-6, 1994.

30. **Harding, J.D. and Keller, R.A.,** Single-molecule detection as an approach to rapid DNA sequencing. [Review] [17 refs], *Trends In Biotechnology*, 10(1-2), 55-7, 1992.

31. Zhu, Z. and Waggoner, A.S., Molecular mechanism controlling the
incorporation of fluorescent nucleotides into DNA by PCR, *Cytometry*, 28(3), 206-11, 1997.

Chapter 2

# Analyzing Affymetrix DNA Microarrays

There were many, often intense, discussions among members of our laboratory on alternative ways to analyze fluorescence intensity data—the primary data from Affymetrix DNA microarrays ('chips'). It was during these discussions that my thoughts on chip data analysis became more clear. In this chapter, I will first describe the physical characteristics of Affymetrix chips, making liberal use of excerpts from several papers on the subject <sup>1-2</sup>. I will discuss the analysis algorithms used by Affymetrix and also our motivations for developing an alternative method. Finally, I will describe the method of analysis outlined in Chapter 1 in greater detail and describe limitations and future possibilities.

<u>High-density synthetic oligonucleotide arrays</u>. Synthetic oligonucleotide arrays have been used to quantitate transcript abundance in mammalian mRNA populations <sup>3</sup> and more recently in yeast mRNA populations <sup>1</sup>. Synthetic oligonucleotide arrays are essentially glass slides with oligonucleotides attached at the surface. Through the use of photolithographic masking it is possible to synthesize these oligonucleotides *in situ*, allowing for the creation of defined regions on the surface (also called 'features') which contain oligonucleotides of a single desired sequence (see Fig. 1).



**Figure 1.** Light-directed synthesis of oligonucleotides. A surface bearing photoprotected hydroxyls (X-O) is illuminated through a photolithographic mask ('mask 1'), generating free hydroxyl groups in the photodeprotected region. The hydroxyl groups are then coupled to a deoxynucleoside phosphoramidite (5'-photoprotected). A new mask pattern ('mask 2') is applied, and a second photoprotected phosphoramidite is coupled. Rounds of illumination and coupling are repeated until the desired set of products is obtained. This figure legend was excerpted from ref. <sup>2</sup> and the figure was adapted from the same source by Martha L. Bulyk.

The oligonucleotide arrays used to monitor gene expression in *Saccharomyces cerevisiae* measure  $1.28 \times 1.28$  cm and contain more than  $65,000\ 50 \times 50\ \mu\text{m}$  synthesis 'features'. Each synthesis feature consists of more than  $10^7$  copies of a particular 25-mer oligonucleotide. The full set of oligonucleotide probes covering all open reading frames (ORFs) are divided among four different arrays, comprising a total area of approximately one square inch for the entire yeast genome. For each ORF, approximately 20 complementary 25-mers were chosen using selection criteria which have not been publicly revealed by Affymetrix, but which include tests for sequence uniqueness relative to the rest of the genome and the absence of sequence features (e.g., self-complementarity or clusters of single nucleotides) that have been determined to adversely affect hybridization on arrays.

Use of multiple oligonucleotides for each ORF provides redundancy in the detection and analysis of the data and mitigates the potentially confounding effects of occasional cross-hybridization. For each of the complementary 25-mers (called 'PM's, for 'perfect matches') there is a closely related 25-mer which differs by only one base (called an 'MM' for 'mismatch') at the central position. The MM probe of each pair serves as an internal control that allows consistent hybridization to be recognized (a PM signal larger than the corresponding MM signal). The difference between the PM and MM intensities of a probe pair will also be referred to as  $\Delta$ . Both of the algorithms discussed here are based on the difference of PM and MM partners, so that when the differences of several 'probe pairs' (a PM and its corresponding MM) are aggregated, cross-hybridization and background hybridization tends to cancel. Specific hybridization

signals, on the other hand, tend to add constructively across the set of probe pairs for each gene.

The chips are read out by hybridizing fluorescently labeled cDNA or 'cRNA' (produced from cDNA by reverse transcription) to the chip. Fluorescence intensity is quantitated by a scanning confocal microscope. This fluorescence intensity data is the primary data which must be interpreted to give the relative and/or absolute abundance of a transcript.



**Figure 2.** Fluorescence intensity images from an Affymetrix *S. cerevisiae* expression microarray. (**A**) contains the complete image of a yeast 'A' chip (the first of a set of 4 chips). The image was obtained from a chip which was hybridized with cRNA which was biotinylated and conjugated to phycoerythrin. The RNA was isolated from a culture grown in the presence of galactose, labeled and hybridized as described in Chapter 1. (**B**) is an enlargement of part of the chip shown in (A). In this image, a clustering of intense features can be seen within rows. These clusters are generally sets of PM probes derived from one ORF, while the corresponding MM probes are located in the next lowest row.

<u>Overview of microarray fluorescence intensity data analysis</u>. Analysis of fluorescence intensity data may be divided into four distinct steps:

1) **Obtain feature intensities**. Assign an intensity value to each feature on the chip. In Fig. 1A, a checkerboard pattern of intensity can be seen around the perimeter of the chip. Each of the intense features in this pattern is complementary to a fluorescently labeled control DNA sequence which has been added to the chip along with the labeled DNA or RNA to be examined. The checkerboard pattern aids the GeneChip software in its placement of a deformable grid over the intensity image, so that regions of intensity can be mapped to coordinates on the chip.

2) **Subtract Background**. Calculate and subtract background intensity from each feature. This step is employed in the methods used by both Affymetrix and myself, but is not essential to every method of analysis that might be envisioned, since MM features serve as an additional 'background' subtraction.

3) **Normalize**. Normalize feature intensity between chips within an experiment, and between experiments. Since the efficiency of mRNA isolation, labeling, and hybridization can vary from experiment to experiment, and the amount of *in situ*-synthesized oligonucleotide can vary considerably from chip to chip, normalization is an important step.

4) **Calculate ORF abundance**. First, group the feature intensities into sets of PM and MM intensities so that each correspond to a given gene or ORF, using the knowledge of the oligonucleotide sequence that corresponds to each feature coordinate on the chip. Then, use the set of background-subtracted, normalized, PM and MM features

for a given ORF to determine either a) the ORF's absolute transcript abundance or b) its abundance relative to another growth condition.

5) **Establish a measure of confidence**. Features with pixel intensities that are less variable should be more reliable. Feature sets that have more features, are less variable, or that are more easily distinguished from background are also likely to yield a more reliable measurement.

<u>The GeneChip algorithm for interpreting fluorescence intensity</u>. Here I describe the algorithm used by the Affymetrix GeneChip software. Past versions of the algorithm is known to me by personal communication, while the current version is as described in the help files of GeneChip 3.0, unless otherwise noted. I should mention that changes have been made in successive versions of the GeneChip software, so there is no guarantee the algorithm is the same as in previous versions of GeneChip, nor that it will be unchanged in future versions. My chief purpose in describing the GeneChip algorithm is to put the new method of data analysis in the context of an alternative method.

1) **Obtain feature intensities**. After the perimeter checkerboard is used to map a grid onto the features, a set of pixels is associated with each feature. The pixels near the edges of the feature are discarded, and a clustering algorithm is used to find a region of intense pixels among those remaining. The average pixel intensity of this region is then assigned to the feature. Details of this procedure have been unavailable to the general public, but I have been told more recently that the GeneChip 3.0 software has been altered so that, instead of choosing a cluster of intense pixels, the 75th percentile pixel intensity is assigned to the feature after discarding pixels near the feature edge.

2) **Subtract Background**. The total chip area is divided into sectors (with 16 as a default number of elements in a sector). The background is then calculated independently for the features in each sector by averaging the lowest N (80 is the default value for N) feature intensities in that sector.

3) Normalize. One of three different methods of normalization can be used, at the user's discretion: a) Normalize using selected genes. Typically the genes selected for normalization are transcripts not naturally present in yeast, e.g., transcripts from E. *coli*, that have been 'spiked' at known concentration into the hybridization mixture. This method is best for normalizing between different chips that have been exposed to the same hybridization mixture. This method can also be the best approach for normalizing between different preparations of hybridization mixture if the bacterial transcripts are 'spiked' into the nucleic acid preparation at an earlier step. If spiking occurs before total RNA is purified from cell lysate, variation in efficiencies of RNA isolation, mRNA, cDNA and cRNA production can be normalized. b) Normalize with user-defined constant. The user specifies the normalization factor to the GeneChip software. c) Normalize using the total intensity of all genes on the array. Although the exact procedure for doing this was not known to me at the time I developed our analysis method, I have since been told that this is done by dividing each feature intensity by the sum of PM – MM, i.e., the sum of  $\Delta$ , for all probe pairs.

4) Calculate ORF abundance. a) An ORF's absolute abundance is calculated by taking the average of  $\Delta$  for that ORF. For ORFs with few probe pairs ( $\leq 8$ ), no measures are taken to lessen the impact of outliers (surprisingly high or low values of  $\Delta$ ). For ORFs with ~20 probe pairs, a so-called 'Olympic scoring' method is employed

wherein the highest and lowest  $\Delta$  values are discarded before calculating the average of  $\Delta$ . For ORFs with ~50 probe pairs, so-called 'super-Olympic' scoring is used, wherein first the highest and lowest  $\Delta$  values are discarded, and then those  $\Delta$  values more than three standard deviations from the resulting mean are discarded, and abundance is taken to be the mean of the remaining  $\Delta$  values. b) To calculate abundance of an ORF relative to another growth condition, i.e., fold change, the absolute abundance is calculated in each case using the method described in (a), and fold change is simply calculated as the ratio of these two absolute abundances. In the case of abundance calculation, there is a heuristic method (described below) for determining whether a transcript is 'present' or 'absent'. If the transcript is deemed absent, the abundance value calculated above is not reported. Similarly for fold change calculations, there is a heuristic method for determining if there is 'no change' in abundance, in which case the calculated value for fold change is not reported. If a transcript is deemed 'present' in one condition and 'absent' in the other, the lower transcript is set to 20 for the purposes of calculating an approximate fold change value.

5) Establish a measure of confidence. At this point, the GeneChip software does not provide a numeric measure of confidence, e.g., a 95% confidence interval for abundance measurements. However, GeneChip does use a heuristic method for declaring a transcript to be either 'present', 'marginal' or 'absent' among the pool of transcripts being assayed, although there is no measure of what the upper or lower limits of that transcript's abundance might be, or with what confidence this decision was made. The presence, absence or marginality of a transcript is determined by some unknown combination of three measures: a) The average of log(PM/MM) for a given transcript.
This is a measure of how different the pattern of probe intensities is from random. An average log(PM/MM) of 0 would indicate perfectly random cross-hybridization. The GeneChip user is able to set 'marginal' or 'present' thresholds for this value. b) The ratio of the number of 'positive' probe pairs to the total number of probe pairs. A 'positive' probe pair is defined as one for which both  $\Delta$  and PM/MM are greater than user-defined thresholds (called 'SDT' and 'SRT', respectively). c) The ratio of number of 'positive' probe pairs. 'Positive' is defined as above, while a 'negative' probe pair is one for which  $-\Delta$  and MM/PM exceed those same user-defined thresholds employed in defining 'positive'.

For measurements of expression change between two conditions, 'fold change' is calculated as the ratio of abundances (as calculated above) in each condition. As a nonquantitative measure of confidence a transcript is called 'increased' (I), 'decreased' (D), 'increased moderately' (MI), 'decreased moderately' (MD), or 'not changed' (NC). These determinations are made heuristically. There is also a measure called 'Sig' (short for significance) associated with each fold change value, using an empirical combination of 'fold change' and the absolute difference in abundance.

For ratios of transcript abundance, the determination of 'NC', 'I', 'D', 'MI', or 'MD' is made using an unknown combination of the following five measures: a) The ratio of the number of probe pairs 'increased' to the number of probe pairs 'decreased'. A probe pair is considered 'increased' if ( $\Delta_{experiment}-\Delta_{baseline}$ ) is greater than a threshold 'CT', and ( $\Delta_{experiment}-\Delta_{baseline}$ )/ $\Delta_{baseline}$  is greater than a threshold 'PCT'. A probe pair is considered 'decreased' if ( $\Delta_{baseline}-\Delta_{experiment}$ ) is greater than a threshold 'CT', and ( $\Delta_{baseline}-\Delta_{experiment}$ )/ $\Delta_{baseline}$  is greater than a threshold 'PCT'. b) The fraction of probe pairs that are 'increased', according to the above definition. c) The fraction of probe pairs that are 'decreased', according to the above definition. d) The difference in the ratio of the number of 'positive'-scoring probe pairs to the number of 'negative'-scoring probe pairs, i.e., (#Pos/#Neg)<sub>experiment</sub> – (#Pos/#Neg)<sub>baseline</sub>. e) The difference in average log ratio for the set of probe pairs, i.e., avg{log(PM/MM)}<sub>experiment</sub> –

avg{log(PM/MM)}<sub>baseline</sub>. The exact method by which the 'NC', 'I', 'D', 'MI', and 'MD' calls are determined from the above measures has not been revealed to us.

With each fold change value, there is an associated measure of change in abundance called 'Sig'. Although the name implies a measure of significance, it is not. It is an empirical formula combining difference in absolute fold change with the ratio of fold change, for ranking purposes. The formula is as follows:

$$\operatorname{Sig} = 10^{(x-4/3)} \cdot \sqrt{\operatorname{avg}\Delta_{expt} - \operatorname{avg}\Delta_{base}} \cdot \log_{10} \left( \operatorname{avg}\Delta_{expt} / \operatorname{avg}\Delta_{base} \right)$$

where  $avg\Delta$  is the mean of the  $\Delta$  values for a given ORF for a given condition and

$$\mathbf{x} = \frac{\left| \max(20, \operatorname{avg}\Delta_{expt}) - \max(20, \operatorname{avg}\Delta_{base}) \right|}{\max(20, \operatorname{avg}\Delta_{expt}) + \max(20, \operatorname{avg}\Delta_{base}) + 1}.$$

The preceding equation is heuristic and, although it may prove useful in ranking transcripts, has no direct connection that I can find with probability or significance of results.

<u>Success of the GeneChip algorithm</u>. Wodicka et al. have applied the GeneChip algorithm to chip data derived from *S. cerevisiae* cultures grown in both rich and minimal media <sup>1</sup>, with great success. These assays were shown to be largely reproducible: The

same RNA sample (from rich media) was hybridized to different chip sets from the same production lot, and of 6200 probe sets, only 14 showed a difference in abundance of more than two-fold between hybridizations while only two showed differences greater than three-fold. When independent preparations of labeled RNA from the same pellet of yeast cells were hybridized, 74 probe sets changed by more than two-fold, and six showed a greater than three-fold difference. Estimates of gene abundance from the GeneChip analysis reportedly agreed well for all but one of the genes for which absolute abundance had been measured in a previous study <sup>4</sup>, although details of this agreement were not presented <sup>1</sup>.

<u>Concerns with the GeneChip algorithm</u>. In Chapter 1, an alternative data analysis algorithm to the GeneChip algorithm above was presented. There were several motivations for developing an alternative approach. The first is simply that some aspects of the GeneChip algorithm are confidential, and it seems reasonable for one to know how one's data is being analyzed. A second, related, concern is that this algorithm has changed over time in subsequent versions of the GeneChip software in ways that may or may not have been shared with the public. Data analysis should be reproducible, and this is not necessarily the case if the GeneChip software is used and later upgraded.

Another concern is that the approachs used by the GeneChip algorithm use a number of parameters (thirty in GeneChip 3.0) set at the user's discretion. The default parameters used by GeneChip have reportedly been optimized by Affymetrix through a series of spiking experiment wherein several known amounts of transcripts are 'spiked' into a hybridization pool, and also through repeated hybridizations to determine the

algorithm's robustness to variation <sup>1</sup>. However, we have no information about how these parameters should vary depending upon the quality of the chip and nature of the hybridization. This was a key point for us, since the first DNA chips we had to work with had failed Affymetrix's quality control procedure, so that it was entirely possible that the algorithm parameters should be changed. For example, in the case where a transcript called absent, the detection threshold, i.e., the 'SDT' threshold above, was set to a value of 20. The default detection threshold then does not depend on the variance of the data. Since the chips we had failed the Affymetrix quality control criteria due to overall signal intensity, we expected that our detection threshold should be correspondingly higher.

We also had some concerns about how the GeneChip method deals with outliers. We and Affymetrix agree, I think, that the data acquired via Affymetrix chips contain a substantial amount of unavoidable 'contamination' due to cross-hybridization and variability in hybridization between probes of differing DNA sequence. Even in cases where there is no cross-hybridization, variable binding energy (due to differences in GC content) or secondary structure within a transcript can cause large differences in  $\Delta$ , even within a single transcript. The effect of data contamination should only increase with the use of lower quality chips. So, even if the GeneChip parameters have been optimized for most chips, they may not have been appropriate for ours. The GeneChip approach to outlier detection was to toss the high and low  $\Delta$  values, and then remove those  $\Delta$  values more than three standard deviations from the resulting mean. If we encounter more than one high or one low outlier, we should use a method which can handle this occurrence. Ideally, a method of outlier detection should be informed by a knowledge of the

distribution underlying  $\Delta$  values. Unfortunately, this distribution may be different for every transcript, since each transcript has probe pairs of different sequence. Many of the transcripts we analyzed have an asymmetric distribution of  $\Delta$  values, i.e., the median of  $\Delta$ values is consistently lower than the mean of  $\Delta$  values across the four conditions we measured. If this is the case, it is inappropriate to apply a symmetric outlier detection scheme since the distribution of  $\Delta$  is asymmetric. An alternative to outlier detection is to use statistics that are robust to outliers, e.g., the median as opposed to the mean.

A further concern stemmed from my objection that one of the measures used in deciding whether a transcript is 'increased' or 'not changed' between two conditions is inappropriate. The measure  $(\Delta_{experiment} - \Delta_{baseline})/\Delta_{baseline}$  depends on which of two conditions is considered the experimental condition and which is considered the baseline. It is then possible for a transcript to be considered 'not changed' with one choice of baseline, and 'increased' with the alternative choice. A representative of Affymetrix has recently informed me (20 April 1998) that the above formula is no longer used in GeneChip, but the literature distributed to users was not updated and unfortunately the formula in actual use is considered confidential until further notice. This highlights the potential danger of not being able to reproduce data analysis.

#### Median $\Delta$ and median $\Delta$ -ratio algorithms for interpreting fluorescence data.

Although there are minor differences in the way that I performed background subtraction and normalization in Chapter 1, I would not argue that the methods I used here were significantly different or superior. Our methods for dealing with background and normalization were developed without knowing the methods used by the GeneChip

software. With present knowledge, I would choose GeneChip's methods for background subtraction, and am ambivalent about the method of normalization. The GeneChip method for background subtraction is superior to the method that I used in that it accounts for variation in background levels across the chip, while the method I described in Chapter 1 does not.

An alternative to GeneChip's method of calculating transcript abundance is use of the median as a measure of central tendency of  $\Delta$  values. The median is a measure of central tendency that is robust to outliers. Use of a robust statistic seems preferable in a case where the underlying distribution of  $\Delta$  has not been characterized. A related measure of variance can then be used—median deviation. Median deviation is calculated in the following way: median deviation = median{ med $\Delta - \Delta_1$ , med $\Delta - \Delta_2$ , ..., med $\Delta - \Delta_n$ }, where med $\Delta$  = median{ $\Delta_1, \Delta_2, \ldots, \Delta_n$ }. This method was not described in Chapter 1, since only relative abundance was used for that work.

An alternative to the GeneChip method of calculating relative abundance (also described in Chapter 1) is the median  $\Delta$ -ratio method. Using this method, relative abundance is calculated in the following way: median { $(\Delta_{1,expt} / \Delta_{1,base}), (\Delta_{2,expt} / \Delta_{2,base}), (\Delta_{3,expt} / \Delta_{3,base}), \dots, (\Delta_{n,expt} / \Delta_{n,base})$  }. This method has the advantage that variance associated with the sequence differences of different probes is eliminated. When absolute abundance is calculated for a given condition, individual probe intensities will vary because of the sequence-dependence of binding energy, secondary structure and hybridization kinetics. If the sequence in the transcript complementary to the probe has a propensity to form secondary structure, this will also create probe-specific variation in measured intensity. The sequence-dependence of intensity will create a large variance in

 $\Delta$  intensities, which will be reflected in the ratio of two absolute abundances. The  $\Delta$ -ratio for a probe pair of given sequence is a less sequence-dependent measure than  $\Delta$ . The central tendency (I used the median) of these  $\Delta$ -ratios is then a good representation of ratio of abundance between conditions. An estimate of error in this number reflects primarily uncertainty in the abundance ratio, rather than sequence-dependent variation in hybridization kinetics.

An estimate of error in the ratio of abundance could be calculated by using the median deviation of  $\Delta$ -ratios, but since  $\Delta$ -ratios are ratios, it is perhaps better to estimate central tendency using the median of log-ratios and measure the error in this number by measuring the median deviation of log-ratios, so that:

$$M = \operatorname{median}\left\{ \log \frac{\Delta_{1, expt}}{\Delta_{1, base}}, \log \frac{\Delta_{2, expt}}{\Delta_{2, base}}, \log \frac{\Delta_{3, expt}}{\Delta_{3, base}}, ..., \log \frac{\Delta_{n, expt}}{\Delta_{n, base}} \right\}$$
$$E = \operatorname{median}\left\{ \log \frac{\Delta_{1, expt}}{\Delta_{1, base}} - M \right|, \left| \log \frac{\Delta_{2, expt}}{\Delta_{2, base}} - M \right|, \left| \log \frac{\Delta_{3, expt}}{\Delta_{3, base}} - M \right|, ..., \left| \log \frac{\Delta_{n, expt}}{\Delta_{n, base}} - M \right| \right\}$$
where M is the median of log( $\Delta$ -ratios) and E is an estimate of error in this number.

The methods described here of calculating absolute and relative abundance have the advantages that they are simpler, and allow for an estimate of error. What the user of chip data would really like is a confidence interval for abundance and relative abundance, i.e., a range of values and a statement that the true value lies within that range with a confidence. Unfortunately, a supportable method for assigning confidence intervals to this data does not exist. To assign a confidence interval, one should first obtain an understanding of the underlying distribution of  $\Delta$  values for each ORF (or the underlying distribution of  $\Delta$  ratios). This will almost be certainly done empirically, with data sets that are not available to us at present. Several types of experiments will be required for this purpose. To characterize the cross-hybridization of a transcript to all probes on a chip, one might label and hybridize each probe alone to the chip. This would require about 24,000 experiments (6,000 genes  $\times$  four chips), so one might envision hybridizing with pools containing a small number of labeled transcripts to reduce the number of required hybridizations. One caveat to this already arduous experiment is that differential mRNA degradation, differential transcription initiation or termination sites, and differential splicing may make the total number of possible transcripts much greater than 6,000.

Neglecting cross-hybridization, the distribution of  $\Delta$  could be found by simply hybridizing labeled genomic DNA to a chip, since the relative amount of 'transcript' is the same for each ORF being assayed. To determine the relationship of  $\Delta$  ratios to the true ratio of transcript abundance, one could hybridize with different mixtures each 'spiked' with known amounts of one or more transcripts.

### <u>References</u>

Wodicka, L., Dong, H., Mittmann, M., Ho, M.-H. and Lockhart, D.J.,
Genome-wide expression monitoring in *Saccharomyces cerevisiae*, *Nature Biotechnology*, 15(13), 1359-1366, 1997.

Pease, A.C., Solas, D., Sullivan, E.J., Cronin, M.T., Holmes, C.P. and Fodor,
S.P., Light-generated oligonucleotide arrays for rapid DNA sequence analysis,
*Proceedings of the National Academy of Sciences of the United States of America*,
91(11), 5022-6, 1994.

3. Lockhart, D.J., Dong, H.L., Byrne, M.C., Follettie, M.T., Gallo, M.V., Chee, M.S., Mittmann, M., Wang, C.W., Kobayashi, M., Horton, H. and Brown, E.L., Expression monitoring by hybridization to high-density oligonucleotide arrays, *Nature Biotechnology*, 14(13), 1675-1680, 1996.

4. **Iyer, V. and Struhl, K.,** Absolute mRNA levels and transcription initiation rates in Saccharomyces cerevisiae., *Proceedings of the National Academy of Sciences of the United States of America*, 93, 5208-5212, 1996.

Chapter 3

### Revealing Regulons Using Transcript Abundance Data

## and Upstream Sequence Alignment

#### Allocating Credit among Co-authors

Since the following chapter represents more than one person's efforts, it seems appropriate to a doctoral thesis that I describe which parts were my own work. Contributions made by those who were not coauthors are credited—I sincerely hope adequately-elsewhere in the acknowledgments. The central concept of searching for conserved upstream elements among genes chosen by expression analysis originated jointly with Jason Hughes and myself. The work of growing cultures, isolating and labeling RNA, and performing microarray hybridization experiments was performed entirely by Preston Estep. The tools for data analysis were developed collaboratively by Jason Hughes and myself, but our contributions are separable. Jason's focus was on rewriting the computer code for AlignACE, and implementing the changes that we made from the original Gibbs motif sampling algorithm. Design and implementation of the algorithms for analyzing data from Affymetrix microarrays and for assessing similarity between two sets of aligned sites were primarily my own. I wrote the computer code used for retrieving upstream DNA sequence for given ORFs, scoring motifs discovered by AlignACE against the yeast genome by the Berg and von Hippel method, integrating site locations with expression data, and for calculating consensus sequences by the method of Day and McMorris. I applied the above-described tools to the galactose, heat shock and mating type data sets, and assessed false negatives and the expected number of false positives.

Complete DNA sequence is now known for more than ten different organisms <sup>1</sup>. For even the most intensely studied of these organisms, a large fraction of genes is completely uncharacterized — about 40% and 50% for *Escherichia coli* and *Saccharomyces cerevisiae*, respectively <sup>2</sup>; <sup>3</sup>. Furthermore, annotation of non-coding regions has typically lagged behind discovery and prediction of gene function. Given that sequence elements in non-coding regions often control gene expression, and that knowing a gene's place in the larger regulatory network of a cell is essential to understanding its function, it is critical that we develop methods for rapidly characterizing non-coding regions.

A common approach to the discovery of regulatory elements entails the construction of a series of deletions or replacements in the 5' untranslated region (UTR) sequence of a gene, followed by a screen for altered regulation. An efficient method for predicting the most likely locations of regulatory sequences can guide experiments more quickly to the sought-after elements. Where there is a set of genes 'enriched' for co-regulated members (obtained for example by genetic evidence), this prediction can be based on sequence conservation among the upstream regions of several genes <sup>4</sup>.

Recently, it has become possible to measure the abundance of mRNA transcripts on a whole-genome scale <sup>5-9</sup>. By comparing transcript levels in different conditions (or different strains), we can find the set of genes whose transcript levels respond to a difference in environment (or genotype). With this set of genes in hand, a number of questions naturally arise: Which of these changes in expression constitute a primary response to an environmental change, and which are indirect effects? Which are most

critical for adaptation to a new condition? By what mechanisms are changes in transcript abundance achieved? What DNA (or RNA) sequence elements mediate the regulation of transcript abundance?

Given a set of induced (or repressed) genes, one can use a computational algorithm to search the regions upstream of translation start for short conserved DNA sequence motifs. Such a conserved motif is a good candidate for a transcriptional control element. Although they have been less extensively studied, sequence elements in the 5' UTR may also be determinants of mRNA stability <sup>10; 11</sup>. It has also been suggested that long conserved sequences in the 5' UTR are candidate sites for regulation by antisense transcripts <sup>12</sup>. Regardless of mechanism, a set of genes with similar expression responses that also share a conserved upstream motif is a candidate for a set of co-regulated genes, i.e., a regulon.

#### **Results and Discussion**

Whole genome expression monitoring. To test our strategy of combined expression analysis and upstream sequence alignment, we examined three transcriptionally-regulated systems in the yeast *S. cerevisiae*: galactose utilization, heat shock response, and mating type regulation. We measured mRNA transcript abundances in *S. cerevisiae* in each of four different cultures, which allowed three whole-genome comparisons to be made: 1) growth on galactose vs. glucose; 2) strains of mating type **a** vs. mating type  $\alpha$  and 3) growth at 30 °C continuously vs. after a 39 °C heat shock.

Expression was measured for each of these three systems using photolithographically synthesized oligonucleotide microarrays ('chips') <sup>7; 9</sup>. Change in

transcript abundance for each open reading frame (ORF) was calculated for each comparison described above by a variation on a previously described method (see Protocols). Fig. 1 shows the distribution of change in expression for each of the three systems. Complete data sets are available, including ranked lists of those ORFs that were most changed between each pair of conditions <sup>13</sup>.



**Figure 1.** Histograms of log ratio of expression level in each of three whole-genome expression comparisons. (A) reflects the comparison between growth in galactose vs. glucose, with transcripts more abundant in galactose having a higher log ratio. (B) reflects the comparison of heat shock vs. 30 °C, with transcripts increased under heat shock conditions having a higher log ratio. (C) reflects the comparison of mating type  $\alpha$  with **a**, where transcripts more abundant in mating type  $\alpha$  have a higher log ratio. Transcripts with low measured abundance in both conditions were assigned a log ratio value of 1 for the purposes of this figure. The fraction of all ORFs in the yeast genome which were below detection threshold in both conditions was 70%, 62% and 68% for figures (A), (B) and (C) respectively.

Examining upstream non-coding DNA sequence. For each of the whole-genome expression comparisons described above, we examined sets of upstream DNA sequences from 1) the top ten ORFs, as ranked by ratio of first-condition to second-condition abundance, e.g., ratio of galactose to glucose expression, 2) the top ten ORFs, as ranked by ratio of second-condition to first-condition abundance, e.g., ratio of glucose to galactose expression, and 3) the combination of the two preceding ORF sets. Upstream DNA sequence for each ORF was bounded at the 3' (or downstream) end by the ORF's translation start. The 5' end was bounded by the translation start or stop of the nearest upstream ORF, with the exception that this boundary was never more than 600 DNA base pairs (bp) or less than 300 bp from translation start.

Several algorithms which discover recurring motifs in unaligned sequences have been developed, and have been compared in Frech et al. <sup>14</sup>. 'Gibbs motif sampling' is one such algorithm that is both computationally efficient and tends not to become 'trapped' in sub-optimal alignments <sup>15; 16</sup>. Although the Gibbs sampling strategy has been applied primarily to protein sequence alignments, it has been applied previously to DNA <sup>14; 17</sup>. The Gibbs motif sampling algorithm <sup>15</sup> was modified in several ways, primarily to make it more amenable to alignment of DNA (as opposed to protein) sequence and to allow iterative searches for multiple motifs.

The modified Gibbs motif sampling algorithm ('AlignACE') was applied to each set of upstream DNA sequence. Of the many resulting DNA site alignments, we considered further only those motifs which: 1) exceeded a threshold AlignACE score—a measure of 'goodness' of sequence alignment; and 2) had a specificity score—a measure of the fraction of genes in the yeast genome with matching upstream sites—below 1% of

the ORFs in yeast. The latter criterion requires that motifs be selective, i.e., not similar to elements (such as the TATA Box) commonly found among upstream regions.

DNA sequence motifs found from expression data. We first consider alignment results from the galactose vs. glucose comparison. With the set of ten ORFs more abundant in galactose than glucose, we identified a motif, 'gal-1' (Fig. 2A), which matches the galactose upstream activation sequence (UAS<sub>G</sub>) motif. It should be noted that we developed an objective measure to assess the similarity of the motifs identified here with previously described motifs, and that this measure is—to our knowledge—the only published method for quantitatively assessing similarity between DNA-binding site motifs (see Protocols). UAS<sub>G</sub> is known to regulate galactose-utilization genes via the Gal4/Gal80 activation complex <sup>18</sup>. No motif which met our criteria was obtained when the top ten ORFs ranked more abundant in glucose were used. Another UAS<sub>G</sub>-like motif, 'gal-glu-1' (Fig. 2B), was obtained when the preceding two ORF sets (a total of twenty ORFs) were combined. Fig. 2C summarizes the motifs found by AlignACE and those that might have been expected *a priori* given their previously defined roles in transcriptional regulation.



# C.

| Motif<br>gal-1 (A)<br>gal-glu-1 | <b>Score</b> 33.1 24.9 | <b>Specif</b> 0.16 0.20 | <b>Consensus</b><br>CGGAGNRVTSYBBNCCG<br>CGSBSVWSABYNBTCCG | <b>Similarity</b><br>gal-glu-1 <sup>*</sup> , UAS <sub>G</sub><br>UAS <sub>G</sub> <sup>*</sup> , gal-1 <sup>*</sup> |
|---------------------------------|------------------------|-------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Expected                        | DNA                    | BP                      | Consensus                                                  | Ref.                                                                                                                 |
| UAS <sub>G</sub>                | Gal4/                  | Gal8                    | TTCGGMGVDMTSTBVHCC                                         | 19                                                                                                                   |
| URS <sub>G</sub>                | Mig1                   |                         | CCCCRSNTWWWW                                               | 19                                                                                                                   |
| Rap1-binding                    | Rap1                   |                         | WRCACCCAKACAYY                                             | 19                                                                                                                   |
| Gcr1-binding                    | Gcr1                   |                         | CKRGCTTCCWNTWK                                             | 19                                                                                                                   |

**Figure 2.** DNA sequence motifs obtained from a comparison between growth on galactose- and glucose-containing media. (**A**) Motif ('gal-1') obtained from the ten ORFs most abundant in galactose relative to glucose while (**B**) Motif ('gal-glu-1') obtained by combining the preceding set with the ten ORFs most abundant in glucose relative to galactose, and matches UAS<sub>G</sub>. See Protocols for a description of sequence logos. (**C**) lists those motifs returned by AlignACE as well as motifs which might have been expected a priori. 'Score' refers to AlignACE score, 'Specif' is the specificity score, and 'DNABP' refers to the protein which binds an element, where known. Consensus sequences and motif similarity were obtained by objective criteria (see Protocols). A '\*' indicates a motif's reverse complement.

The ten ORFs most abundant in the heat shocked culture relative to 30 °C yielded a single motif, '39C-1' (Fig. 3A), which is similar to '39C-30C-2' (Fig. 3E), but not similar to any of the known binding sites considered in this study. The ten ORFs more abundant in 30 °C relative to heat-shocked culture yielded two motifs. The first of these, '30C-1' (Fig. 3B), matches the cell cycle activation (CCA) motif, a previously known activator of histone genes <sup>20; 21</sup>. The second motif, '30C-2' (Fig. 3C), has not been previously noted. When the combined set of twenty ORFs was used (genes abundant either in heat shock or 30 °C), another CCA-like motif—'39C-30C-1' (Fig. 3D)—was identified along with '39C-30C-2' (Fig. 3E), a motif similar to '39C-1'. Fig. 3F summarizes the motifs found by AlignACE and those that might have been expected *a priori* given their previously defined roles in transcriptional regulation.



### F.

| Found                          |                             | Score                            | Specif                                    | Consensus                         |                             | Similarity      |
|--------------------------------|-----------------------------|----------------------------------|-------------------------------------------|-----------------------------------|-----------------------------|-----------------|
| 39C-1 (A)                      |                             | 5.1                              | 0.04                                      | TCCGTRTBTAY                       | CC                          | 39C-30C-2       |
| 30C-1 (B)                      |                             | 40.1                             | 0.26                                      | GTTCYSANMRH                       | ITTCK                       | 39C-30C-1, CCA* |
| 30C-2 (C)                      |                             | 5.5                              | 0.44                                      | RRKDWGVSGBO                       | SWG                         | -               |
| 39C-30C-1                      | (D)                         | 30.1                             | 0.20                                      | GTTCYSAVMRY                       | TTCK                        | 30C-1, CCA*     |
| 39C-30C-2                      | (E)                         | 8.5                              | 0.10                                      | MMMTCCGTRKK                       | YRSY                        | 39C-1           |
| Expected<br>HSE<br>STRE<br>CCA | DNA<br>HSF<br>Msn2<br>?/Hir | ▲ <b>BP</b><br>2/Msn4<br>•1/Hir2 | Consensu<br>CNVGAAI<br>HHAGGGG<br>GCGAARI | IS<br>NNTTCBMG<br>GV<br>WNTSRGAAC | <b>Ref.</b> 22 23; 24 20 21 |                 |
| NEG                            | ?                           |                                  | TDDACGO                                   | TMAAWSWC                          | 21                          |                 |
| MCB                            | Mbp                         | 1                                | ACGCGT                                    | MAM                               | 25                          |                 |
| SCB                            | Swi4                        | /Swi6                            | RDDYCA                                    | CGAAAA                            | 25                          |                 |
| ECB                            | Mcm                         | 1                                | TTWCCCI                                   | OWTTAGGAAA                        | 26                          |                 |

**Figure 3.** DNA sequence motifs obtained from a comparison of growth between heat shock and 30 °C conditions. (**A**), Motif ('39C-1') obtained from the ten ORFs most abundant in heat shock relative to 30 °C, (**B**) and (**C**) Motifs ('30C-1' and '30C-2', respectively) obtained from the ten ORFs most abundant in 30 °C relative to heat shock, while (**D**) and (**E**) Motifs ('39C-30C-1' and '39C-30C-2' respectively) obtained from the combined set of twenty ORFs. See Protocols for a description of sequence logos. (**F**) lists those motifs returned by AlignACE as well as motifs which might have been expected a priori. 'Score' refers to AlignACE score, 'Specif' is the specificity score, and 'DNABP' refers to the protein which binds an element, where known. Consensus sequences and motif similarity were obtained by objective criteria (see Protocols). A '\*' indicates a motif's reverse complement.

When the ten ORFs most abundant in mating type $\alpha$  relative to type **a** were examined, the motif 'mt $\alpha$ -1' (Fig. 4A) was found. 'mt $\alpha$ -1'matches the P-Box and the early cell cycle box (ECB; mediates activation of M/G<sub>1</sub>-specific transcription <sup>25; 26</sup>), as well as the Gcr1-binding site and the heat shock element (HSE). The P-box and ECB elements are both known to be bound by Mcm1 <sup>27</sup>. Using the ten ORFs more abundant in mating type **a** than type  $\alpha$ , three motifs emerged. The first two of these, 'mt**a**-1' and 'mt**a**-2' (Fig.4B,C) have not been previously noted. The third motif, 'mt**a**-3' (Fig. 4D), matches the binding site of Mat $\alpha$ 2 <sup>27</sup>.

When the combined set of twenty ORFs was used, four motifs emerged. The first of these, 'mt $\alpha$ -mta-1' (Fig. 4E), matches the known Mat $\alpha$ 2-binding site. The second, 'mt $\alpha$ -mta-2' (Fig. 4F), matches the pheromone-response element (PRE)—the known binding site of Ste12 <sup>27</sup>. 'mt $\alpha$ -mta-2' is interesting, since a weak second match to the PRE consensus suggests a conserved spacing of 7 bp between PRE elements. The third motif, 'mt $\alpha$ -mta-3' (Fig. 4G), bears some resemblance to the PRE consensus, but had a similarity score below the threshold applied here (see Protocols). The fourth motif, 'mt $\alpha$ -mta-4' (Fig. 4H), corresponds to the Q-Box element, which is known to bind Mat $\alpha$ 1 <sup>27</sup>. Fig. 4I summarizes the motifs found by AlignACE and those that might have been expected *a priori* given their previously defined roles in transcriptional regulation.





| Motif                               | Score | Specif | Consensus             | Similarity                                                                 |
|-------------------------------------|-------|--------|-----------------------|----------------------------------------------------------------------------|
| mtα-1 (A)                           | 8.9   | 0.22   | TTCCTAATTHG           | $P-Box^*, ECB^*,$                                                          |
|                                     |       |        |                       | Gcr1-binding, HSE                                                          |
| mt <b>a-</b> 1 (B)                  | 8.5   | 0.10   | ADWHCWBKAAAWANAKTCWTH | -                                                                          |
| mt <b>a</b> -2 (C)                  | 5.0   | 0.20   | AAAYCAWMAWKAMWA       | -                                                                          |
| mt <b>a-</b> 3 (D)                  | 28.1  | 0.62   | GRWAWTTACATG          | $\alpha$ 2-binding <sup>*</sup> , mt $\alpha$ -mt <b>a</b> -1 <sup>*</sup> |
| mt $\alpha$ -mt $\mathbf{a}$ -1 (E) | 20.7  | 0.68   | CATGTAMWTWYC          | $\alpha$ 2-binding, mt <b>a</b> -3 <sup>*</sup>                            |
| mt $\alpha$ -mt $\mathbf{a}$ -2 (F) | 5.3   | 0.26   | TWTDYWWHBKKMWTGTTTSA  | $PRE^*$                                                                    |
| mt $\alpha$ -mt $\mathbf{a}$ -3 (G) | 8.6   | 0.54   | TGAMATAWTDAAMA        | -                                                                          |
| mt $\alpha$ -mt $\mathbf{a}$ -4 (H) | 5.3   | 0.62   | AATGMCMGCMA           | Q-Box                                                                      |
|                                     |       |        |                       |                                                                            |

| Expected           | DNABP          | Consensus        | Ref. |
|--------------------|----------------|------------------|------|
| P-Box              | Mcm1           | TTTCCTAATTAGGNAN | 27   |
| Q-Box              | Mat $\alpha$ 1 | TCAATGVCAG       | 27   |
| $\alpha$ 2-binding | Mat $\alpha$ 2 | CRTGTAAWT        | 27   |
| PRE                | Ste12          | TGAAACA          | 27   |

**Figure 4.** DNA sequence motifs obtained from a comparison of growth between mating type **a** and  $\alpha$  strains. (**A**) Motif ('mt $\alpha$ -1') obtained from the ten ORFs most abundant in mating type  $\alpha$  relative to mating type **a**. (**B**), (**C**), (**D**) Motifs ('mt**a**-1', 'mt**a**-2' and 'mt**a**-3' respectively) obtained from the ten ORFs most abundant in mating type **a** relative to mating type  $\alpha$ . (**E**), (**F**), (**G**), (**H**) Motifs ('mt $\alpha$ -mt**a**-1', 'mt $\alpha$ -mt**a**-2', 'mt $\alpha$ -mt**a**-3' and 'mt $\alpha$ -mt**a**-4' respectively) obtained from the combined set of twenty ORFs. See Protocols for a description of sequence logos. (**I**) lists motifs returned by AlignACE as well as motifs which might have been expected a priori. 'Score' refers to AlignACE score, 'Specif' is the specificity score, and 'DNABP' refers to the protein which binds an element, where known. Consensus sequences and motif similarity were obtained by objective criteria (see Protocols). A '\*' indicates a motif's reverse complement.

How do these results compare with what one might have expected from previous work on these regulatory systems? Motifs common to many genes, e.g., the TATA box, were neither found nor expected since these are excluded by the selectivity constraint discussed above. In the case of ORFs more abundant in glucose than galactose, we might have expected motifs corresponding to Rap1 or Gcr1-binding sites, but found neither of these. Rap1 and Gcr1 are general transcription factors with diverse roles, including regulation of glycolytic enzymes and ribosomal proteins <sup>28</sup>. In the case of ORFs more abundant in galactose than glucose we might have expected to find URS<sub>G</sub> (bound by Mig1 <sup>28</sup>), but did not. As expected, our procedure did find UAS<sub>G</sub>, an essential regulatory element for galactose-utilizing genes.

The heat shock (HSE) and stress response promoter elements (STRE), known to mediate heat shock response <sup>29; 30</sup>, were notably absent from the motifs found by AlignACE. Heat shock is known to have broad effects, including transient cell cycle arrest in G1 <sup>31</sup>. As a result, we might also have expected to find genes with cell cycle-specific expression among genes affected by heat shock. Histone genes are strongly transcribed during S phase, and are regulated both by a negative regulatory sequence (NEG) and activated by the CCA motif (Fig. 3B, D) <sup>20; 21</sup>. Not found among heat shock data were the NEG motif, the Swi4/6-dependent cell cycle box (SCB) or MluI cell cycle box (MCB) motifs which regulate G<sub>1</sub>/S-specific transcription, or the ECB element <sup>25; 26</sup>. AlignACE did find the CCA motif among a set of histone genes.

The  $\alpha$ 2 operator, P-Box, PRE and Q-Box elements represent the complete set of DNA elements responsible for regulation of mating type-specific genes <sup>27</sup>. All four of these elements were found by AlignACE (Fig. 4C-H). The similarity of 'mt $\alpha$ -1' to both

HSE and the Gcr1-binding site was unexpected, and may represent false positive determinations of motif similarity.

False positive and false negative motifs. We estimated the number of expected false positives by generating and examining negative control sets of randomly chosen genes and asking how many motifs passed both AlignACE and specificity criteria. The AlignACE score criterion used here was chosen permissively, so that few biologically relevant motifs would be excluded. The permissive AlignACE score threshold (5) was examined as well as more stringent thresholds (8 and 20). For the permissive threshold, an average of 1.7 motifs (Poisson distributed with a coefficient of dispersion (CD) of 0.9) was obtained from negative control gene sets, which is consistent with the observation that four motifs identified in this study from sets of 10 ORFs (Fig. 3A, 3C, 4B, 4C) did not match known regulatory elements. The chance that a motif is a false positive decreases with increasing AlignACE score, so that if a threshold score of 8 is applied the mean number of false positives is reduced to 0.8 (CD = 1.0). If a threshold score of 20 is applied, the mean number of false positives is further reduced to 0.2 (CD = 1.6). The number of expected false positives for a variety of alternative AlignACE and specificity score thresholds can be found in Fig. 5. All six of the six motifs identified in this study which meet the most stringent threshold of 20 are similar to known regulatory elements. This shows that these methods can be applied—at the discretion of the user—to either generate an inclusive set of testable hypotheses with a significant false positive rate, or to more confidently predict a subset of biologically relevant motifs.



**Figure 5.** Sets of 10 ORFs were drawn randomly 100 times from the complete set of yeast ORFs. AlignACE was used to find conseved motifs for each random set. AlignACE score and specificity score were obtained for each motif. The number of motifs found that passed both AlignACE and specificity score thresholds is plotted as a function of the thresholds chosen.

We were interested in understanding why our approach had 'false negatives', i.e., did not find all of the motifs we might have expected *a priori*. For each expected motif, we applied our method to an 'ideal' set of genes derived from the literature. Motifs corresponding to the URS<sub>G</sub> and NEG elements were not found among 'ideal' gene sets using the permissive AlignACE score threshold, so that we attribute not finding these motifs to AlignACE. Motifs corresponding to the Gcr1-binding, STRE and MCB elements were obtained which passed both AlignACE score (13.9, 12.1, 10.6 respectively) and specificity score criteria (0.4%, 0.9%) and 1.0%, respectively), so that we attribute not finding these motifs to the input sets of ORFs derived from expression data. Motifs corresponding to the Rap1-binding, HSE, SCB and ECB elements were found using 'ideal' gene sets with passing AlignACE scores (8.1, 14.8, 20.2 and 12.1, respectively) but unacceptable specificity scores (4.1%, 7.3%, 5.3% and 1.6%, respectively). We re-examined the appropriate 10 most-increased genes using relaxed specificity score criterion and still did not find these motifs, so that we also attribute not finding these motifs to the input set of ORFs. However, even if Rap1-binding, HSE, SCB and ECB motifs had been found, they would likely not have passed our chosen specificity criterion of 1%.

That input sets of upstream regions contained too few sites for AlignACE to align can be verified by scanning the upstream regions of the appropriate 10 most-increased genes for matches to motifs found from among ideal gene sets. Among the 10 genes most increased in heat shock, HSE matched only 2 sites upstream of HSP26 while STRE matched a total of only 3 sites upstream of HSP12 and HSP26. Among the 10 genes most decreased in heat shock, MCB matched no sites, SCB matched 1 site upstream of LYS1,

and ECB matched only 1 site in the upstream region shared by HHT1 and HHF1. Among the 10 genes most decreased in galactose neither the Rap1-binding site nor the Gcr1binding motif matched any upstream sites.

<u>Candidate sets of co-regulated genes</u>. Once a candidate regulatory motif has been found, we are particularly interested in those ORFs that are both altered in expression and contain an upstream match to this motif. First, we search the complete *S. cerevisiae* genome to find the set of ORFs that contain matches to each motif in the 600 bp region upstream of translation start. Second, we consider the intersection of this set of ORFs with those ORFs that changed more than two-fold in abundance between conditions. We consider the resulting ORFs to be good candidates for membership in a transcriptionally co-regulated set of genes.

ORFs that have a measured change of more than two-fold in expression between galactose and glucose, and have an upstream match to at least one of the UAS<sub>G</sub>-like motifs 'gal-1' and 'gal-glu-1' are shown in Table 1, along with the remaining genes known previously to be regulated by UAS<sub>G</sub>. There are nine genes known previously to be regulated by UAS<sub>G</sub>. There are nine genes known previously to be regulated by the Gal4/Gal80 complex: GAL1, GAL2, GAL3, GAL7, GAL10, GAL80, GCY1, MEL1 and PGM2. The candidate set derived from Table 1 contains six of these nine. One of the missing three is MEL1, which codes for alpha-galactosidase. The strain used for this experiment (FY4) is a *mel*- strain. Furthermore, we could not find a good match to UAS<sub>G</sub> in the MEL1 upstream sequence from this strain, so that we should not have necessarily expected to find MEL1 in our candidate set. Also missing from our candidate set were PGM2 and GAL80, which are known to be Gal4/Gal80 regulated. For

both of these genes, absolute expression levels were too low in both galactose and glucose for an accurate estimate of change in expression.

The candidate set for galactose vs. glucose contains three ORFs not previously thought to be regulated by Gal4/Gal80. Two of these, YPL066W and YPL067C, are particularly interesting since they have approximately the same measured change in expression, and are divergently transcribed from the same intergenic region which contains a single match to each of the UAS<sub>G</sub>-like motifs. Another site in this intergenic region matches the consensus CGG(N)<sub>10</sub>CCG, to which weak Gal4-binding has also been shown in vitro <sup>32</sup>. Both YPL066W and YPL067C are of unknown function according to the *Saccharomyces* Genome Database (SGD) <sup>33</sup>, with no significant homology to any gene of known function. Also in the candidate set was YMR318C, which has a strong homology to zinc-containing alcohol dehydrogenases <sup>33</sup>. We are currently exploring the possibility that these ORFs are regulated by Gal4/Gal80.

ORFs that have a measured change of more than two-fold in expression between heat shock and 30 °C, and have an upstream match to at least one of the motifs in Fig. 3 are shown in Table 2, along with the remaining histone genes. There are eight genes—four functionally redundant gene pairs—in *S. cerevisiae* that code for the four nucleosomal proteins: HTA1, HTA2, HTB1, HTB2, HHT1, HHT2, HHF1, and HHF2. The candidate set of co-regulated genes with matches to both of the CCA-like motifs ('30C-1' and '39C-30C-1') contains five of these genes—collectively coding for the complete set of *S. cerevisiae* nucleosomal proteins. It is important to note that our results by themselves do not necessarily indicate a role for the CCA motif in heat shock regulation or in cell cycle regulation, since we seek any motif common to a set of ORFs without information about which motif (if any) might be responsible for the observed changes in expression. RPS8A (coding for ribosomal protein rp19), HOR2 (DL-glycerol-3-phosphatase), YDR070C (an ORF of unknown function), and GSY1 (glycogen synthase) have upstream matches to one of the CCA-like motifs ('30C-1') <sup>33</sup>. None of these genes have previously been noted to be heat shock repressed or to be regulated by CCA. However, GSY2—a homolog of GSY1—is reportedly induced by heat shock <sup>34</sup>. This suggests, together with our data showing reduced abundance of GSY1 in heat shock, that GSY2 is a thermotolerant variant of glycogen synthase. It is also worth mentioning that along with the other histone genes discussed above we found the gene HHO1 (histone H1) to be reduced by more than two-fold in heat shock. HHO1 does not, however, contain an upstream match to the CCA motif.

Another candidate set of co-regulated genes can be derived from heat shock data, using those ORFs in Table 2 with upstream matches to the motifs '39C-1' and '39C-30C-2'. This set contains the genes HSP26, GND2, GCV1, UBI4, ERG11, SOL4, and YHB1. Of these, only HSP26 and UBI4 have been reported to be differentially expressed as a result of heat shock <sup>29</sup>. We can see no apparent rationale for co-regulation of this set of genes or of the set derived from '30C-2'. None of the motifs '39C-1', '30C-2', or '39C-30C-2' have previously been implicated as regulatory elements.

ORFs that have a measured change of more than two-fold in expression between mating types **a** and  $\alpha$ , and have an upstream match to at least one of the mating typederived motifs (Fig. 4) are shown in Table 3, along with the remaining genes known to have mating type-specific expression. Genes MF $\alpha$ 1, MF $\alpha$ 2, STE3, SAG1, MAT $\alpha$ 1 and MAT $\alpha$ 2 are known previously to have mating type  $\alpha$ -specific expression. The genes MFA1, MFA2, STE2, STE6, BAR1, AGA2, MATa1 and MATa2 are known previously to have mating type **a**-specific expression <sup>35</sup>. The candidate set of co-regulated genes corresponding to the P-Box-like motif 'mt $\alpha$ -1' contains twelve genes, including four of fourteen known mating type-specific genes. Candidate sets derived from those motifs not known to be involved in transcriptional regulation, 'mt**a**-1' and 'mt**a**-2', each contained seven ORFs, two of which are mating type-specific. The candidate set of genes with matches to either of the Mat $\alpha$ 2 binding site-like motifs ('mt**a**-3' and 'mt $\alpha$ -mt**a**-1') contains seventeen genes—including five of the eight known **a**-specific genes. That MAT $\alpha$ 1 and MAT $\alpha$ 2 genes had an upstream match to 'mt $\alpha$ -mt**a**-1' in their shared intergenic region is consistent with the fact that this locus is repressed by the Mat $\alpha$ 2/Mat**a**1 complex in **a**/ $\alpha$  cells <sup>35</sup>.

The candidate set of genes having upstream sites matching 'mt $\alpha$ -mt**a**-2'—a PRElike element—contains nine genes, five of which are mating type regulated. The candidate set for 'mt $\alpha$ -mt**a**-3' (weakly similar to PRE as noted above) contains thirteen genes, two of which are mating-type specific. The gene STE18 has an upstream match to 'mt $\alpha$ -mt**a**-3'. STE18 codes for the G $\gamma$  subunit of the G protein coupled to both **a** and  $\alpha$ mating factor receptors, and is known to be regulated via the PRE element. Although STE18 is not thought to have mating type-specific expression, we found the STE18 transcript to be three-fold more abundant in **a** than  $\alpha$  <sup>35</sup>. The candidate set of genes with upstream matches to the Q-Box-like motif, 'mt $\alpha$ -mt**a**-4', contained seven genes, including one **a**-specific and two  $\alpha$ -specific genes. In all, forty genes were contained in at least one of the candidate sets of co-regulated genes described above, and among those forty were nine of fourteen known mating type-specific genes.

|       |                                                                                               |                                                                                                                                   | MIL                                                                                                                    |
|-------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Gene  | Change                                                                                        | ogatri                                                                                                                            | spl-op                                                                                                                 |
| GAL1  | >1.8                                                                                          | 5                                                                                                                                 | 4                                                                                                                      |
| GAL7  | >1.6                                                                                          | 2                                                                                                                                 | 2                                                                                                                      |
| GAL10 | >1.6                                                                                          | 5                                                                                                                                 | 4                                                                                                                      |
| GCY1  | >1.1                                                                                          | 1                                                                                                                                 | 1                                                                                                                      |
| GAL2  | >0.9                                                                                          | 4                                                                                                                                 | 4                                                                                                                      |
| -     | >0.8                                                                                          | 1                                                                                                                                 | 1                                                                                                                      |
| -     | >0.8                                                                                          | 1                                                                                                                                 | 1                                                                                                                      |
| -     | 0.6                                                                                           | 1                                                                                                                                 | 1                                                                                                                      |
| GAL3  | >0.5                                                                                          | 2                                                                                                                                 | 2                                                                                                                      |
| GAL80 | ND                                                                                            | 2                                                                                                                                 | 2                                                                                                                      |
| PGM2  | ND                                                                                            | 1                                                                                                                                 | 1                                                                                                                      |
| MEL1  | ND                                                                                            | -                                                                                                                                 | -                                                                                                                      |
|       | Gene<br>GAL1<br>GAL7<br>GAL10<br>GCY1<br>GAL2<br>-<br>-<br>-<br>GAL3<br>GAL80<br>PGM2<br>MEL1 | GeneChange.GAL1 $>1.8$ GAL7 $>1.6$ GAL10 $>1.6$ GCY1 $>1.1$ GAL2 $>0.9$ - $>0.8$ - $>0.8$ - $0.6$ GAL3 $>0.5$ GAL80NDPGM2NDMEL1ND | GeneChange $\checkmark$ GAL1>1.85GAL7>1.62GAL10>1.65GCY1>1.11GAL2>0.94->0.81->0.81-0.61GAL3>0.52GAL80ND2PGM2ND1MEL1ND- |

**Table 1**. The number of matching sites that lie within 600 bp upstream of translation start of genes/ORFs that were either measurably changed in expression or are known to be galactose-responsive. Genes/ORFs in plain text had a greater than 0.3 (two-fold) between galactose and glucose growth conditions. Genes/ORFs in italics have been shown previously to be regulated by the Gal4/Gal80 complex, but had a measured change of less than 0.3. Change calculation is as described (see Protocols) with positive change indicating higher transcript abundance in galactose than glucose.
|         |       |        |       |      |      | Ś      | · ~ ~ ~ |
|---------|-------|--------|-------|------|------|--------|---------|
| ORF ID  | Gene  | Change | 396.1 | 39C) | Ser. | 395.36 | 395.300 |
| YPL223C | -     | >0.8   | 1     | -    | -    | -      | -       |
| YBR072W | HSP26 | 0.7    | 2     | -    | -    | -      | 2       |
| YGR256W | GND2  | 0.7    | 1     | -    | -    | -      | 1       |
| YDR219C | GCV1  | 0.6    | 1     | -    | -    | -      | 1       |
| YLL039C | UBI4  | 0.6    | 2     | -    | -    | -      | 1       |
| YDR070C | -     | 0.5    | -     | 2    | -    | -      | -       |
| YER062C | HOR2  | 0.5    | -     | 1    | -    | -      | -       |
| YER103W | SSA4  | 0.5    | 1     | -    | -    | -      | -       |
| YHR007C | ERG11 | 0.5    | 1     | -    | -    | -      | 1       |
| YER042W | -     | 0.4    | 1     | -    | -    | -      | -       |
| YDL223C | -     | 0.4    | -     | -    | 1    | -      | -       |
| YGR038W | ORM1  | 0.4    | -     | -    | 1    | -      | -       |
| YDL048C | STP3  | >0.3   | 1     | -    | -    | -      | -       |
| YMR090W | -     | >0.3   | 1     | -    | -    | -      | -       |
| YGR248W | SOL4  | 0.3    | 1     | -    | -    | -      | 1       |
| YOR185C | GSP2  | 0.3    | 1     | -    | -    | -      | -       |
| YOR259C | CRL13 | 0.3    | -     | -    | 1    | -      | -       |
| YNL241C | ZWF1  | 0.3    | -     | -    | 1    | -      | -       |
| YNL156C | -     | 0.3    | 1     | -    | -    | -      | -       |
| YPL135W | -     | 0.3    | 1     | -    | -    | -      | -       |
| YHR057C | CYP2  | 0.3    | 1     | -    | -    | -      | -       |
| YNL031C | HHT2  | ND     | -     | 2    | 1    | 2      | 1       |
| YDR224C | HTB1  | -0.1   | -     | 4    | 1    | 2      | -       |
| YDR225W | HTA1  | -0.2   | -     | 4    | 1    | 2      | -       |
| YBL015W | ACH1  | -0.3   | -     | -    | -    | -      | 1       |
| YNL030W | HHF2  | -0.4   | -     | 2    | 1    | 2      | 1       |
| YBR009C | HHF1  | <-0.4  | -     | 4    | 3    | 4      | -       |
| YFR015C | GSY1  | <-0.5  | 2     | 1    | 1    | -      | -       |
| YBL003C | HTA2  | -0.5   | -     | 5    | -    | 4      | -       |
| YBL002W | HTB2  | -0.5   | -     | 5    | -    | 4      | -       |
| YBL072C | RPS8A | -0.5   | -     | 1    | -    | -      | 1       |
| YBR010W | HHT1  | -0.5   | -     | 4    | 3    | 4      | -       |
| YGR234W | YHB1  | <-0.6  | 2     | -    | 2    | -      | 1       |
| YJL052W | TDH1  | <-1.7  | -     | -    | 1    | -      | -       |

**Table 2**. The number of matching sites that lie within 600 bp upstream of translation start of genes/ORFs that were either measurably changed in expression or are known to code for nucleosomal proteins. Genes/ORFs in plain text had a measured change of greater than 0.3 (two-fold) between the heat shock and 30 °C growth conditions. Genes/ORFs in italics are known to code for nucleosomal proteins, but had a measured change of less than 0.3. Change calculation is as described (see Protocols) with positive change indicating higher transcript abundance in heat shock than 30 °C.

|                 |                    |                  |     |     |         |     | .9    | xi ya | s <sup>2</sup> . 2 | B B   |
|-----------------|--------------------|------------------|-----|-----|---------|-----|-------|-------|--------------------|-------|
|                 |                    |                  | d'i | a'  | and the |     | d'III | 0.10  | d'III              | d'III |
| ORF ID          | Gene               | Change_          | TH  | THE | THE     | THE | THE   | THE   | TH                 | THE   |
| YPL187W         | MFa1               | >1.3             | 4   | -   | -       | -   | 1     | 1     | -                  | 1     |
| YGL089C         | MF <sub>α</sub> 2  | >1.2             | 1   | -   | -       | -   | _     | 1     | _                  | 1     |
| YCL066W         | MAT <sub>α1</sub>  | >0.7             | -   | -   | -       | -   | 1     | -     | -                  | -     |
| YCR040W         | MAT <sub>α</sub> 1 | >0.6             | _   | _   | _       | _   | 1     | _     | _                  | _     |
| YJR004C         | SAG1               | 0.5              | 1   | _   | _       | _   | -     | 2     | 1                  | -     |
| YLR040C         | -                  | >0.4             | -   | _   | _       | _   | _     | -     | 1                  | 1     |
| YHR053C         | CUP1               | 04               | 1   | _   | -       | _   | _     | -     | -                  | 2     |
| YHR128W         | FUR1               | 0.4              | -   | _   | _       | _   | _     | 1     | _                  | -     |
| YHR141C         | MAK18              | 0.1              | _   | _   | _       | _   | _     | -     | 1                  | _     |
| YGR038W         | ORM1               | 0.1              | _   | _   | _       | _   | _     | 1     | -                  | _     |
| YI R355C        | II V5              | 0.3              | _   | _   | _       | _   | _     | -     | _                  | 1     |
| VCR007W         | $M\Delta Ta1$      | 0.5<br>ND        | _   | _   | _       | _   | _     | _     | _                  | 1     |
| VCR096C         | MATa               | ND               | -   | -   | -       | -   | -     | -     | -                  | -     |
| VCR030C         | MATa2              | ND               | -   | -   | -       | -   | -     | -     | -                  | -     |
| VCL067C         | MATa2              |                  | -   | -   | -       | -   | 1     | -     | -                  | -     |
| <i>VKL</i> 178C | MATA2              | ND               | -   | -   | -       | -   | 1     | -     | -                  | -     |
| IKLI/8C         | SIES<br>STE6       |                  | 1   | -   | -       | -   | -     | -     | -                  | -     |
| VDD201W         | SILU<br>VIIII      | $\frac{ND}{0.2}$ | -   | -   | -       | 5   | 5     | -     | -                  | -     |
| IDK501W         |                    | -0.5             | -   | -   | -       | -   | -     | -     | 1                  | -     |
| YLK438W         | CAR2               | -0.3             | 1   | -   | -       | -   | -     | -     | -                  | -     |
| YBRIU/C         | -                  | -0.3             | -   | -   | -       | -   | -     | -     | 1                  | -     |
| Y KL080W        | VMA5               | -0.3             | -   | -   | -       | -   | -     | 1     | -                  | -     |
| YML133C         | -                  | -0.3             | 1   | -   | -       | -   | -     | -     | -                  | -     |
| YDR342C         | HXT/               | -0.3             | -   | -   | -       | -   | -     | -     | 1                  | -     |
| YLR028C         | ADE16              | -0.3             | l   | -   | -       | -   | -     | -     | -                  | -     |
| YJR103W         | URA8               | -0.4             | 1   | -   | -       | -   | -     | -     | -                  | -     |
| YML075C         | HMG1               | -0.4             | -   | -   | -       | -   | 1     | -     | -                  | -     |
| YKL128C         | PMU1               | -0.4             | 1   | -   | -       | -   | -     | -     | -                  | -     |
| YCR012W         | PGK1               | -0.4             | 1   | -   | -       | -   | -     | -     | -                  | -     |
| YMR003W         | -                  | -0.4             | -   | -   | 1       | -   | -     | -     | -                  | -     |
| YAL061W         | -                  | -0.4             | -   | -   | -       | 2   | 2     | -     | -                  | -     |
| YPL271W         | ATP15              | <-0.4            | 1   | -   | -       | -   | -     | -     | -                  | -     |
| YBR011C         | IPP1               | -0.5             | -   | 1   | -       | -   | -     | -     | -                  | -     |
| YMR119W         | -                  | -0.5             | -   | -   | -       | -   | -     | -     | 1                  | -     |
| YKL214C         | -                  | -0.5             | -   | -   | -       | -   | -     | -     | 1                  | -     |
| YKR018C         | -                  | -0.5             | -   | -   | -       | 1   | 1     | -     | -                  | -     |
| YJR086W         | STE18              | -0.5             | -   | -   | 1       | -   | -     | -     | 1                  | -     |
| YBR147W         | -                  | -0.5             | -   | 2   | 1       | -   | -     | -     | -                  | -     |
| YKR071C         | -                  | -0.5             | -   | 2   | -       | 1   | -     | -     | 2                  | -     |
| YLL040C         | VPS13              | -0.6             | -   | 1   | 2       | -   | -     | -     | 1                  | -     |
| YJL164C         | SRA3               | -0.6             | -   | 1   | -       | -   | -     | 1     | 1                  | 1     |
| YCR024C-A       | PMP1               | -0.6             | -   | -   | 1       | -   | -     | -     | -                  | -     |
| YIL015W         | BAR1               | <-0.7            | -   | -   | 2       | 3   | 2     | -     | -                  | -     |
| YFL026W         | STE2               | <-0.8            | 1   | -   | -       | 2   | 2     | -     | -                  | 1     |
| YGL032C         | AGA2               | <-0.9            | -   | 1   | -       | 2   | 2     | 2     | 1                  | -     |
| YNL145W         | MFA2               | <-1.6            | -   | -   | -       | 3   | 2     | -     | -                  | -     |
| YDR461W         | MFA1               | 2.0              | -   | 1   | 1       | 2   | 2     | 1     | -                  | -     |

**Table 3**. The number of matching sites that lie within 600 bp upstream of translation start of genes/ORFs that were either measurably changed in expression or are known to be mating type-specific. Genes/ORFs in plain text had a measured change of greater than 0.3 (two-fold) between mating types **a** and  $\alpha$ . Genes/ORFs in italics have been shown previously to have mating-type specific expression, but had a measured change of less than 0.3. Change calculation is as described (see Protocols) with positive change indicating higher transcript abundance in mating type  $\alpha$  than **a**.

The success of this approach in finding regulatory DNA sequence motifs was dramatic. The same criteria, when applied to three whole-genome expression comparisons, uncovered at least one biologically important regulatory motif in each case. In the case of galactose vs. glucose,  $UAS_G$  — one of the two motifs involved in regulating galactose-utilization genes — was found along with most of the known  $UAS_G$  -regulated genes. In the case of heat shock vs 30 °C, a motif known to function in nucleosomal gene regulation was found, along with a set of genes collectively coding for every nucleosomal protein. In the case of mating type **a** vs.  $\alpha$ , every one of the four motifs involved in mating type-specific gene regulation was found, along with most of the known to function the known mating type-specific genes.

Our experiments showed lower sensitivity to transcripts of low abundance compared with previously published *S. cerevisiae* expression studies <sup>9</sup>. As a result, some ORFs which are known from previous studies to be differentially expressed between the examined conditions fell below our detection threshold for transcript abundance and thus were not measurably changed in our results. Our approach for finding co-regulated genes should then become even more successful as we optimize experimental methods in whole-genome expression measurement.

In this work, we have restricted ourselves to a search for upstream sequence elements. However, this approach could also be applied to 3' UTR sequences to discover conserved determinants of transcript termination, stability, or post-transcriptional processing (as in the case of higher eukaryotic histone genes <sup>21</sup>). The search for DNA (or RNA) sequence elements in coding regions of co-expressed genes is complicated by codon usage bias, which will tend to increase the likelihood of obtaining strong

alignments by chance. However, a search for protein (as opposed to nucleic acid) sequence motifs among co-expressed genes may prove useful, e.g., in the discovery of shared N-terminal signal sequences.

The AlignACE algorithm promises to be more generally useful in finding motifs in unaligned DNA sequences. Although we used whole-genome expression analysis to obtain sets of genes enriched for conserved sites, AlignACE may also prove useful in finding regulatory motifs among a variety of enriched sequence sets. A common example of this might be the upstream sequence from a collection of genes whose mutants share a phenotype. For gene expression data sets taken from many cell types or growth environments, it will be useful to find clusters of genes that are correlated in their expression <sup>36</sup> and apply the sequence analysis described here. AlignACE and all other software written for this work is publicly available <sup>13</sup>.

## **Experimental Protocol**

Strains and growth conditions. *S. cerevisiae* strain FY4 MAT**a** was used for all growth conditions except as noted. FY4 is a prototroph whose genome is completely sequenced <sup>3</sup>; <sup>37</sup>. Cultures were grown with aeration in yeast nitrogen base plus ammonium sulfate without amino acids (YNB) at 30 °C in a rotary incubator, and supplemented with 2% glucose except as noted. All cultures were harvested in mid log phase ( $2 - 4 \times 10^7$  cells/ml) as determined by cell count and dilution plating. Cells were pelleted, quickly washed once with 50 ml dH<sub>2</sub>O, frozen in a dry ice-isopropanol bath, and stored at -80 °C. For galactose growth, 2% galactose was used in place of glucose. For the heat shocked culture, cells were transferred at mid-log phase to a 39 °C shaking water bath. After 13

minutes the culture had reached 39 °C, and the incubation was continued for an additional 20 minutes. This temperature profile was chosen since heat shock-related transcripts are at maximal levels between 10 and 20 minutes after reaching the higher temperature <sup>38</sup>. For mating type  $\alpha$  cultures, strain FY5—isogenic to FY5 except that it is MAT $\alpha$ —was used in place of FY4. All strains were kindly provided by A. Dudley and F. Winston, Harvard Medical School.

<u>RNA preparation and hybridization</u>. Total cellular RNA was prepared from the frozen cell pellets by hot phenol extraction method (Current protocols in Molecular Bio, Ausubel et.al.). An additional phenol extraction and a phenol/chloroform/isoamyl alcohol extraction were done before ethanol precipitation. The poly-A fraction of total cellular RNA was purified by a PolyATract kit (Promega, Madison, WI). The resulting eluant was lyophilized and resuspended in 1-2  $\mu$ l H<sub>2</sub>O. Synthesis, purification, and fragmentation of biotinylated RNA antisense to mRNA transcripts (cRNA) was performed as previously described <sup>9</sup>. For each culture, expression data was acquired using a set of four chips (Affymetrix yeast 'antisense' A - D) designed for expression monitoring of *S. cerevisiae* <sup>9</sup>.

Hybridization, washing, and scanning were carried out as previously described <sup>9</sup> except where noted below. For all hybridizations, 15 μg fragmented cRNA in 250 μl buffer. Hybridizations were carried out either in Affy buffer (Affymetrix, Inc.) at 40 °C or in 6X SSPE-T (0.9 M NaCl, 60 mM NaH<sub>2</sub>PO<sub>4</sub>, 6mM EDTA, 0.005% Triton X-100, pH 7.6) at 45 °C for 14 to 18 hours. For a given chip type, hybridizations were carried out identically for each culture. After hybridization and washing, the chips were stained for 10 minutes at room temperature with 2μg/ml streptavidin-phycoerythrin conjugate

(SAPE; Molecular Probes, Eugene, OR) in 6X SSPE-T with 1 mg/ml acetylated BSA (New England Biolabs, Beverly, MA). Unbound SAPE was removed by rinsing with 6X SSPE-T at 45 °C.

Expression data analysis. Perfect match (PM) and single-base mismatch (MM) probe intensities are calculated from raw intensities by the GeneChip<sup>TM</sup> software (Affymetrix, Inc.) as described <sup>9</sup>. For this analysis, genes with MM probes that are perfect matches to a sequence within the genome, e.g., YBL087C and YKL006W, were not considered further. Intensities for PM and MM probes are background-subtracted using the average intensity of a set of 36 chip features with consistently low intensity in all of our experiments. For a given chip, PM and MM data are then normalized using the average background-subtracted PM intensity on that chip. This is likely more reliable than normalizing to transcripts of 'constant' expression level, e.g., ACT1 or PDA1, since these can vary between conditions by more than three-fold <sup>39</sup>. PM – MM ( $\Delta$ ) is then calculated for each probe pair, and if  $\Delta$  is less than detection threshold, then  $\Delta$  is set to this threshold. A detection threshold for PM or MM values on a given chip was chosen to be s, the standard deviation of background probe intensities on that chip; the threshold for  $\Delta$ values is then  $\sqrt{2} * s$  by propagation of error. The ratio  $\Delta_A / \Delta_B$  of transcript abundance in one condition (A) vs. another (B) is calculated for each corresponding pair of  $\Delta$  values. Application of the detection threshold prevents unreasonably high (or negative) values for  $(\Delta_A/\Delta_B)$  where a transcript is absent or undetectable in one or both conditions. The  $\Delta_{B2}$ ),  $(\Delta_{An}/\Delta_{Bn})$ ), where n is the number of probe pairs for that ORF. If the median is

calculated using a  $\Delta_A/\Delta_B$  value where both or the greater of  $\Delta_A$  and  $\Delta_B$  were thresholdadjusted, then change in expression for this ORF is not calculated ('ND'). Otherwise, if the median is calculated using a  $\Delta_A/\Delta_B$  value where either  $\Delta_A$  or  $\Delta_B$  were thresholdadjusted, change in expression is stated as being greater than (or less than) the calculated value. The median, as opposed to the mean, was chosen as a measure of central tendency that is robust to outliers. Our rationale for using the median of  $\Delta$  ratios rather than the ratio of  $\Delta$  medians was that while the magnitude of  $\Delta$  for features of different sequence can vary considerably,  $\Delta_A/\Delta_B$  should be less variant. An alternative measure of expression change (not used here) is 'fractional change': median  $\{(\Delta_{A1} - \Delta_{B1})/(\Delta_{A1} + \Delta_{B1}),$  $(\Delta_{A2}-\Delta_{B2})/(\Delta_{A2}+\Delta_{B2}), (\Delta_{An}-\Delta_{Bn})/(\Delta_{An}+\Delta_{Bn})$ . This measure should be robust to cases where a transcript is below detection threshold in one condition but not the other. Optimality of these or previous methods <sup>9</sup> for intensity data analysis have yet to be demonstrated experimentally. However, the lists of most-changed genes for each of our condition comparisons were not greatly affected by the analysis method used. Modifications to Gibbs motif sampling alteration. Alterations of the Gibbs motif sampling algorithm described in ref. <sup>15</sup> are the following: 1) Consideration of both strands of DNA, so that when a potential site is examined, either the site or its reverse complement—but not both—may be added to the alignment; 2) Near-optimum sampling method was improved so that it tends to result in higher scoring alignments and so that all columns spanned by the initially-chosen columns were considered; 3) Simultaneous multiple motif searching was replaced with an iterative masking approach, allowing a more efficient search for subtle motifs; 4) The model for base frequencies of non-site sequence was fixed using the background nucleotide frequencies of S. cerevisiae. 5) The

code is now portable to DEC Unix and Windows platforms, in addition to Silicon Graphics and Sun Unix systems.

<u>AlignACE settings</u>. The program 'AlignACE' was used with the following settings: inital alignment used a 'column-sampling' approach with 10 columns; the expected number of sites was 10; maximum number of initial sampling runs was 500; iterative masking to find multiple motifs was performed a maximum of 100 times; near-optimum sampling commenced after 50 consecutive sampling runs without an increase in alignment score; iterative masking was terminated after three consecutive cases of nonconvergence or non-positive alignment score.

AlignACE implemented a scoring method for 'goodness' of a site alignment that has previously been described by eq. 10 in ref. <sup>40</sup>, and motifs below a threshold AlignACE score of five were not considered further. To ensure that this criterion was sufficiently permissive, we searched for conserved motifs among randomly chosen sets of 10 upstream intergenic DNA sequences with AlignACE settings as described above except that a maximum of three motifs were sought from each intergenic sequence set. Each of 1000 randomly chosen sequence sets returned at least one motif with a score greater than our threshold of five. In 674 cases, all three motifs returned had scores greater than five. <u>Finding sites which match motifs and calculating motif specificity</u>. Sites were scored against motifs using the method of Berg and von Hippel <sup>41</sup>. To define a threshold score for a 'good' matching site, we first calculated the mean score  $\mu$  and standard deviation  $\sigma$ for the set of sites that were aligned by AlignACE. We determined our specificity score—the estimated fraction of genes bound by the putative protein corresponding to a given motif—in the following way: We found the fraction of genes with upstream

matches, defining a matching site as one with a Berg-Von Hippel scoregreater than or equal to  $\mu$ . The specificity score is then twice this fraction, since half of 'real' sites will have scores better than  $\mu$  if 'real' sites have a symmetric score distribution. For discovery of specific upstream sites, the threshold score for a 'good' match was lowered to  $\mu$  - 3 $\sigma$  to avoid missing potential binding sites.

Measuring similarity between DNA motifs. To identify previously described motifs that might be similar to the newly identified motif, the relevant literature was searched. Additionally, the TRANSFAC Release 3.2 was searched <sup>19</sup> using PatternSearch or MatInspector 2.1<sup>42</sup> with a threshold of 85% identity for 'core' nucleotides and 60% for overall identity. To assess similarity more quantitatively once a putatively similar motif has been identified, DNA site weight matrices <sup>41</sup> were examined pairwise in all possible alignments. The alignment which minimizes the sum of squared differences between matrix elements is chosen. When necessary, as in the case of imperfectly overlapping matrices, matrix elements are taken as their expectation value, based on the base composition of S. cerevisiae. If aligned matrices do not overlap by more than 5 bases, they are considered not similar. To further compare a given matrix A with a matrix B, a submatrix of A defined by the region of overlap between aligned A and B matrices is constructed. Each site used in generating the A and B matrices is scored against submatrix A. Student's t-statistic is calculated from the set of A site scores and the set of B site scores. Matrix A is said to 'detect' matrix B if t is above a threshold (described below). The procedure is repeated using a submatrix of B, and matrix A is then said to be 'similar' to matrix B if either matrix detects the other. The threshold for t was obtained using a negative control set of fourteen literature-derived matrices that are each bound by

different proteins (all of the 'expected' motifs in Fig. 2C, 3F, and 4I except the P-Box, which is bound by the same protein as ECB). False positive rate for matrix similarity was calculated to be the number of similar pairs in the negative control set divided by 91(the number of pairwise comparisons). The value of *t* corresponding to a 5% false positive rate was found to be 3.26 by linear interpolation.

<u>Assessing false positives</u>. To estimate the number of 'passing' motifs that we might expect by chance, we ran AlignACE on 100 randomly chosen sets of 10 upstream sequences with settings identical to those above, where a 'passing' motif has a AlignACE score greater than a set threshold (alternative thresholds of 5, 8, and 20 were examined) and a less than 1% specificity score.

Ideal Gene Lists. In trying to determine why our approach failed to find certain regulatory motifs, the following 'ideal' ORF sets were used to search for these motifs: ECB: CDC 6, CDC46, CDC47, CLN3 and SWI4; Gcr1-binding site: ADH1, CDC19, ENO1, PGK1 and TPI1; HSE: CUP1, HSC82, HSP26, HSP82, PGK1, SIS1, SSA1 and SSA3; MCB: CDC8, CDC9, CDC21 and CLB5; URS<sub>G</sub>: FBP1, FPS1, GAL1, GAL3, GAL4, HAP4, MEL1, PDC1 and SUC2; NEG: HHT1, HHT2 and HTA1; Rap1-binding site: CDC19, ENO1, PGK1, PDC1, PHO5, RNR2, Rpl16A, SRA1, TEF1, TEF2 and TPI1; SCB: CLN1, CLN2, HO and PCL1; STRE: CTT1, CYC7, DDR2, GAC1, HSP12, HSP26, HSP104, NTH2, PTP2 and TPS2.

<u>Methods for visually representing sequence alignments</u>. In sequence 'logos', the height of each letter is made proportional to its frequency, and the letters are sorted so the most common one is on top. The height of the entire stack is then adjusted to signify the information content of the sequences at that position <sup>43</sup>. Consensus sequences were

determined using the plurality method of Day and McMorris<sup>44</sup>. From a set of equally valid consensus bases, we choose the most precise base (e.g., A is more precise than N) that has a precision unique to this set. For example, V is chosen from the set {M, R, V, N}.

### **References**

 Pennisi, E., Laboratory workhorse decoded [news], *Science*, 277(5331), 1432-1434, 1997.

Blattner, F.R., Plunkett, G.r., Bloch, C.A., Perna, N.T., Burland, V., Riley,
 M., Collado-Vides, J., Glasner, J.D., Rode, C.K., Mayhew, G.F., Gregor, J., Davis,
 N.W., Kirkpatrick, H.A., Goeden, M.A., Rose, D.J., Mau, B. and Shao, Y., The
 complete genome sequence of Escherichia coli K-12, *Science*, 277(5331), 1453-1474,
 1997.

Goffeau, A., Barrell, B.G., Bussey, H., Davis, R.W., Dujon, B., Feldmann, H.,
 Galibert, F., Hoheisel, J.D., Jacq, C., Johnston, M., Louis, E.J., Mewes, H.W.,
 Murakami, Y., Philippsen, P., Tettelin, H. and Oliver, S.G., Life with 6000 genes [see comments]. [Review] [86 refs], *Science*, 274(5287), 563-567, 1996.

4. **Chen, P., Ailion, M., Bobik, T., Stormo, G. and Roth, J.,** Five promoters integrate control of the cob/pdu regulon in Salmonella typhimurium, *Journal of Bacteriology*, 177(19), 5401-5410, 1995.

5. **Chuang, S.E., Daniels, D.L. and Blattner, F.R.,** Global regulation of gene expression in Escherichia coli, *Journal of Bacteriology*, 175(7), 2026-2036, 1993.

6. Schena, M., Shalon, D., Davis, R.W. and Brown, P.O., Quantitative monitoring of gene expression patterns with a complementary DNA microarray [see comments], *Science*, 270(5235), 467-470, 1995.

 Lockhart, D.J., Dong, H.L., Byrne, M.C., Follettie, M.T., Gallo, M.V., Chee, M.S., Mittmann, M., Wang, C.W., Kobayashi, M., Horton, H. and Brown, E.L., Expression monitoring by hybridization to high-density oligonucleotide arrays, *Nature Biotechnology*, 14(13), 1675-1680, 1996.

DeRisi, J., Penland, L., Brown, P.O., Bittner, M.L., Meltzer, P.S., Ray, M.,
 Chen, Y., Su, Y.A. and Trent, J.M., Use of a cDNA microarray to analyse gene
 expression patterns in human cancer [see comments], *Nature Genetics*, 14(4), 457-460, 1996.

9. Wodicka, L., Dong, H., Mittmann, M., Ho, M.-H. and Lockhart, D.J., Genome-wide expression monitoring in *Saccharomyces cerevisiae*, *Nature Biotechnology*, 15(13), 1359-1366, 1997.

10. **Muhlrad, D., Decker, C.J. and Parker, R.,** Turnover mechanisms of the stable yeast PGK1 mRNA, *Molecular & Cellular Biology*, 15(4), 2145-2156, 1995.

 Jacobson, A. and Peltz, S.W., Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. [Review] [400 refs], *Annual Review of Biochemistry*, 65, 693-739, 1996.

Lipman, D.J., Making (anti)sense of non-coding sequence conservation.
 [Review] [54 refs], *Nucleic Acids Research*, 25(18), 3580-3583, 1997.

13. http://arep.med.harvard.edu/AlignACE/.

Frech, K., Quandt, K. and Werner, T., Software for the analysis of DNA sequence elements of transcription, *Computer Applications in the Biosciences*, 13(1), 89-97, 1997.

15. **Neuwald, A.F., Liu, J.S. and Lawrence, C.E.,** Gibbs motif sampling: detection of bacterial outer membrane protein repeats, *Protein Science*, 4(8), 1618-1632, 1995.

16. Lawrence, C.E., Altschul, S.F., Boguski, M.S., Liu, J.S., Neuwald, A.F. and Wootton, J.C., Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment, *Science*, 262(5131), 208-214, 1993.

17. **Liu, J.S.,** The collapsed Gibbs sampler in Bayesian computations with applications to a gene regulation problem, *Journal of the American Statistical Association*, 89(427), 958-966, 1994.

Lohr, D., Venkov, P. and Zlatanova, J., Transcriptional regulation in the yeast
 GAL gene family: a complex genetic network. [Review] [59 refs], *Faseb Journal*, 9(9),
 777-787, 1995.

19. Wingender, E., Kel, A.E., Kel, O.V., Karas, H., Heinemeyer, T., Dietze, P., Knuppel, R., Romaschenko, A.G. and Kolchanov, N.A., TRANSFAC, TRRD and COMPEL: towards a federated database system on transcriptional regulation, *Nucleic Acids Research*, 25(1), 265-268, 1997.

20. **Freeman, K.B., Karns, L.R., Lutz, K.A. and Smith, M.M.,** Histone H3 transcription in Saccharomyces cerevisiae is controlled by multiple cell cycle activation sites and a constitutive negative regulatory element, *Molecular & Cellular Biology*, 12(12), 5455-5463, 1992.

21. **Osley, M.A.,** The regulation of histone synthesis in the cell cycle. [Review] [230 refs], *Annual Review of Biochemistry*, 60, 827-861, 1991.

22. **Simon, J.A. and Lis, J.T.,** A germline transformation analysis reveals flexibility in the organization of heat shock consensus elements, *Nucleic Acids Research*, 15(7), 2971-2988, 1987.

23. **Schuller, C., Brewster, J.L., Alexander, M.R., Gustin, M.C. and Ruis, H.,** The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene, *Embo Journal*, 13(18), 4382-4389, 1994.

Martinez-Pastor, M.T., Marchler, G., Schuller, C., Marchler-Bauer, A., Ruis,
H. and Estruch, F., The Saccharomyces cerevisiae zinc finger proteins Msn2p and
Msn4p are required for transcriptional induction through the stress response element
(STRE), *Embo Journal*, 15(9), 2227-2235, 1996.

25. **Breeden, L.,** Start-specific transcription in yeast. [Review] [112 refs], *Current Topics in Microbiology & Immunology*, 208, 95-127, 1996.

26. McInerny, C.J., Partridge, J.F., Mikesell, G.E., Creemer, D.P. and Breeden, L.L., A novel Mcm1-dependent element in the SWI4, CLN3, CDC6, and CDC47 promoters activates M/G1-specific transcription, *Genes & Development*, 11(10), 1277-1288, 1997.

27. Herskowitz, I., Rine, J. and Strathern, J., Mating-type determination and mating-type interconversion in *Saccharomyces cerevisiae*, in *Gene Expression*, Vol. 2, Jones, E.W., Pringle, J.R. and Broach, J.R., Eds., Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press, 1992, 583-656. 28. **Johnston, M. and Carlson, M.,** Regulation of Carbon and Phosphate Utilization, in *Gene Expression*, Vol. 2, Jones, E.W., Pringle, J.R. and Broach, J.R., Eds., Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press, 1992, 193-281.

29. **Craig, E.A.,** The Heat-Shock Response of *Saccharomyces cerevisiae*, in *Gene Expression*, Vol. 2, Jones, E.W., Pringle, J.R. and Broach, J.R., Eds., Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press, 1992, 501-537.

30. Schmitt, A.P. and McEntee, K., Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae, *Proc Natl Acad Sci U S A*, 93(12), 5777-5782, 1996.

31. Rowley, A., Johnston, G.C., Butler, B., Werner-Washburne, M. and Singer,

**R.A.**, Heat shock-mediated cell cycle blockage and G1 cyclin expression in the yeast Saccharomyces cerevisiae, *Molecular & Cellular Biology*, 13(2), 1034-1041, 1993.

32. Vashee, S., Xu, H., Johnston, S.A. and Kodadek, T., How do "Zn2 cys6" proteins distinguish between similar upstream activation sites? Comparison of the DNA-binding specificity of the GAL4 protein in vitro and in vivo, *Journal of Biological Chemistry*, 268(33), 24699-24706, 1993.

33. http://genome-www.stanford.edu/Saccharomyces.

34. Ni, H.T. and LaPorte, D.C., Response of a yeast glycogen synthase gene to stress, *Molecular Microbiology*, 16(6), 1197-1205, 1995.

35. Sprague, G.F. and Thorner, J.W., Pheromone Response and Signal Transduction during the Mating Process of *Saccharomyces cerevisiae*, in *Gene Expression*, Vol. 2, Jones, E.W., Pringle, J.R. and Broach, J.R., Eds., Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press, 1992, 657-744. 36. Wen, X., Fuhrman, S., Michaels, G.S., Carr, D.B., Smith, S., Barker, J.L. and Somogyi, R., Large-scale temporal gene expression mapping of central nervous system development, *Proceedings of the National Academy of Sciences of the United States of America*, 95(1), 334-339, 1998.

Winston, F., Dollard, C. and Ricupero-Hovasse, S.L., Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C, *Yeast*, 11(1), 53-55, 1995.

38. **Miller, M.J., Xuong, N.H. and Geiduschek, E.P.,** Quantitative analysis of the heat shock response of Saccharomyces cerevisiae, *Journal of Bacteriology*, 151(1), 311-327, 1982.

39. Wenzel, T.J., Teunissen, A.W. and de Steensma, H.Y., PDA1 mRNA: a standard for quantitation of mRNA in Saccharomyces cerevisiae superior to ACT1 mRNA, *Nucleic Acids Research*, 23(5), 883-884, 1995.

40. Liu, J.S., Neuwald, A.F. and Lawrence, C.E., Bayesian models for multiple local sequence alignment and Gibbs sampling strategies, *Journal of the American Statistical Association*, 90(432), 1156-1170, 1995.

41. **Berg, O.G. and von Hippel, P.H.,** Selection of DNA binding sites by regulatory proteins. Statistical-mechanical theory and application to operators and promoters, *Journal of Molecular Biology*, 193(4), 723-750, 1987.

42. **Quandt, K., Frech, K., Karas, H., Wingender, E. and Werner, T.,** MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data, *Nucleic Acids Research*, 23(23), 4878-4884, 1995.

- 43. Schneider, T.D. and Stephens, R.M., Sequence logos: a new way to display consensus sequences, *Nucleic Acids Research*, 18(20), 6097-6100, 1990.
- 44. **Day, W.H. and McMorris, F.R.,** A consensus program for molecular sequences, *Computer Applications in the Biosciences*, 9(6), 653-656, 1993.

Chapter 4

# Prospects for Single Molecule DNA Sequencing

Using Ion Conductance

### Allocating Credit among Co-authors

Since the following chapter represents more than one person's efforts, it seems appropriate to a doctoral thesis that I describe which parts were my own work. Contributions made by those who were not coauthors are credited—I sincerely hope adequately-elsewhere in the acknowledgments. Computer modeling of channel conductance was done primarily by George Church, with minor help from me in choosing pore dimensions and producing the van der Waals representation in Fig. 1. Estimation of thermal motion of phage DNA during injection was my own work. Dr. Richard Baldarelli expressed and purified Shigella LamB pores, and tested activity with an in vitro time course of bacteriophage  $\lambda$  injection. Dr. Baldarelli initiated work with this system by purchasing and assembling the apparatus for measuring ion currents on a picoampere scale, and performing preliminary experiments with LamB and bacteriophage  $\lambda$  using patch-clamp methods. The observation of a channel activity associated with purified bacteriophage  $\lambda$  in the absence of LamB was my own. Experiments which established the single-channel conductance of LamB, and that of the bacteriophage  $\lambda$ -associated channel (data shown in Fig. 2 & 3) were also entirely my own work. I used the planar bilayer method of conductance measurement which I reduced to practice in our laboratory with advice from Dr. Baldarelli. Modifications of this method—including a novel apparatus for static discharge production of narrow apertures in thin polymer film, and the use of FEP fluoropolymer film—were my own innovations.

Advances in electrophoretic gel-based DNA sequencing, automated fluorescent and multiplex methods, have made feasible the complete sequencing of genomes <sup>1-3</sup>. Given the growing desire to sequence other large genomes and to genotype many individual human genomes, there remains a need to explore alternative approaches that can increase data yields and decrease costs without increasing errors. Single-molecule DNA sequencing approaches have the potential to overcome some limitations of gelbased sequencing <sup>4-6</sup>, e.g., to reduce time, reagent costs, and amplification artifacts associated with conventional sequencing approaches. However, no single-molecule method has yet produced reliable sequence.

Observation of voltage-induced flow of ions through a single transmembrane channel was first reported in 1969 <sup>7</sup> and observations of transient blocking and rapid gating of single ion channels are now made routinely. Within the last few years, measurements of channel conductance blockage by individual polymers have been reported. These include peptide transport through channels of the endoplasmic reticulum, protein transport across nuclear pore complexes, poly(ethylene glycol) diffusion through alamethicin channels, and supercoiled DNA interactions with bilayers <sup>8-11</sup>. More recently, conductance blockage of *S. aureus*  $\alpha$ -hemolysin channels due to the passage of ssDNA has been reported <sup>12</sup>.

We propose a single-molecule DNA sequencing method that takes advantage of the remarkable sensitivity of single-channel recording techniques. A DNA molecule passing through a transmembrane channel will interfere with ion flow through that channel. If it each of four nucleotide bases (or base pairs) of a DNA molecule forms a blockage of a unique size, it may then be possible to correlate variations in ion

conductance with DNA sequence as DNA is passed through a transmembrane channel. If the canonical four nucleotides are too similar in size, we might then consider the use of modifying DNA with larger bases.

The low cost of solid state amplifiers and the routine data acquisition rate of 300,000 samples per second make an ion conductance-based system for sequencing DNA attractive. Any such system will have three basic requirements: an ion channel with suitable geometry (discussed below), some form of nucleic acid, and a means of delivering the nucleic acid to the channel. A system consisting of ssDNA or ssRNA driven electrophoretically through  $\alpha$ -hemolysin channels has recently been proposed <sup>12</sup>. We have focused our attention on dsDNA and on a bacteriophage/receptor system to deliver dsDNA to a channel, since dsDNA has more predictable and less variable secondary structure than ssDNA or RNA and since the observation of DNA injection by a single bacteriophage would be of great biological interest. The rate of phage DNA injection by bacteriophage), and the ease of packaging exogenous DNA into phage particles <sup>14</sup> also make a bacteriophage/receptor system a good choice.

#### Results and discussion

<u>Model for a hypothetical DNA-containing channel</u>. To illustrate the proposed method and to examine its feasibility, we explored a simple geometrical model for the conductance of a hypothetical channel containing dsDNA (Fig. 1A). The ion conductance of a channel is determined by the channel's surface charge distribution, bulk conductivity of its solution, the structure of water within the channel and, of course, the geometric size and shape of the channel <sup>15</sup>. Theory of ion channel conductance has not advanced to the point where conductance can be accurately predicted given a channel's three-dimensional structure. The conductance of large cylindrical water-filled channels has, however, been modeled with some success as  $g = \frac{s \cdot A}{L}$ , where  $\sigma$  is the bulk conductivity of the solution, *A* is the ion-accessible cross-sectional area, and *L* is the length of the channel <sup>16</sup>. Although this approximation is an overestimate for smaller channels, *g* is in any case a monotonically increasing function of *A* if all non-geometric factors are held constant; i.e., if a channel conducts ions, a decrease in cross-sectional area results in a decrease in channel conductance. We draw only qualitative conclusions from our model since it incorporates only steric effects on channel conductance.

So that the conductance might be principally determined by passage of only one base pair at a time, we designed a hypothetical channel with a single narrow constriction or 'bottleneck'. The constriction was designed to be slightly wider than the diameter of dsDNA and have a thickness that is small compared to nucleotide spacing along dsDNA. Conductance (in units relative to the channel's conductance without DNA present) was calculated as the position of either canonical (Fig. 1B, black line) or modified (Fig. 1B, red line) dsDNA was shifted along the axis of the channel (see materials and methods). The modified dsDNA has an identical base sequence, but for one of its strands, every dT was replaced by dU and every dC replaced by d-5-methyl-C (dmC).

We draw three conclusions from the output of the model for unmodified dsDNA.(i) There is a periodic pattern of conductance peaks and valleys as a function of dsDNA

position along the channel axis, reflecting the periodic structure of dsDNA. (ii) Conductance 'valleys' follow a pattern, so that dG-dC base pairs are distinguishable from dA-dT base pairs; i.e., dA-dT base pairs block a greater fraction of channel conductance than do dG-dC base pairs. (iii) By observing the conductance 'valleys' of canonical DNA, one cannot distinguish dA-dT from dT-dA or dC-dG from dG-dC. For the modified dsDNA conductance trace, 'valleys' corresponding to dmC -dG base pairs can now be distinguished from those of dC-dG, and dA-dT can be distinguished from dA-dU. One can envision the use of bulkier modifications if more base-dependent contrast in conductance is required.



Figure 1. Modeling conductance through an idealized DNA-containing channel to examine feasibility of DNA sequencing. (A) The idealized pore (shown in red) is 38 Å in diameter and 26 Å in length (the approximate length of the hydrophobic region of a lipid bilayer). The channel has a constriction 28 Å in diameter (in yellow) which has the thickness of one keto-oxygen (3.1 Å), so that it admits dsDNA (in blue) with surrounding space to allow the passage of small ions. Fig. 1A was generated using RASMOL, which can be obtained from http://klaatu.oit.umass.edu/microbio/rasmol/. (B) Conductance of a dsDNA-containing channel as a function of DNA position along the idealized channel axis in 0.1 Å increments (see materials and methods). Conductance is plotted for the indicated sequence of canonical B-form dsDNA (black line) and dsDNA modified as described in the text (red line). Comparing unmodified DNA with DNA modified in one strand identifies which parts of the conductance curve are sensitive to which atoms of the DNA helix. In terms of the base sequence of the modified strand, the conductance of the valleys follow a pattern of dC = dG > dA = dT for canonical DNA and dU > dG > dA > d5mC for the modified DNA.

Conductance measurements of *Shigella* LamB and bacteriophage  $\lambda$ . We chose to investigate this approach experimentally using bacteriophage  $\lambda$  and its receptor, the outer membrane porin LamB of *Shigella sonnei*. The advantages of this system are that  $\lambda$  is genetically and structurally the best understood bacteriophage, and for the following additional reasons: in vitro conditions for *Shigella* LamB-dependent DNA ejection have been determined <sup>17</sup>; bacteriophage  $\lambda$ , in combination with LamB, has previously been shown to form stable transmembrane channels <sup>18</sup>; and the structure of *E. coli* LamB has been determined <sup>19</sup>. *Shigella* rather than *E. coli* LamB was chosen for these studies, since *E. coli* LamB requires ethanol or chloroform to trigger  $\lambda$ 's DNA ejection in vitro <sup>20; 21</sup>. Other bacteriophages for which in vitro DNA ejection has been studied include T4 and T5 <sup>22; 23</sup>.

LamB is a trimeric outer membrane protein whose physiological function is to passively transport maltose <sup>19; 24</sup>. The  $\lambda$  tail fiber initiates the phage/receptor interaction by docking reversibly to surface-exposed residues of LamB <sup>21; 25</sup>. This is followed by irreversible association of  $\lambda$  with LamB and subsequent DNA ejection at a rate of 1000 base pairs per second <sup>13</sup>. After DNA ejection, the complex of  $\lambda$  and LamB remains associated, and a channel is present that is stable and permeable to larger molecules than LamB alone can admit <sup>18</sup>.

Although the conductance of *E. coli* LamB has been characterized <sup>26; 27</sup>, the conductance of *Shigella* LamB has not been reported. The LamB protein of *Shigella* differs from that of *E. coli* by only a few residues on the outer surface of the molecule <sup>28</sup>, so that the overall structure and conductance of the two porins should be very similar.

We developed a method for affinity-purifying *Shigella* LamB (see materials and methods) and have shown the single (trimeric) channel conductance of *Shigella* LamB to be  $88 \pm 5 \text{ pS}$  (based on 75 transitions measured) in 0.5 M KCl in a lipid bilayer (Fig. 2), with occasional subconductance transitions of  $29 \pm 3 \text{ pS}$  (based on 37 transitions). Subconductance states have been described for mutants of *E. coli* LamB, but have not been observed in wild-type LamB <sup>26; 27</sup>. We ascribe the 29 pS transitions to transient closure of monomers. For a direct comparison of *Shigella* LamB with its *E. coli* counterpart, we measured *Shigella* LamB conductance to be 174 ± 7 pS (based on 63 transitions) in conditions (bilayer potential 20 mV, bath solution 1 M KCl, 10 mM Tris (pH 7.5), 10 mM MgCl<sup>2</sup>) similar to those in which *E. coli* LamB conductance is known to be 155 pS <sup>26; 27</sup>.



**Figure 2.** Discrete conductance transitions due to single *Shigella* LamB trimers. Channel conductance measurements were obtained by adding *Shigella* LamB detergent micelles to a bath of 0.5 M KCl adjacent to a voltage-clamped asolectin bilayer. Conductance of the trimers was found to be  $88 \pm 5$  pS.

The conductance of single channels associated with bacteriophage T5 and with filamentous phage fd has been studied <sup>23; 24</sup>, and some inferences about behavior of individual bacteriophage T4-induced channels have been made <sup>29</sup>. Although previous in vitro experiments suggested that the bacteriophage  $\lambda$ /LamB complex forms a channel <sup>18</sup>, single channel conductance has not been measured. We attempted to characterize the conductance of the  $\lambda$ /LamB complex. When a preincubated mixture of  $\lambda$  and *Shigella* LamB was added to a voltage-clamped lipid bilayer, large channels were observed (data not shown). The initial conductance transition of these channels is to a level of  $2.4 \pm 0.5$ nS (based on 88 transitions measured), followed by a drop to  $2.1 \pm 0.2$  nS (based on 25 transitions) after a characteristic time of about 20 seconds. Subsequent to this drop, a variety of gating behaviors between lower conductance levels was observed in some channels. Estimating a characteristic time for complete channel closure was problematic, since these events were quite rare. Observations of a single channel have persisted as long as 2.8 hours, and were generally terminated by a second channel insertion or by breakage of the lipid bilayer.

To our surprise, when  $\lambda$  was added to a lipid bilayer in the absence of LamB, channels with similar characteristics were observed (Fig. 3). Examples of the gating behaviors mentioned above are shown in Fig.3A and 3B. The mean initial conductance transition for these channels is  $2.1 \pm 0.7$  nS (based on 54 transitions), which is statistically indistinguishable from the mean transition of the  $\lambda$ /LamB mixture. The number of channels present with bacteriophage  $\lambda$  alone was not significantly different from the number of channels present when  $\lambda$  was premixed with LamB. These channels

were not observed in experiments with bilayer alone, or with bilayer and *Shigella* LamB. Therefore we conclude that purified  $\lambda$  bacteriophage can form a channel in vitro without the aid of its in vivo receptor, LamB. We do not know if the channel is formed by intact phage or by a subpopulation of phage, e.g., 'ghosts' that have spontaneously ejected their DNA. The  $\lambda$ -associated channel is unlikely to be an *E. coli* porin contaminant, since further equilibrium CsCl density-gradient purification of phage and extensive dialysis with a 500,000 MWCO membrane did not significantly alter the amount of channel activity. Also, the channel is unlike any described naturally occurring *E. coli* channel in its behavior and conductance.



Figure 3. A conductance trace of single channels associated with  $\lambda$  bacteriophage. (A) Discrete conductance transitions of three individual channels. Channel conductance measurements were obtained by adding purified  $\lambda$  phage to a bath of 0.5 M KCl adjacent to a voltage-clamped asolectin bilayer. (B) An expansion of the conductance profile indicated by the **b** arrow in Fig. 3 A (C) An expansion of the conductance profile indicated by the **c** arrow in Fig. 3 A.

Receptor-independent channel formation was unexpected, since previous work showed that  $\lambda$  does not trigger release of ATP from *E. coli* LamB-containing liposomes, but does trigger ATP release from *Shigella* LamB-containing liposomes <sup>18</sup>. However, several possibilities reconcile this observation with our own: receptor-independent channel formation by  $\lambda$  may be particular to lipid composition (we used soy rather than egg phosphatidylcholine) or lower salt conditions; E. coli LamB may inhibit channel formation by  $\lambda$  in vitro; the  $\lambda$  channel may form, but only be permeable to ATP when complexed with *Shigella* LamB; or the channel-forming activity of  $\lambda$  alone may be below the sensitivity of the ATP detection assay used. Experiments demonstrating a Shigella LamB requirement for  $\lambda$  DNA injection <sup>13; 17; 30</sup> do not conflict with our observations, since channel-formation and DNA ejection may be independent processes. We do not believe that DNA transfer is occurring during our observations of  $\lambda$  phage alone, since previous work has clearly shown that LamB is required for in vitro DNA ejection <sup>13</sup>. Nor do we expect DNA transfer in our mixtures of LamB and  $\lambda$ , since any DNA ejection would have taken place before conductance is measured.

Conductance measurements of the  $\lambda$  channel allow us to make general inferences about the nature of the channel used by  $\lambda$  for DNA transfer across the outer membrane. It has not been known whether  $\lambda$  widens a channel in LamB for DNA transport or if it forms a distinct transmembrane channel. Using a cylindrical water-filled channel model (described above) with the 58.5 mS/cm conductivity of 0.5M KCl<sup>31</sup>, a channel with 2.1 nS conductance has the 2 nm diameter of dsDNA if it has an 'effective' length of 9 nm. Although the phage tail is about 150 nm long, its 'effective' length will be determined by the permeability of the tail wall to ions, so that 9 nm does not seem unreasonable. The conductance of the  $\lambda$  channel is comparable to the 2.1 nS conductance of FhuA/T5 bacteriophage channel under similar salt conditions <sup>23</sup> and to the 3.0 nS conductance of the adsorption protein of filamentous phage fd (observed in 1M rather than 0.5M KCl) <sup>24</sup>. The observation that  $\lambda$  can by itself form a channel large enough to pass DNA removes any need to invoke LamB as the pore used for DNA transfer, but does not rule out this possibility.

Experiments critical to the success of the proposed sequencing method will involve the addition of  $\lambda$  bacteriophage to a LamB-containing bilayer, so that conductance during DNA transport may then be observed. We do not know if  $\lambda$ 's DNA transport channel contains a single 'bottleneck' as we have modeled above, and so we cannot predict whether the channel will have sequence-dependent variations in ion conductance which exceed the noise inherent in our experimental system. We also cannot be certain that random thermal motion of DNA as it passes through  $\lambda$ 's tail tube will permit unidirectional motion of DNA as we have modeled it above. However, a calculation of the rate of this random motion based on frictional considerations indicates that it will be slow when compared with achievable data acquisition rates. In any case, distinguishing the conductance signature of DNA transport from that of  $\lambda$  alone is possible now that the conductance of  $\lambda$  and *Shigella* LamB have been observed individually.

We suggest bacteriophage  $\lambda$ /*Shigella* LamB as a system for investigating singlemolecule DNA sequencing. In addition, this system may allow us to elucidate details of
λ phage's mechanism of DNA transfer. Although other virus-associated channels have
been previously described, e.g., bacteriophage T5/FhuA, filamentous phage fd
adsorption protein, mammalian reovirus, and influenza A virus, no detailed mechanism
for transmembrane nucleic acid transfer has been established for these systems <sup>23; 24; 32<sup>34</sup>. Details of other DNA transport systems, e.g., bacterial conjugation or specific uptake
of DNA by *Haemophilus influenzae* are also unknown <sup>35</sup>.
</sup>

# Experimental protocol

<u>Bacteriophage λ and LamB preparations</u>. Purified bacteriophage λ of strain cl857ind1Sam7 was obtained from New England Biolabs and was purified further by CsCl equilibrium density centrifugation <sup>36</sup>. Yield was determined to be ~ $10^{12}$  pfu/ml. *Shigella* LamB protein was affinity-purified from *E. coli* strain Pop154, which carries a *Shigella* LamB gene in place of the endogenous gene <sup>25</sup>. Solubilized outer membranes prepared from 2 L culture as described <sup>37</sup> were mixed with 15 ml amylose/agarose affinity resin (New England Biolabs) and equilibrated with 10 mM CAPS/10 mM Tris (pH 8.0), 1% triton X-100 and 100 mM NaCl. The column was washed with 20 mls equilibration buffer. LamB protein was eluted with a continuous pH gradient established between equilibration buffer and otherwise-identical pH 11 buffer. Fractions were neutralized and those containing LamB were pooled and dialyzed against an excess volume of 10 mM Tris (pH 7.5), 1% triton X- 100, 100 mM NaCl. The yield of LamB protein was 49 µg/ml (2.1x10<sup>14</sup> trimers/ml). Consistent with its maltose-binding function, LamB can also be eluted using 2% maltooligosaccharide mix (Pfanstiehl Laboratories, Inc.). We tested *Shigella* LamB and  $\lambda$  by mixing the two preparations 1:250 by volume and assaying for  $\lambda$  DNA release using ethidium bromide-stained agarose gel electrophoresis. Fluorescence increased upon  $\lambda$  addition -- plateauing after ~1 minute at 37° -- but did not increase when LamB dialysis buffer was used in place of LamB. In preparation for conductance measurements, a mixture of 1:250 by volume of LamB:  $\lambda$  preparations was incubated at 37° for 3 hours, and then mixed 1:1 with 1M KCl to approximately equalize salt concentrations to bath solution. 150 µl of this mixture was added to bilayer chamber. For lambda-only channel measurements, phage was prepared in the same manner, replacing the LamB preparation with 10 mM Tris (pH 7.5), 1% triton X-100, 100 mM NaCl.

Estimation of thermal motion of DNA. To obtain an order of magnitude estimate for the diffusion constant (D) of DNA during injection, we first assumed that -- in the manner of a spring -- the driving force of DNA transport is that stored in the densely packed DNA of the head. If the packaging energy for  $\lambda$  is similar to that measured for other bacteriophages -- ~1 ATP for every 2 bp packaged <sup>38; 39</sup> -- and if about 10% of this energy is available to drive DNA transport, then a force (F) of 1.6 \* 10<sup>-11</sup> J m<sup>-1</sup> would drive DNA the length of 48,500 bp ( $F \cdot distance = energy$ ). We can relate F to a frictional coefficient (f) for our situation if we assume the 'terminal velocity' v of DNA transport --where frictional force balances motive force -- to be the rate previously measured (~10<sup>3</sup> bp/sec) <sup>13</sup>, since  $f \cdot v = F$ . Finally, using the Einstein-Smoluchowski

relation  $D = \frac{k \cdot T}{f}$ , we can estimate D to be ~10<sup>-16</sup> meter<sup>2</sup>/sec. Knowing D, and using the one-dimensional diffusion equation  $X_{RMS} = \sqrt{2 \cdot D \cdot t}$ , where  $X_{RMS}$  is the root-mean-

square distance traveled by DNA in a time t, we can conclude that the characteristic time for the segment of DNA which experiences the friction calculated above to move a distance of 1 bp by random thermal motion is ~1 millisecond. This is slow compared with our data acquisition time of 3 microseconds per sample. See ref.  $^{40}$  for a discussion of diffusion.

Model for conductance of a DNA-containing channel. Conductance was calculated using

$$g(x) = \frac{1}{R(x)} = \frac{1}{\sum_{i=1}^{N} \left(\frac{t}{A(i,x)}\right)}, \text{ where } g(x) \text{ and } R(x) \text{ are the conductance and resistance,}$$

respectively, of the DNA-containing channel as a function of DNA position *x*, A(i, x) is the ion-accessible area of a particular 'slice' *i* for the DNA-containing channel, respectively, and N is the number of axial 'slices' of thickness  $\tau$  into which the channel can be divided. We set  $\tau$  at 0.1 Å, and chose the ion Be<sup>++</sup> for its small radius (0.35 Å). The total resistance of the channel is the sum of the resistances of all the 'slices'. For each slice, the resistance is proportional to slice thickness  $\tau$  and inversely proportional to the ion-accessible area. The ion-accessible area of each slice was calculated by adding the ion radius to the van der Waals radius of each channel and DNA atom, and then counting the number of points on a 0.1 Å grid that are not contained within any atom's resultant radius.

<u>Conductance measurements</u>. All conductance measurements employed a Teflon<sup>TM</sup> block with two chambers, each of ~ 1 ml capacity. The chambers are separated by a .0005 inch-thick Teflon<sup>TM</sup> or Korton<sup>TM</sup> FEP film (Norton Performance Plastics) with a small (~25-30  $\mu$ m) aperture. The aperture is produced by static discharge from a Zerostat<sup>TM</sup>

piezoelectric gun (Discwasher). Unless otherwise indicated, bath solution was 0.5 M KCl, 5 mM Tris (pH 7.5), 5 mM MgCl<sup>2</sup>. Bilayers were produced by the folded bilayer method <sup>41</sup> using 3 µl of a 20 mg/ml solution of asolectin (Sigma #P-5638) in pentane for each chamber, and with light application of 1% squalene in pentane to the aperture. Unless otherwise indicated, all bilayers were voltage-clamped at 25 mV. Electrodes were Ag/AgCl (Axon Instruments). An Axopatch 200A amplifier (Axon Instruments) was used to monitor pipette current in the capacitive-feedback configuration with a CV201A headstage. Internal low-pass Bessel filter was set at 1 KHz, and a sampling interval of 100 µsec was used. A TL-1 DMA A/D converter interface transferred data to acquisition software PCLAMP 6.0.2 (Axon Instruments). *Shigella* LamB measurements were digitally filtered at 10 Hz.

# <u>References</u>

1. Hunkapiller, T., Kaiser, R.J., Koop, B.F. and Hood, L., Large-scale and automated DNA sequence determination, *Science*, 254(5028), 59-67, 1991.

2. Fleischmann, R.D., Adams, M.D., White, O., Clayton, R.A., Kirkness, E.F., Kerlavage, A.R., Bult, C.J., Tomb, J.F., Dougherty, B.A., Merrick, J.M. and et, a., Whole-genome random sequencing and assembly of Haemophilus influenzae Rd [see comments], *Science*, 269(5223), 496-512, 1995.

Church, G.M. and Kieffer-Higgins, S., Multiplex DNA sequencing, *Science*, 240(4849), 185-188, 1988.

4. Davis, L.M., Fairfield, F.R., Harger, C.A., Jett, J.H., Keller, R.A., Hahn,

**J.H., Krakowski, L.A., Marrone, B.L., Martin, J.C., Nutter, H.L. and et al.,** Rapid DNA sequencing based upon single molecule detection, *Gen. Anal. Tech. Appl.*, 8(1), 1-7, 1991.

5. Lindsay, S.M. and Philipp, M., Can the scanning tunneling microscope sequence DNA?, *Gen. Anal. Tech. Appl.*, 8(1), 8-13, 1991.

Hansma, H.G., Weisenhorn, A.L., Gould, S.A.C., Sinsheimer, R.L., Guab,
H.E., Stucky, G.D., Zaremba, C.M. and Hansma, P.K., Progress in sequencing
deoxyribonucleic acid with an atomic force microscope, *J. Vacuum Science and Technol.*, 9(2), 1282-1284, 1991.

7. **Bean, R.C., Shepherd, W.C., Chan, H. and Eichner, J.,** Discrete conductance fluctuations in lipid bilayer protein membranes, *J. Gen. Physiol.*, 53(6), 741-757, 1969.

8. **Simon, S.M. and Blobel, G.,** A protein-conducting channel in the endoplasmic reticulum, *Cell*, 65(3), 371-380, 1991.

9. **Bustamante, J.O., Oberleithner, H., Hanover, J.A. and Liepins, A.,** Patch clamp detection of transcription factor translocation along the nuclear pore complex channel, *J. Membrane Biol.*, 146(3), 253-261, 1995.

10. **Bezrukov, S.M., Vodyanoy, I. and Parsegian, V.A.,** Counting polymers moving through a single ion channel, *Nature*, 370(6487), 279-281, 1994.

11. **Spassova, M., Tsoneva, I., Petrov, A.G., Petkova, J.I. and Neumann, E.,** Dip patch clamp currents suggest electrodiffusive transport of the polyelectrolyte DNA through lipid bilayers, *Biophys. Chem.*, 52(3), 267-274, 1994.

12. Kasianowicz, J.J., Brandin, E., Branton, D. and Deamer, D.W.,

Characterization of individual polynucleotide molecules using a membrane channel, *Proc. Natl. Acad. Sci. USA*, 93, 13770-13773, 1996.

13. **Novick, S.L. and Baldeschwieler, J.D.,** Fluorescence measurement of the kinetics of DNA injection by bacteriophage lambda into liposomes, *Biochemistry*, 27(20), 7919-7924, 1988.

 Enquist, L. and Sternberg, N., Packaging of bacteriophage lambda in vitro, *Meth. Enz.*, 68, 281-298, 1979.

15. **Eisenberg, R.S.,** Computing the field in proteins and channels, *J. Membrane Biol.*, 150, 1-25, 1996.

16. Benz, R., Schmid, A. and Hancock, R.E.W., Ion selectivity of gram-negative bacterial porins, *J. Bact.*, 162(2), 722-727, 1985.

17. Schwartz, M. and Le Minor, L., Occurrence of the bacteriophage lambda receptor in some enterobacteriaceae, *J. Virol.*, 15(4), 679-685, 1975.

18. **Roessner, C.A. and Ihler, G.M.,** Formation of transmembrane channels in liposomes during injection of lambda DNA

Bacteriophage lambda PaPa: not the mother of all lambda phages, J. Biol. Chem.,

261(1), 386-390, 1986.

19. Schirmer, T., Keller, T.A., Wang, Y.F. and Rosenbusch, J.P., Structural basis for sugar translocation through maltoporin channels at 3.1 A resolution [see comments], *Science*, 267(5197), 512-514, 1995.

20. **Randall-Hazelbauer, L. and Schwartz, M.,** Isolation of the bacteriophage lambda receptor from Escherichia coli, *J. Bact.*, 116(3), 1436-1446, 1973.

4-23

21. **Mackay, D.J. and Bode, V.C.,** Binding to isolated phage receptors and lambda DNA release in vitro, *Virology*, 72(1), 167-181, 1976.

22. **Furukawa, H., Kuroiwa, T. and Mizushima, S.,** DNA injection during bacteriophage T4 infection of Eschericia coli, *J. Bact.*, 154, 938-945, 1983.

23. **Bonhivers, M., Ghazi, A., Boulanger, P. and Letellier, L.,** FhuA, a transporter of the *E. coli* outer membrane, is converted into a channel upon binding of bacteriophage T5, *EMBO J.*, 15(8), 1850-1856, 1996.

24. **Szmelcman, S. and Hofnung, M.,** Maltose transport in Escherichia coli K-12: involvement of the bacteriophage lambda receptor, *J Bact.*, 124(1), 112-118, 1975.

25. **Roa, M. and Scandella, D.,** Multiple steps during the interaction between coliphage lambda and its receptor protein in vitro, *Virology*, 72(1), 182-194, 1976.

26. **Benz, R., Schmid, A. and Vos-Scheperkeuter, G.H.,** Mechanism of sugar transport through the sugar-specific LamB channel of Escherichia coli outer membrane, *J. Membrane Biol.*, 100(1), 21-29, 1987.

27. **Dargent, B., Charbit, A., Hofnung, M. and Pattus, F.,** Effect of point mutations on the in-vitro pore properties of maltoporin, a protein of Escherichia coli outer membrane, *J. Mol. Biol.*, 201(3), 497-506, 1988.

28. **Roessner, C.A. and Ihler, G.M.,** Sequence of amino acids in lamB responsible for spontaneous ejection of bacteriophage lambda DNA, *J. Mol. Biol.*, 195(4), 963-966, 1987.

29. **Boulanger, P. and Letellier, L.,** Characterization of ion channels involved in the penetration of phage T4 DNA into Escherichia coli cells, *J. Biol. Chem.*, 263(20), 9767-9775, 1988.

30. **Roessner, C.A., Struck, D.K. and Ihler, G.M.,** Injection of DNA into liposomes by bacteriophage lambda, *J. Biol. Chem.*, 258(1), 643-648, 1983.

 Weast, R., Ed., CRC Handbook of Chemistry and Physics, CRC Press, Inc., Boca Raton, FL, 1987.

32. **Tosteson, M.T., Nibert, M.L. and Fields, B.N.,** Ion channels induced in lipid bilayers by subvirion particles of the nonenveloped mammalian reovirus, *Proc. Natl. Acad. Sci. USA*, 90, 10549-10552, 1993.

33. Tosteson, M.T., Pinto, L.H., Holsinger, L.J. and Lamb, R.A., Reconstitution of the influenza virus M<sub>2</sub> ion channel in lipid bilayers, *J. Membrane Biol.*, 142, 117-126, 1994.

Glaser-Wuttke, G., Keppner, J. and Rasched, I., Pore-forming properties of the adsorption protein of filamentous phage fd, *Bioch. Biophys. Acta*, 985, 239-247, 1989.

35. **Dreiseikelmann, B.,** Translocation of DNA across bacterial membranes, *Microbiol. Rev.*, 58(3), 293-316, 1994.

 Sambrook, J., Fritsch, E.F. and Maniatis, T., *Molecular Cloning: A Laboratory Manual*, Vol. 1, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.

37. **Gabay, J. and Schwartz, M.,** Monoclonal antibody as a probe for structure and function of an Escherichia coli outer membrane protein, *J. Biol. Chem.*, 257(12), 6627-6630, 1982.

38. **Morita, M., Tasaka, M. and Fujisawa, H.,** DNA Packaging ATPase of Bacteriohage T3, *Virology*, 193, 748-752, 1993.

39. **Guo, P., Peterson, C. and Anderson, D.,** Prohead and DNA-gp3-dependent ATPase activity of the DNA packaging protein gp16 of bacteriophage phi 29, *J. Mol. Biol.*, 197(2), 229-236, 1987.

40. **Berg, H.C.,** *Random Walks in Biology*, Princeton University Press, Princeton, NJ, 1993.

41. **Montal, M. and Mueller, P.,** Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties, *Proc. Natl. Acad. Sci. USA*, 69, 3561-3566, 1972.

Appendix A

# A Software Guide

Quite a number of applications, small and large, were written in the course of this work. So that others may make some use of these, I've made an attempt here to list the applications, their purpose, their proper usage, and the naming of input and output files. For the sake of simplicity, I've divided the applications into two categories: 1) applications for processing and analyzing Affymetrix microarray ('chip') data; 2) applications for analyzing upstream noncoding DNA sequences. All of the applications listed were written in Perl5, with the exception of 'AlignACE', which was written in C. Usage for each of these applications can also be determined from the command line by typing the name of the application with no arguments.

# Applications for processing and analyzing Affymetrix microarray data. The

| Application   | Input           | Output | Purpose                                                                              |  |  |  |  |  |
|---------------|-----------------|--------|--------------------------------------------------------------------------------------|--|--|--|--|--|
|               | Files           | File   |                                                                                      |  |  |  |  |  |
| make_SUM_file | .txt            | .SUM   | Converts Affymetrix chip summary file to less ambiguous .SUM format                  |  |  |  |  |  |
| make_FEA_file | .SUM,<br>.CEL   | .FEA   | Groups Affymetrix .CEL file feature data by ORF                                      |  |  |  |  |  |
| make_BKG_file | .FEA            | .BKG   | Background-subtracts feature intensity data                                          |  |  |  |  |  |
| make_NRM_file | .BKG            | .NRM   | Normalizes between chips within an experiment using in vitro transcription controls  |  |  |  |  |  |
| make_ALL_file | .BKG or<br>.NRM | .ALL   | Collection of data from complete chip set for a given experiment                     |  |  |  |  |  |
| chipbatch     | .CEL            | .ALL   | Batch file for running make_FEA_file,<br>make_BKG_file, make_NRM_file, make_ALL_file |  |  |  |  |  |
| make_XP_file  | .ALL            | .XP    | Computes absolute expression levels for each ORF in an experiment                    |  |  |  |  |  |
| make_DIF_file | .ALL            | .DIF   | Computes relative expression levels for each ORF between two experiments             |  |  |  |  |  |

following is a summary table of chip analysis applications:

# 'make\_SUM\_file'

Usage: "make\_SUM\_file ?.txt -o ?.SUM".

Example: "make\_SUM\_file 1228a.txt -o Sc\_A.SUM".

The starting point for our analysis was a '.CEL' file created by the Affymetrix GeneChip software. The '.CEL' file contains the mean and variance of fluorescence intensity for every coordinate on the chip. An essential step in calculating abundance of an ORF is knowing which positions on the chip correspond to which ORFs. To this end, we received files from Affymetrix which give the number of probes for each ORF, and the X and Y coordinates of the 'upper leftmost' and 'lower rightmost' positions for each feature set. Unfortunately, this description is ambiguous in cases where this feature set has been interrupted, since the two defining coordinates given do not tell us where the interruption occurs. Examples of interruptions include some features near the chip edge which do not contain DNA, and checkerboards of features complementary to a control DNA sequence located at the center and periphery of the chip. The '.SUM' file was designed as an unambiguous format which contains the start and stop coordinates of uninterrupted blocks of features. 'make\_SUM\_file' takes the Affymetrix '.txt' files and converts them to .SUM files, notifying the user of ambiguities. To resolve ambiguities, a 'dummy' .CEL file was created containing intensities each of which encodes its corresponding coordinate, e.g., the feature at coordinate (133,54) is given the intensity 133054. When this .CEL file is examined using the GeneChip software, the intensities corresponding to a given ORF determine the corresponding coordinates. The .SUM files which have been hand-edited to remove ambiguities are called 'Sc A.SUM', 'Sc\_B.SUM', 'Sc\_C.SUM', and 'Sc\_D.SUM', corresponding to chips A through D in a

complete chip set for yeast.

### 'make\_FEA\_file'

A-3

Usage: "make\_FEA\_file ?.CEL ?.SUM".

Example: "make\_FEA\_file 062697GALA.CEL Sc\_A.SUM".

Given the unambiguous locations of features corresponding to a given chip set, we can now group intensity data by ORF. 'make\_FEA\_file' does this, putting the result into a '.FEA' file. In addition, 'make\_FEA\_file' groups a set of intensities drawn from 36 non-DNA-containing features into a feature set called 'BACKGROUND', for the purpose of determining background and detection threshold levels.

#### 'make\_BKG\_file'

Usage: "make\_BKG\_file ?.FEA".

Example: "make\_BKG\_file 062697GALA.FEA".

This program finds the mean of 36 non-DNA-containing features and subtracts it from every intensity value in a .FEA file. The results are written to a .BKG file.

#### 'make\_NRM\_file'

Usage: "make\_NRM\_file ?.BKG".

Example: "make\_NRM\_file 062697GALA.BKG".

If one would like to compare absolute abundance of ORFs which were measured on different chip types within the same experiment, it is important to normalize the results between the four different .BKG files of a chip set, since the average amount of oligonucleotide on a chip can vary. This is true even if each chip has been hybridized with the same pool of labeled nucleic acid under identical conditions. A reasonable approach to normalization is to spike the pool of nucleic acid with a fixed amount of a known sequence which can be assayed on each chip in the set. The chips have been designed with this in mind, so that each chip in a set contains probes for several bacterial transcripts. 'make\_NRM\_file' gets the median value of  $\Delta$  for each of these transcripts and averages it to obtain a normalization factor. This program was not used for the work in this thesis, since we sought only to calculate transcript abundance in each 'experimental' condition relative to a 'baseline' condition, and were not interested in comparing abundances of different ORFs within the same condition. Consequently, absolute abundance values of ORFs found in the appendices should be compared with absolute abundances of other ORFs measured on different chip types only with some hesitation.

## 'make\_ALL\_file'

Usage: "make\_ALL\_file ?A.NRM ?B.NRM ?C.NRM ?D.NRM or make\_ALL\_file ?A.BKG ?B.BKG ?C.BKG ?D.BKG". Example: "make\_ALL\_file 062697GALA.NRM 062797GALB.NRM 062797GALC.NRM 062997GALD.NRM".

Since measuring abundance of all transcipts in a single condition requires four chip experiments, the data from these experiments should be gathered together and treated as a single data set (a .ALL file). 'make\_ALL\_file' also normalizes the complete data set so that it will be comparable to data sets from other .ALL files. Normalization is as discussed in Chapters 2 and 3. Each intensity value is divided by a normalization factor. The normalization factor is the average PM intensity over all four chip data sets within a .ALL file.

# 'chipbatch'

Usage: "chipbatch ?A.CEL ?B.CEL ?C.CEL ?D.CEL [-d]".

Example: "chipbatch 062697GALA.CEL 062797GALB.CEL

062797GALC.CEL 062997GALD.CEL".

This is simply a script which shepherds a set of .CEL files from the four chips through 'make\_FEA\_file', 'make\_BKG\_file', 'make\_NRM\_file' (optional) and 'make\_ALL\_file'. The -d option indicates a decision to skip the normalization between chips using the in vitro transcription controls provided by 'make\_NRM\_file'.

#### 'make\_XP\_file'

Usage: "make\_XP\_file ?.ALL ?.XP".

Example: "make\_XP\_file 062697GALA.ALL".

This program calculates absolute abundance for every ORF by the median of  $\Delta$  values method described in Chapters 2 and 3. The .XP output file contains a threshold column. A value of 1 in this column indicates that the value (or one of the two values if the feature set contains an even number of probes) used to calculate the  $\Delta$  median is below the detection threshold determined for that chip's hybridization. If there are MM probes among the features for an ORF which are not unique in the genome, this fact is indicated and the calculation is based on the median of PM values rather than the median of  $\Delta$  values.

### 'make\_DIF\_file'

Usage: "make\_DIF\_file ?.ALL ?.ALL ?.DIF". Example: "make\_DIF\_file 062697GALA.ALL 062697FY4A.ALL GAL\_GLU.DIF".

Calculates relative abundance by the median of  $\Delta$ -ratios method described in Chapters 2 and 3. Median deviation of log  $\Delta$ -ratios is calculated as described in Chapter 2. ORFs are categorized based on whether or not they exceeded detection thresholds for the two conditions being compared. This categorization is based on the  $\Delta$  values used to calculate the median log  $\Delta$ -ratio value (there are two such values for features with an odd number of probes, four for an even number). The following table is a guide to interpreting the threshold codes returned by 'make\_DIF\_file'.

| <b>D</b> <sub>expt</sub><br>value(s) <sup>3</sup><br>T <sub>expt</sub> | <b>D</b> <sub>base</sub><br>value(s) <sup>3</sup><br>T <sub>base</sub> | D <sub>expt</sub><br>value(s) <sup>3</sup><br>T <sub>base</sub> | D <sub>base</sub><br>value(s) <sup>3</sup><br>T <sub>expt</sub> | Threshold<br>Code | Comment                                                                                  |
|------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------|
| yes                                                                    | yes                                                                    | -                                                               | -                                                               | none              | Detected in both conditions                                                              |
| no                                                                     | yes                                                                    | -                                                               | yes                                                             | 1                 | Detected in condition 2 only                                                             |
| yes                                                                    | no                                                                     | yes                                                             | -                                                               | 2                 | Detected in condition 1 only                                                             |
| no                                                                     | yes                                                                    | -                                                               | no                                                              | 3                 | Detected in both conditions,<br>but in condition 2 is below<br>threshold for condition 1 |
| yes                                                                    | no                                                                     | no                                                              | -                                                               | 4                 | Detected in both conditions,<br>but in condition 1 is below<br>threshold for condition 2 |
| no                                                                     | no                                                                     | -                                                               | -                                                               | 5                 | Detected in neither condition                                                            |

For the preceding table, the .ALL file that is first in the argument list is considered to be the experimental condition, and the second .ALL in the argument list is the baseline condition.  $T_{expt}$  and  $T_{base}$  refer to the detection threshold in the experimental condition and the baseline condition, respectively. If there are MM probes among the features for an ORF which are not unique in the genome, this fact is indicated, and the calculation is based on the median of PM-ratios rather than the median of  $\Delta$ -ratios.

<u>Applications for analyzing upstream noncoding DNA sequences</u>. The following is a summary table of upstream sequence analysis applications:

ApplicationInputOutputPurposeFilesFile

| pickup         | .up,      | .dat      | selects upstream regions from yeast sequence               |
|----------------|-----------|-----------|------------------------------------------------------------|
|                | Sc_table, |           |                                                            |
|                | yeastseq  |           |                                                            |
| makeseqfile    | .ascii    | yeastseq  | concatenates a set of SGD raw sequence files w/o line      |
|                |           |           | feeds                                                      |
| AlignACE       | .dat      | .out      | finds and aligns conserved sequences                       |
| make_LGO_files | .out      | .LGO      | creates logos from gibbs output file                       |
| make_aln_files | .out      | .aln      | extracts set of aligned sites from gibbs into FASTA        |
|                |           |           | format                                                     |
| matrix_comp    | .aln      | .cmp      | assesses similarity between sets of aligned sites          |
| find_consensus | .aln      | .cns      | gets consensus sequence for aligned sites                  |
| scoresites     | .out      | .sco      | finds sites matching an aligned sequence set               |
| assignsites    | .sco      | .ass,.as2 | assigns each site upstream of coding regions to its ORF(s) |
| mergeORFs      | .DIF,.as2 | .MRG      | takes a list of ORFs ranked by expression and merges       |
|                |           |           | with site info                                             |

# 'pickup'

```
Usage: "pickup yeastseq?? Sc_table?? [-l ?.up] [-r #ofrandom]
[-m widthmin] [-w widthmax] [-c]".
Example: "pickup yeastseq8_97 Sc_table9_97 -l coolORFs.up -o
coolORFs.dat -m 300 -w 600".
```

This application returns a FASTA-format file containing upstream non-coding regions, given an input (.up) file with a list of ORF names, e.g., YJL052W. All of the work described in this thesis used yeastseq8\_97 and Sc\_table9\_97, which are the raw DNA sequence and ORF tables from *S. cerevisiae* as obtained from SGD. The program can be used without an input file to generate an upstream sequence file from randomly chosen ORFs. The upstream region is delimited at one end by the translation start of the ORF specified and at the other end by the start or stop of the nearest upstream ORF, except where a minimum or maximum upstream sequence length is specified. The -c option can be used to generate both forward and reverse strands of the upstream

sequence. If two ORFs which share an upstream region are listed in the input file, that upstream sequence is returned without duplication of sequence.

# 'makeseqfile'

Usage: "makeseqfile ?? [-s seqdir]".

Example: "makeseqfile yeastseq8\_97 -s ~/yeast/all\_raw/".

This program takes a set of raw sequence files (one per chromosome) that have been obtained from SGD and are in the specified directory, concatenates them and writes them into one file. Line feeds are removed for faster loading of raw sequence data by the program 'pickup'.

# 'AlignACE'

Usage: "AlignACE [-? -? -? ...]".

Example: "gibbs -w10 -x10 -t500 -r100 -u50 -q3 -igoodORFs.dat -ogoodORFs.out".

This is an application which finds conserved motifs among DNA (or RNA) sequence. The '.dat' input file contains the sequence data to be examined in FASTA format. Differences between this application and Gibbs Motif Sampling are described in Chapter 3.

AlignACE performs a series of motif searches. After each successful motif search, bases at the most information-rich position in the discovered motif are 'masked out' so that they cannot be found in subsequent motif searches. We call this an iterative masking approach.

Each motif search consists of a series of 'sampling runs', after which the highest scoring motif found thus far is further optimized in a 'near-optimum sampling run'.

Each run consists of a 'column sampling step', a 'pass' through the input sequence, and a recalculation of the motif (or 'MAP') score. If the MAP score is higher than any previously encountered in the current run, the current alignment is saved.

When column sampling is employed, only the number of columns (sequence positions) specified is used to optimize the alignment, even though the element may span a larger number of bases (e.g., the Gal4 binding site spans 17 bases even though only about 8 bases show conservation).

The command line options for AlignACE are summarized in the table below.

| Switch | Default           | Description                                                   |
|--------|-------------------|---------------------------------------------------------------|
|        | Value             |                                                               |
| -c     | 1                 | Number of cycles per column shift                             |
| -d     | -                 | Turn off column sampling                                      |
| -е     | stderr_outfile    | Save debugging information to a file                          |
| -f     | 0.1               | Ratio of pseudocounts to real counts                          |
| -i     | none              | Input file name                                               |
| -m     | 3× (#columns)     | Maximum width of site                                         |
| -n     | 500               | Number of iterations of near-optimum sampling                 |
| -0     | infileoptions.out | Output file name                                              |
| -р     | 0.8               | Fractional weight on prior expectation of # of sites          |
| -q     | 10                | Exit after this number of failed motif searches               |
| -r     | 10                | Maximum total number of iteratively masked motif searches     |
| -S     | 100               | Cease sampling run after this many passes without improvement |
| -t     | 100               | Maximum number of sampling runs in motif search               |
| -u     | 100               | Cease motif search after this many sampling runs without      |
|        |                   | improvement                                                   |
| -W     | 10                | Number of columns (maximum number of conserved positions      |
|        |                   | expected)                                                     |
| -X     | 10                | Expected # of elements in input sequence data                 |
| -Z     | -                 | Show stderr output                                            |

# 'make\_LGO\_files'

Usage: "make\_LGO\_files ?.out [-r ?] [-n]".

Example: "make\_LGO\_files goodORFs.out -r 10".

This application is a front end for a set of programs developed by Tom Schneider for generating sequence logos (described in Chapter 3). The input is a .out file generated by AlignACE, and the output is a set of .LGO files containing logos in postscript format. Run numbers 1 through the maximum specified by the -r switch are used to make logos (the default is all motifs in the AlignACE file). The -n switch is used to specify that the name of the file not be included next to the logo image.

# 'make\_aln\_files'

Usage: "make\_aln\_files ?.out [-r ?]".

Example: "make\_aln\_files goodORFs.out -r 10".

This application parses a AlignACE output file (.out) and writes each motif to a separate output (.aln) file. The .aln file is a FASTA format file containing the sites aligned by AlignACE. The -r switch is used to limit the number of motifs parsed.

# 'matrix\_comp'

Usage: "matrix\_comp A.aln B.aln [C.aln D.aln etc.]".

Example: "matrix\_comp \*.aln".

This application takes as input a set of .aln files (FASTA format files containing aligned sites). By a process outlined in Appendix B, each set of aligned sites is compared against every other set, and the resulting similarity score (best t statistic) is printed out for matrices which are found to be similar. Currently, the default output is printed to the screen, but this can be redirected to an output file, e.g. "matrix\_comp \*.aln > all\_against\_all.cmp".

# 'find\_consensus'

Usage: "find\_consensus A.aln [C.aln D.aln etc.] [-a]".

Example: "find\_consensus \*.aln".

This application takes as input one or more .aln files (FASTA format files containing aligned sites). By the method of Day and McMorris, a consensus sequence is determined for each set of aligned sites. Currently, the default output is printed to the screen, but this can be redirected to an output file, e.g. "find\_consensus \*.aln > all.cns".

#### 'scoresites'

Usage: "scoresites ?.out ? [-t Sc\_table??] [-s yeastseq??]

[-o ?] [-z ?] [-d]".

Example: "scoresites goodORFs.out 2 -t Sc\_table9\_97 -s yeastseq8\_97 -d -z 0".

This application takes as input a AlignACE (.out) output file, a table of ORFs, and a raw sequence file. It creates a weight matrix by the Berg and von Hippel method described in Appendix B, and scores every site in the raw sequence file. This weight matrix is also used to score each of the aligned sites from which the weight matrix was derived. Based on the mean and standard deviation of the aligned site scores, a threshold score can be set such that only scores better than this threshold will be recorded. The -z switch is used to set this threshold: A -z switch setting of '0' corresponds to a threshold equal to the mean score of the aligned sites, while a -z setting of 3 corresponds to 3 standard deviations below (worse) than the mean of the aligned sites . The -o switch can be used to specify the name of the output file (default is a .sco file of the same prefix as the input file). 'scoresites' saves the distribution of scores across the whole genome, unless the -d switch is applied.

# 'assignsites'

Usage: "assignsites ?.sco [-t Sc\_table??] [-w ?]

[-n ?] [-z ?] [-d]".

Example: "assignsites goodORFs.sco -t Sc\_table9\_97 -w 600 -n 50 -z 0".

This application takes as input a '.sco' file produced by 'scoresites' which contains high-scoring sites matching a motif found by 'AlignACE'. Each site is examined and if it lies within 600 bases (or some other distance specified with the -w switch) upstream of an ORF's translation start, the site is assigned to that ORF. A site may be assigned to more than one ORF, as will be the case if the site lies within a divergent intergenic region. The output is saved in both of two alternative formats in .ass and .as2 files.

The -n switch is used to limit the output to the specified number of top-ranked ORFs. The -z switch is used to only consider sites better than a certain threshold, and is used in the same way as 'scoresites', described above. The -d switch is used to automatically fetch brief descriptions of the top-ranked ORFs from the web sites of YPD, SwissProt, and MIPS. This should be avoided unless the list of ORFs is short, as this can be time-consuming and may be considered an unfriendly act by the managers of the databases being accessed.

# 'mergeORFs'

Usage: "mergeORFs ?.DIF ?.as2 [?.as2 ?.as2...] [-0 OUTFILE]". Example: "mergeORFs GAL\_GLU.DIF goodORFs.as2". This application merges a .as2 file with a .DIF file, so that each ORF in a .DIF file is associated with the number of upstream matching sites and the highest score of its upstream sites. Appendix B

# Method for Quantitatively Assessing Similarity Between

# Intergenic DNA Element Motifs

Since much of this appendix is concerned with weight matrices as a

representation of an aligned set of DNA sequences, I will first devote some attention to weight matrices. A weight matrix of size  $4 \times L$  can be used to described a set of sites of maximum length L. There are four rows since there are four nucleotides. Elements of the matrix are measures of the propensity of a 'real' site (one which is presumably bound by a DNA-binding protein) to have a given base at a given position. This matrix can then be used to assign an objective score to any DNA sequence, where the score reflects the similarity of that sequence to the set of aligned sequences. A number of methods have been used for deciding what values to put in each of the matrix elements. The method we used for building weight matrices throughout this work was that of Berg and von Hippel

<sup>1</sup>, wherein each element is given by 
$$\ln\left(\frac{n(b, p) + 0.5}{n_{max}(p) + 0.5}\right)$$
. Here, n(b,p) is the number

of occurrences of base b at position p in the set of aligned sites, and  $n_{max}$  is the number of occurences of the most commonly occuring base at position p. The result of this equation is that the most common base at a position is given weight 0, while less common bases are given increasingly negative weights. The addition of 0.5 in the numerator and denominator is a pseudocount, which has the effect of lessening the penalty for bases that do not occur in the aligned sites. The reduction in penalty is most dramatic in cases where the matrix has been generated from very few aligned sites. If a base occurs commonly in upstream regions, we may want to adjust the score to reflect this. Imagine a case where ten examples of the sequence AAAAAA have been aligned to generate a weight matrix. It would hardly be surprising to find a sequence matching this matrix in a 95% AT genome, but it would be very surprising to find matches to this matrix in a 5%

AT genome. The matrix weights can be adjusted based on the background nucleotide frequency in upstream regions, i.e., the prior probability of a base's occurrence, by adding

 $ln\left(\frac{f_{bkg}(b)}{f_{max}}\right)$  to each matrix element, where  $f_{bkg}(b)$  is the background frequency of the base b corresponding to the matrix element and  $f_{max}$  is the background frequency of the most common base.

Along with developing methods for discovery of regulatory sequence elements, a major goal of the work described in Chapter 3 was to validate these methods. For this purpose, yeast growth conditions and/or genotypes were chosen where we might predict the outcome. In other words, conditions were chosen where we already knew which upstream sequence motifs we might expect *a priori*. Having obtained a set of sequence motifs by the 'AlignACE' method of sequence alignment and the specificity scoring approach, we must then ask, "Did we find the motifs we expected". It would be all too easy to simply look at a motif and conclude that it 'looks like' the motif we expected, and in some cases this would be perfectly reasonable and reliable. It is in the borderline cases of similarity where a visual examination is subject to the risk of a bias based on expectations. When confronted with the need for an objective method for quantifying similarity between two sets of DNA elements, I was surprised to discover that no such method existed in the literature.

The problem of comparing two sets of aligned sites can be separated into two parts. The first part is alignment of the two motifs or site sets with each other. I viewed this problem as equivalent to aligning two weight matrices. To achieve this, I simply tried all possible alignments of the two matrices with each other. For each alignment, I

B-3

calculated the sum of the squared differences between corresponding matrix elements. The alignment which minimized the sum of the squared differences is then the best alignment. You may have noticed a difficulty with this approach. How do we handle the fact that matrices may be of a different width, since they may represent aligned sequences of differing widths? How do we handle the fact that even matrices of the same width will overhang one another in all but one possible alignment? At overhanging positions there will be'missing' elements in one of the matrices. For these 'missing' elements, I use the expectation value of elements, given the known background nucleotide frequencies. The matrix elements are then just the background frequency adjustment used above:

$$\ln\left(\frac{f_{bkg}(b)}{f_{max}}\right)$$
. A weight matrix is also calculated for the reverse complement of one set

of aligned sites, and all possible alignments are scored as above so that the best alignments of two sets of sites are chosen from either forward or reverse complement orientations.

The second step of motif comparison is quantitating similarity between the nowaligned sets of sites. The general approach is to reduce this problem to that of comparison of two distributions of numbers. There are accepted measures of similarity between two distributions in classical statistics. One such measure which is commonly

used is Student's t-statistic,  $t = \frac{\mathbf{m}_1 - \mathbf{m}_2}{\mathbf{s}\sqrt{1/N_1 + 1/N_2}}$ , where  $\mu_1$  and  $\mu_2$  are the means of the

two distributions, N1 and N2 are the number of samples in each distribution, and

 $\boldsymbol{s} = \sqrt{\frac{N_1 \cdot s_1^2 + N_2 \cdot s_2^2}{N_1 + N_2 - 2}}, \text{ where } s_1 \text{ and } s_2 \text{ are the standard deviations of the two}$ 

distributions. The smaller the absolute value of the t-statistic, the more similar the two distributions.

The question remaining is how to assign a number (score) to each site, and then how to decide on a value of t that indicates a significant similarity. Consider sets of sites A and B and their corresponding weight matrices A and B. After aligning matrix A and matrix B, we can define two submatrices A and B of equal width by taking the overlapping portions of each matrix. Using submatrix A, we can assign a score to each A sequence and each each B sequence, and calculate the t-statistic for the two score distributions. Likewise, we can calculate a t-statistic for the scores of A sites and B sites generated using submatrix B. The measure of similarity between matrix A and matrix B is then t<sub>min</sub>, the t-statistic with the smallest absolute value.

How then do we assign a threshold for  $t_{min}$ , below which the two matrices are considered similar? In Chapter 3, we descibed fifteen regulatory motifs that we might have expected from the literature. Sites corresponding to these motifs were derived from the literature, and weight matrices were generated for each. These fifteen sets of DNA elements provided 105 ( $\frac{15 \cdot 14}{2}$ ) that can serve as negative controls, since I did not expect any of these motifs to be similar to one another. I calculated a t-statistic such that a false positive rate of 5% is expected, and was surprised to see that the ECB and P-Box motifs had a  $t_{min}$  which was well below the calculated threshold of similarity. The reason for this similarity became apparent on further examination: ECB and P-Box elements are both bound by the same transcription factor Mcm1, so that I should in fact have expected the motifs to be similar. After removing one of these motifs, the P-Box, from the negative control set, I was left with 91 pairwise comparisons as negative controls with which to calculate a threshold for  $t_{min}$ . The graph below shows a the fraction of these pairwise comparisons deemed similar, based on different possible thresholds of  $t_{min}$ . By linear interpolation, a 5% false positive rate was achieved using a  $t_{min}$  of -3.26.



Fraction of Negative Control Comparisons Deemed Similar for Various Cutoffs Threshold of Best t-Value

In addition to the criteria above, we also require that the best alignment of sites has an overlap of at least five bases, since DNA regulatory sites generally have more than five conserved positions.

# References.

1. **Berg, O.G. and von Hippel, P.H.,** Selection of DNA binding sites by regulatory proteins. Statistical-mechanical theory and application to operators and promoters, *Journal of Molecular Biology*, 193(4), 723-750, 1987.

Appendix C

# Absolute and Relative Abundance of Detectable Transcripts

# in Four Saccharomyces cerevisiae Cultures Organized

Alphabetically by ORF Identifier.

This appendix contains a table of those absolute and relative transcript abundances that were detectable in at least one of four *Saccharomyces cerevisiae* cultures. The genotype and growth conditions of these cultures are described in Chapter 3, as are the method of data collection, background subtraction and normalization. Since I took only one approach of many towards analyzing this rich data set in Chapter 3, it is my hope that this appendix will serve as a resource to others in the future.

In addition to conclusions drawn from this data in Chapter 3, there are minor observations drawn from this data with regard to 'housekeeping' genes commonly used as standards in Northern mRNA quantitation experiments. Transcripts for TBP (YER148W; TATA-binding protein, also known as SPT15 or TFIID), ACT1 (YFL039C; actin), SRB4 (YER022W; subunit of RNA polymerase II holoenzyme), and PDA1 (YER178W; subunit of pyruvate dehydrogenase) are commonly used standards for quantitating mRNA. Neither TBP nor SRB4 were above detection threshold in all of our experiments, so that these are not useful standards for our data. The absolute abundance of ACT1 is more promising as a standard, in that it is well above detection threshold in all conditions and its measured absolute abundance varies by only about 20% at most (between mating type  $\alpha$  and heat-shock). Measured absolute abundance of PDA1 was above detection threshold in all conditions but was low in galactose (more than seven-fold lower than in heat-shock). This is surprising, given that PDA1 transcript level has been cited as being more invariant to varying growth conditions than that of ACT1  $^{1}$ . The RPS2 gene (YGL123W; also known as RPS4 or SUP44) is one of few genes whose absolute transcript abundance has been reliably quantitated. It was found to be at  $28 \pm 5$  copies per cell under growth conditions similar to those for our 'baseline' culture (glucose minimal

C-2

medium without casamino acids grown at 30 °C to mid-log phase) <sup>2</sup>. Measured in the absolute abundance units of the table below, RPS2 has an absolute abundance of 7.1 in our 'baseline' (mating type **a**, glucose, 30 °C) condition. Based on this, 0.25 absolute abundance units corresponds roughly with a single transcript per cell. This is necessarily approximate since growth conditions and strains varied..

Guide to abundance table. The first column in the abundance table ("ID") contains—excepting the ribosomal RNA genes at top—the ORF identifier as issued by the Saccharomyces Genome Database. An ORF identifier printed in italics indicates that the sequence of some of the mismatch probes for this ORF were not unique in the *cerevisiae* genome. In this case PM values were substituted for  $\Delta$  values in calculating absolute and relative abundance, so that the quantitation for these ORFs should be viewed more critically.

The second column ("Gene") contains the common gene names corresponding to each ORF identifier. The gene names were taken from the current (10 April 98) SGD table of gene names.

The third column ("Chip") indicates which of the four Affymetrix microarrays contain the probe pairs corresponding to this transcript. Some transcripts are measured on all four of the microarrays, so that they are labeled "A-D".

The fourth column ("#PP") is the number of probe pairs corresponding to this transcript contained on the microarrays. Most transcripts employed 20 or 21 probe pairs but a few 'housekeeping' genes, namely YFL039C (ACT1), YER 148W (SPT15), and

C-3

YER022W (SRB4) employed many more probe pairs and were measured on all four microarrays in each condition.

The fifth through the eighth columns ("a", " $\alpha$ ", "gal", and "heat") contain absolute transcript abundances. These values are calculated by taking the median of normalized  $\Delta$ values. If the central-most  $\Delta$  value—or either of the central-most  $\Delta$  values in cases where there is an even number of  $\Delta$  values—in a ranked list is below detection threshold (described in Chapters 2 and 3) then a transcript is considered to be below detection threshold. Transcripts which fell below the detection threshold of the corresponding hybridization experiment are indicated by abundance values in italics. In this case,  $\Delta$ values used to calculate the abundance value were adjusted to the detection threshold if they fell below it.

The last three columns ("log ( $\alpha$ /**a**)", "log (gal/**a**)" and "log (heat/**a**)") contain transcript abundances relative to the '**a**' culture—strain FY4 (MAT **a**), grown on glucose at 30 °C. These values are calculated by taking the median of the log-ratios of normalized  $\Delta$  values. If any of the  $\Delta$  values used to calculate the ratios of the centralmost  $\Delta$  ratio value(s) in a ranked list are below detection threshold (described in Chapters 2 and 3) then a transcript is considered to be below detection threshold in one or both of the conditions being compared. Transcripts considered below detection threshold in one or both conditions being compared are indicated by median log  $\Delta$ -ratio values in italics. If a transcript is below detection threshold in both conditions being compared, the median log  $\Delta$ -ratio is set to zero. For each of the relative abundance values, a measure of significance is calculated by dividing the median log  $\Delta$ -ratio by the median deviation of log  $\Delta$ -ratios. If this measure of significance is one or greater, and the median log  $\Delta$ -ratio is 0.2 or greater, the median log  $\Delta$ -ratio value is in bold type.

The following table contains abundance values for 3399 *Saccharomyces cerevisiae* ORFs. Appendix D contains a list of those ORFs which both fell below detection threshold in all four cultures measured and were not measurably changed between pairs of conditions, along with a list of ORFs not represented on the microarray set. Appendix D also contains a table of detection thresholds for each microarray assayed.

# Absolute and Relative Abundance of Transcripts in Four Assayed Cultures

| ID       | Gene    | Chip   | #PP      | а    | α            | gal          | heat  | log<br>(α/a) | log<br>(gal/ <b>a</b> ) | log<br>(heat/ <b>a</b> ) |
|----------|---------|--------|----------|------|--------------|--------------|-------|--------------|-------------------------|--------------------------|
| 18srRnaa |         | A-D    | 84       | 0.17 | 0.12         | 0.16         | 0.15  | 0            | -0.12                   | 0                        |
| 18srRnab |         | A-D    | 80       | 0.11 | 0.09         | 0.09         | 0.1   | 0            | 0                       | 0                        |
| 25srRnaa |         | A-D    | 84       | 1.54 | 1.02         | 0.32         | 0.84  | -0.17        | -0.51                   | -0.22                    |
| 25srRnab |         | A-D    | 80       | 0.11 | 0.08         | 0.07         | 0.09  | -0.1         | 0                       | 0                        |
| 25srRnac |         | A-D    | 84       | 0.11 | 0.08         | 0.07         | 0.09  | -0.2         | 0                       | 0                        |
| 25srRnae |         | A-D    | 84       | 0.35 | 0.26         | 0.25         | 0.24  | 0.08         | 0                       | 0                        |
| YAL003W  | EFB1    | Α      | 41       | 1.58 | 1.47         | 1.28         | 1.01  | -0.1         | -0.12                   | -0.18                    |
| YAL005C  | SSA1    | A      | 20       | 1.37 | 0.99         | 1.38         | 2.42  | -0.29        | -0.04                   | 0.21                     |
| YAL007C  | 22111   | A      | 20       | 0.26 | 0.16         | 0.22         | 0.13  | -0.13        | -0.04                   | -0.11                    |
| YAL008W  | FUN14   | A      | 20       | 0.18 | 0.15         | 0.14         | 0.16  | -0.14        | -0.2                    | -0                       |
| YAL009W  | SPO7    | A      | 21       | 0.09 | 0.04         | 0.07         | 0.09  | 0            | 0                       | 0                        |
| YAL012W  | CYS3    | A      | 20       | 1.53 | 1.72         | 1.19         | 1.42  | 0.03         | -0.12                   | 0                        |
| YAL014C  |         | A      | 21       | 0.15 | 0.12         | 0.1          | 0.09  | -0.22        | 0                       | 0.01                     |
| YAL016W  | TPD3    | A      | 20       | 0.32 | 0.23         | 0.26         | 0.31  | -0.1         | -0.04                   | 0.01                     |
| YAL017W  | FUN31   | A      | 20       | 0.09 | 0.05         | 0.07         | 0.09  | 0            | 0                       | 0                        |
| YAL019W  | FUN30   | A      | 20       | 0.09 | 0.04         | 0.07         | 0.09  | Ő            | Ő                       | Ő                        |
| YAL021C  | CCR4    | A      | 20       | 0.09 | 0.08         | 0.07         | 0.09  | 0            | 0                       | 0                        |
| YAL022C  | FUN26   | Δ      | 20       | 0.02 | 0.00         | 0.08         | 0.09  | -0.15        | 0                       | 0                        |
| YAL022C  | PMT2    | A      | 20       | 0.38 | 0.00         | 0.00         | 0.02  | -0.23        | 0                       | -0.08                    |
| YAL023C  | 1 10112 | A      | 21       | 0.00 | 0.05         | 0.27<br>0.07 | 0.24  | -0.23        | 0                       | 0.00                     |
| YAL030W  | SNC1    | Δ      | 42       | 0.02 | 0.05         | 0.31         | 0.027 | -0.13        | -0.07                   | -0.1                     |
| YAL033W  | FUN53   | Δ      | 20       | 0.42 | 0.12         | 0.51         | 0.27  | -0.17        | 0.07                    | 0.1                      |
| YAL035W  | FUN12   | Δ      | 20       | 0.15 | 0.12         | 0.21         | 0.02  | -0.15        | 0                       | 0                        |
| YAL036C  | FUN11   | Δ      | 21       | 0.20 | 0.10         | 0.21         | 0.14  | -0.1         | 0.02                    | 0                        |
| YAL038W  | CDC19   | Δ      | 20       | 7 32 | 4 36         | 4 35         | 5.25  | -0.11        | -0.26                   | -0.1                     |
| YAL039C  | CYC3    | Δ      | 20       | 0.22 | 4.30<br>0.11 | 0.16         | 0.15  | -0.11        | -0.20                   | -0.1                     |
| VAL 040C | CLN3    | Δ      | 20       | 0.22 | 0.11         | 0.10         | 0.15  | -0.16        | 0                       | -0.07                    |
| YAL040C  | FUN9    | Δ      | 20       | 0.12 | 0.07         | 0.14         | 0.02  | -0.10        | 0                       | -0                       |
| YAL043C  | PTA1    | Δ      | 20       | 0.2  | 0.15         | 0.17         | 0.17  | 0.01         | 0                       | Ő                        |
| VAL 044C | GCV3    | Δ      | 20       | 0.83 | 0.03         | 0.07         | 1 13  | -0.11        | -0.12                   | 0 09                     |
| VAL 045C | 0015    | Δ      | 20       | 0.03 | 0.02         | 0.71         | 0.09  | 0.11         | 0.12                    | 0.07                     |
| VAL 046C |         | Δ      | 20       | 0.02 | 0.07         | 0.07         | 0.02  | 0            | 0                       | 0                        |
| VAL 0/9C |         | Δ      | 20       | 0.10 | 0.07         | 0.15         | 0.14  | -0.05        | 0.05                    | 0 24                     |
| YAL051W  | YAF1    | Δ      | 20       | 0.00 | 0.04         | 0.42         | 0.07  | 0.05         | 0.05                    | 0.24                     |
| VAL 053W | 1711 1  | Δ      | 20       | 0.07 | 0.07         | 0.07         | 0.02  | 0            | 0.06                    | 0                        |
| YAL054C  | ACS1    | Δ      | 20       | 0.14 | 0.04         | 0.08         | 0.12  | 0            | 0.00                    | 0                        |
| VAL 055W | ACSI    | Δ      | 21       | 0.09 | 0.04         | 0.00         | 0.09  | 0            | 0                       | 0                        |
| VAL 056W |         | Δ      | 20       | 0.07 | 0.04         | 0.07         | 0.09  | 0            | 0                       | 0                        |
| VAL 060W |         | Δ      | 20       | 0.09 | 0.03         | 0.07         | 0.09  | 0            | -0.03                   | 0                        |
| VAL 061W |         | Δ      | 21       | 0.30 | 0.17         | 0.00         | 1.07  | -0.45        | -0.05                   | 0 32                     |
| VAL062W  | CDH3    | Λ<br>Λ | 20       | 0.40 | 0.10         | 0.20         | 0.00  | -0.43        | -0.1                    | 0.52                     |
| VAL063C  | ODII5   |        | 20       | 0.09 | 0.08         | 0.09         | 0.09  | 0.06         | 0                       | 0                        |
| VAL068C  |         | л<br>л | 20       | 0.09 | 0.1          | 0.07         | 0.09  | 0.00         | 0                       | 01                       |
| VAP002AC |         | A      | 20       | 0.24 | 0.21         | 0.20         | 0.17  | -0.21        | 0.02                    | -0.1                     |
| VAP002W  |         | A      | 20       | 0.50 | 0.37         | 0.72         | 0.45  | -0.09        | -0.02                   | -0.1                     |
|          |         | A<br>A | 20       | 0.09 | 0.09         | 0.07         | 0.11  | 0            | 0                       | 0.09                     |
| VADOOC   | KFA1    | A      | 20<br>16 | 0.09 | 0.03         | 0.07         | 0.09  | 0 12         | 0.02                    | 0 22                     |
| VAR010C  |         | A<br>A | 40<br>20 | 0.50 | 0.51         | 0.5          | 0.97  | -0.15        | -0.05                   | 0.34                     |
| VAD015W  |         | A<br>A | 20       | 0.12 | 0.00         | 0.10         | 0.25  | 0            | -0.01                   | 0.21                     |
| VARODOC  | ADEI    | A<br>A | 20       | 0.12 | 0.05         | 0.19         | 0.15  | 0            | 0.01                    | 0.05                     |
| I AROZOC |         | A      | 20       | 0.20 | 0.11         | 0.2          | 0.10  | 0            | U                       | -0.05                    |
| YAR023C |        | А | 21 | 0.09  | 0.04  | 0.08  | 0.09 | 0     | 0     | 0     |
|---------|--------|---|----|-------|-------|-------|------|-------|-------|-------|
| YAR027W |        | А | 21 | 0.29  | 0.22  | 0.17  | 0.16 | -0.21 | 0     | 0.01  |
| YAR028W |        | А | 20 | 0.09  | 0.08  | 0.08  | 0.11 | 0     | 0     | 0     |
| YAR033W |        | А | 24 | 0.09  | 0.06  | 0.07  | 0.09 | 0     | 0     | 0     |
| YAR035W | YAT1   | А | 21 | 0.13  | 0.11  | 0.1   | 0.09 | -0.17 | 0     | -0.1  |
| YAR042W | SWH1   | А | 21 | 0.1   | 0.15  | 0.07  | 0.09 | 0     | -0.1  | -0    |
| YAR066W |        | А | 20 | 0.09  | 0.06  | 0.12  | 0.09 | 0     | 0     | 0     |
| YAR071W | PHO11  | А | 20 | 0.09  | 0.05  | 0.07  | 0.09 | 0     | 0     | 0     |
| YAR073W |        | Α | 22 | 0.11  | 0.04  | 0.08  | 0.09 | 0     | 0     | -0    |
| YAR075W |        | Α | 20 | 0.22  | 0.22  | 0.2   | 0.16 | 0     | 0     | -0.13 |
| YBL001C | ECM15  | А | 20 | 0.51  | 0.24  | 0.54  | 0.7  | -0.13 | 0     | 0.26  |
| YBL002W | HTB2   | Α | 20 | 2.74  | 2.63  | 1.92  | 0.73 | 0.08  | -0.08 | -0.48 |
| YBL003C | HTA2   | А | 16 | 1.31  | 1.11  | 1.39  | 0.47 | -0.05 | -0.01 | -0.48 |
| YBL005W | PDR3   | А | 21 | 0.09  | 0.05  | 0.07  | 0.09 | -0.25 | 0     | 0     |
| YBL006C |        | А | 21 | 0.19  | 0.12  | 0.16  | 0.15 | -0.23 | 0     | -0.02 |
| YBL007C | SLA1   | А | 21 | 0.16  | 0.13  | 0.17  | 0.14 | -0.24 | 0     | 0     |
| YBL011W | SCT1   | А | 20 | 0.13  | 0.06  | 0.1   | 0.1  | 0     | 0     | 0     |
| YBL015W | ACH1   | А | 21 | 0.46  | 0.11  | 0.66  | 0.14 | -0.44 | 0.17  | -0.33 |
| YBL016W | FUS3   | А | 20 | 0.11  | 0.06  | 0.07  | 0.09 | -0.18 | 0     | 0     |
| YBL017C | PEP1   | А | 21 | 0.09  | 0.06  | 0.15  | 0.12 | -0.19 | 0     | 0     |
| YBL021C | HAP3   | А | 20 | 0.09  | 0.04  | 0.08  | 0.09 | 0     | 0     | 0     |
| YBL022C | PIM1   | А | 20 | 0.11  | 0.08  | 0.1   | 0.11 | 0     | 0     | 0     |
| YBL024W |        | А | 21 | 0.09  | 0.1   | 0.07  | 0.09 | -0.14 | 0     | 0     |
| YBL025W | RRN10  | А | 21 | 0.09  | 0.1   | 0.07  | 0.1  | 0.04  | 0     | 0     |
| YBL026W | SNP3   | А | 36 | 0.09  | 0.04  | 0.08  | 0.09 | 0     | 0     | 0     |
| YBL027W | RPL19B | А | 54 | 0.64  | 0.57  | 0.37  | 0.23 | -0.06 | 0     | -0.3  |
| YBL030C | PET9   | А | 20 | 2.41  | 1.44  | 2.61  | 1.98 | -0.19 | 0     | -0.2  |
| YBL032W |        | А | 20 | 0.17  | 0.11  | 0.13  | 0.09 | 0     | 0     | -0.12 |
| YBL033C | RIB1   | А | 21 | 0.13  | 0.05  | 0.28  | 0.15 | 0     | 0.26  | 0     |
| YBL034C | STU1   | А | 21 | 0.09  | 0.04  | 0.07  | 0.09 | 0     | 0     | 0     |
| YBL038W | MRPL16 | А | 21 | 0.09  | 0.1   | 0.13  | 0.09 | -0.23 | -0.08 | 0     |
| YBL039C | URA7   | А | 20 | 0.11  | 0.14  | 0.11  | 0.1  | -0.1  | 0     | 0     |
| YBL040C | ERD2   | А | 20 | 0.24  | 0.12  | 0.18  | 0.11 | -0.27 | 0     | -0.2  |
| YBL041W | PRE7   | А | 20 | 0.26  | 0.11  | 0.16  | 0.24 | -0.28 | 0     | 0     |
| YBL042C | FUI1   | А | 20 | 0.1   | 0.04  | 0.12  | 0.11 | 0     | 0.01  | 0     |
| YBL043W | ECM13  | А | 21 | 0.09  | 0.05  | 0.07  | 0.09 | 0     | 0     | 0     |
| YBL045C | COR1   | А | 21 | 0.4   | 0.17  | 0.78  | 0.33 | -0.37 | 0.18  | -0.11 |
| YBL047C |        | А | 20 | 0.09  | 0.05  | 0.09  | 0.09 | 0     | 0     | 0     |
| YBL048W |        | А | 21 | 0.09  | 0.04  | 0.07  | 0.18 | 0     | 0     | 0.29  |
| YBL049W |        | А | 20 | 0.09  | 0.06  | 0.07  | 0.1  | 0     | 0     | 0     |
| YBL050W | SEC17  | А | 20 | 0.1   | 0.18  | 0.17  | 0.16 | -0.05 | -0.08 | 0     |
| YBL051C |        | А | 20 | 0.09  | 0.07  | 0.07  | 0.09 | 0     | 0     | 0     |
| YBL053W |        | А | 21 | 0.09  | 0.15  | 0.07  | 0.09 | 0.01  | 0     | 0     |
| YBL055C |        | А | 20 | 0.09  | 0.04  | 0.1   | 0.09 | 0     | 0     | 0     |
| YBL056W | PTC3   | А | 20 | 0.09  | 0.05  | 0.09  | 0.09 | 0     | 0     | 0     |
| YBL057C |        | А | 20 | 0.09  | 0.06  | 0.07  | 0.09 | 0     | 0     | 0     |
| YBL058W | SHP1   | А | 21 | 0.21  | 0.05  | 0.15  | 0.21 | 0     | 0     | 0     |
| YBL063W | KIP1   | А | 20 | 0.09  | 0.04  | 0.07  | 0.09 | 0     | 0     | 0     |
| YBL064C |        | A | 20 | 0.34  | 0.18  | 0.73  | 0.54 | -0.2  | 0.14  | 0.09  |
| YBL068W | PRS4   | A | 21 | 0.25  | 0.24  | 0.22  | 0.22 | 0     | 0     | -0.01 |
| YBL069W | AST1   | Ā | 21 | 0.09  | 0.04  | 0.07  | 0.1  | 0     | 0     | 0     |
| YBL071C | ~      | Ā | 21 | 0.09  | 0.05  | 0.07  | 0.09 | 0     | 0     | 0     |
| YBL072C | RPS8A  | A | 16 | 23.04 | 18.06 | 17.16 | 7.03 | -0.13 | -0.13 | -0.49 |
| YBL076C | ILS1   | A | 20 | 0.41  | 0.48  | 0.37  | 0.4  | 0.06  | -0.06 | 0     |
| YBL077W |        | А | 20 | 0.09  | 0.06  | 0.07  | 0.09 | 0     | 0     | 0     |
|         |        |   |    |       |       |       |      |       |       |       |

| YBL078C             |          | А      | 20              | 0.09  | 0.05  | 0.11  | 0.13  | 0     | 0     | 0.05  |
|---------------------|----------|--------|-----------------|-------|-------|-------|-------|-------|-------|-------|
| YBL081W             |          | A      | 21              | 0.09  | 0.08  | 0.08  | 0.09  | -0.2  | 0     | 0     |
| YBL082C             | RHK1     | A      | 20              | 0.09  | 0.05  | 0.08  | 0.09  | 0     | 0     | 0     |
| YBL083C             |          | A      | 26              | 0.2   | 0.13  | 0.23  | 0.1   | -0.19 | -0.04 | -0.1  |
| YBL084C             | CDC27    | A      | 20              | 0.09  | 0.05  | 0.08  | 0.09  | 0     | 0     | 0     |
| YBL085W             | BOI1     | A      | 21              | 0.09  | 0.06  | 0.07  | 0.09  | -0.16 | 0     | 0     |
| YBL087C             | RPL23A   | A      | 53              | 2.07  | 1 37  | 1.01  | 2.2   | -0.2  | -0.4  | -011  |
| YBL089W             | 10 22011 | A      | 21              | 0.09  | 0.06  | 0.07  | 0.12  | -0.26 | 0     | 0     |
| YBL091C             | MAP2     | A      | 20              | 0.41  | 0.37  | 0.42  | 0.36  | 0     | -0.04 | 0     |
| YBL092W             | RPL32    | A      | $\frac{20}{20}$ | 3 47  | 2.96  | 2.1   | 17    | -0.06 | -0.22 | -0.32 |
| YBL 099W            | ATP1     | Δ      | 20              | 1 71  | 0.68  | 1.2   | 1.02  | 0.00  | 0.01  | -0.12 |
| YBL 101C            | FCM21    | Δ      | 21              | 0.12  | 0.00  | 0.07  | 0.14  | -03   | 0.01  | 0.12  |
| YBI 101W-A          | LCM21    | Δ      | $\frac{21}{20}$ | 0.12  | 0.05  | 0.07  | 0.14  | -0.5  | 0     | 0     |
| VBI 102W            | SET2     | Δ      | 20              | 0.51  | 0.05  | 0.00  | 0.1   | -0.16 | 0     | 0.02  |
| VBI 103C            | BTG3     | A<br>A | 21              | 0.01  | 0.55  | 0.42  | 0.5   | -0.10 | 0     | 0.02  |
| VBL 106C            | SNI2     | л<br>л | 21              | 0.09  | 0.04  | 0.07  | 0.09  | 0     | 0     | 0     |
| VPL 112C            | 51112    | ~      | 20              | 0.09  | 0.04  | 0.07  | 0.09  | 0     | 0     | 0     |
| VPL 112C            |          | A      | 20              | 0.09  | 0.08  | 0.07  | 0.1   | 0.14  | 0     | 0.02  |
| I DLIISC<br>VDD001C | NTU 2    | A      | 24              | 0.75  | 0.49  | 0.35  | 0.09  | -0.14 | 0     | 0.05  |
| I DRUUIC            | IN I HZ  | A      | 20              | 0.09  | 0.04  | 0.00  | 0.11  | 0 11  | 0     | 0     |
| YBR004C             |          | A      | 21              | 0.15  | 0.14  | 0.16  | 0.19  | -0.11 | -0.08 | 0     |
| YBR005W             |          | A      | 20              | 0.36  | 0.2   | 0.23  | 0.13  | 0     | 0     | 0     |
| YBR006W             |          | A      | 20              | 0.12  | 0.04  | 0.1   | 0.28  | 0     | 0     | 0.16  |
| YBR008C             | FLRI     | A      | 21              | 0.33  | 0.24  | 0.16  | 0.28  | -0.18 | -0.23 | -0.1  |
| YBR009C             | HHFI     | A      | 20              | 1.7   | 1.06  | 1.47  | 0.55  | -0.11 | -0.09 | -0.4  |
| YBR010W             | HHTI     | A      | 20              | 5.04  | 3.84  | 5.29  | 1.29  | -0.11 | -0.02 | -0.53 |
| YBR011C             | IPP1     | A      | 20              | 1.17  | 0.63  | 0.41  | 1.46  | -0.46 | -0.58 | 0.01  |
| YBR012W-A           |          | A      | 20              | 0.21  | 0.17  | 0.25  | 0.57  | -0.14 | 0.01  | 0.36  |
| YBR012W-B           |          | A      | 40              | 0.09  | 0.09  | 0.19  | 0.22  | 0     | 0.01  | 0     |
| YBR013C             |          | А      | 21              | 0.09  | 0.04  | 0.09  | 0.09  | 0     | -0.09 | 0     |
| YBR014C             |          | А      | 21              | 0.09  | 0.13  | 0.14  | 0.15  | 0.01  | 0.02  | 0     |
| YBR015C             | TTP1     | А      | 21              | 0.11  | 0.07  | 0.07  | 0.13  | -0.26 | 0     | 0     |
| YBR016W             |          | А      | 21              | 0.96  | 0.6   | 0.77  | 0.68  | -0.22 | -0.16 | -0.15 |
| YBR018C             | GAL7     | А      | 21              | 0.09  | 0.04  | 3.59  | 0.09  | 0     | 1.62  | 0     |
| YBR019C             | GAL10    | А      | 20              | 0.09  | 0.04  | 3.24  | 0.09  | 0     | 1.57  | 0     |
| YBR020W             | GAL1     | А      | 21              | 0.09  | 0.04  | 7.12  | 0.09  | 0     | 1.81  | 0     |
| YBR022W             |          | А      | 20              | 0.1   | 0.04  | 0.07  | 0.09  | 0     | 0     | 0     |
| YBR023C             | CHS3     | А      | 21              | 0.11  | 0.13  | 0.07  | 0.13  | -0.01 | 0     | 0.04  |
| YBR024W             | SCO2     | А      | 21              | 0.09  | 0.05  | 0.07  | 0.09  | 0     | 0     | 0     |
| YBR025C             |          | А      | 21              | 0.75  | 0.76  | 0.72  | 1.06  | 0.01  | -0.08 | 0.07  |
| YBR026C             | MRF1'    | А      | 20              | 0.09  | 0.1   | 0.09  | 0.21  | 0     | 0     | 0.22  |
| YBR028C             |          | А      | 20              | 0.09  | 0.04  | 0.08  | 0.09  | 0     | 0     | 0     |
| YBR029C             | CDS1     | Α      | 21              | 1.12  | 1.09  | 0.89  | 0.84  | -0.07 | -0.07 | -0.13 |
| YBR031W             | RPL4A    | А      | 20              | 17.42 | 15.97 | 11.76 | 11.71 | -0.04 | -0.14 | -0.14 |
| YBR034C             | HMT1     | А      | 20              | 0.1   | 0.1   | 0.11  | 0.1   | 0     | 0.05  | 0     |
| YBR035C             | PDX3     | Α      | 20              | 0.48  | 0.35  | 0.54  | 0.44  | -0.14 | 0.06  | 0.06  |
| YBR036C             | CSG2     | А      | 20              | 0.62  | 0.44  | 0.38  | 0.57  | -0.16 | -0.1  | -0    |
| YBR037C             | SCO1     | А      | 20              | 0.1   | 0.05  | 0.08  | 0.11  | 0     | 0     | 0     |
| YBR038W             | CHS2     | А      | 20              | 0.09  | 0.05  | 0.1   | 0.09  | 0     | 0     | 0     |
| YBR039W             | ATP3     | А      | 21              | 0.65  | 0.41  | 0.98  | 0.63  | -0.09 | 0.19  | -0.07 |
| YBR041W             | FAT1     | А      | 20              | 0.31  | 0.23  | 0.18  | 0.23  | -0.16 | -0.11 | 0     |
| YBR042C             |          | А      | 20              | 0.1   | 0.11  | 0.15  | 0.13  | 0     | 0     | 0     |
| YBR043C             |          | Ā      | 20              | 0.1   | 0.04  | 0.07  | 0.09  | 0     | 0     | 0     |
| YBR046C             | ZTA1     | A      | 20              | 0.31  | 0.2   | 0.14  | 0.46  | -0.13 | -0.1  | 0.16  |
| YBR048W             | RPS11B   | A      | 84              | 0.32  | 0.37  | 0.37  | 0.31  | 0.02  | 0     | -0.02 |
| YBR049C             | REB1     | A      | 20              | 0.09  | 0.07  | 0.07  | 0.09  | 0     | 0     | 0     |
| · · · · -           |          |        |                 |       |       |       |       | -     | -     | -     |

| YBR050C            | REG2         | А      | 21              | 0.09  | 0.04 | 0.08 | 0.09 | 0                | 0     | 0     |
|--------------------|--------------|--------|-----------------|-------|------|------|------|------------------|-------|-------|
| YBR052C            | 11202        | A      | 20              | 0.69  | 0.34 | 0.68 | 0.93 | -0.2             | -0.07 | 0 11  |
| YBR053C            |              | A      | 20              | 0.32  | 0.29 | 0.31 | 0.55 | -0.15            | -0.06 | 0.15  |
| YBR054W            | YRO2         | A      | 21              | 1.05  | 0.91 | 0.85 | 2 94 | -0.16            | -0.17 | 0.39  |
| YBR056W            | 11(02        | A      | $\frac{21}{20}$ | 0.12  | 0.05 | 0.05 | 0.16 | 0.10             | 0.17  | 0     |
| VBR058C            | UBP1/        | Δ      | 20              | 0.02  | 0.05 | 0.07 | 0.10 | -0 <sup>23</sup> | 0     | 0     |
| YBR061C            | 00114        | Δ      | 20              | 0.09  | 0.00 | 0.07 | 0.09 | -0.25            | 0 11  | 0     |
| YBR062C            |              | Δ      | 20              | 0.02  | 0.00 | 0.13 | 0.02 | -0.04            | 0.11  | 0 18  |
| VBR063C            |              | Δ      | 20              | 0.23  | 0.2  | 0.22 | 0.50 | 0.04             | 0     | 0.10  |
| VBR066C            |              | Δ      | $\frac{21}{20}$ | 0.09  | 0.00 | 0.07 | 0.1  | 0                | 0     | 0     |
| VBR067C            | TID1         | л<br>л | 20              | 2.07  | 2.16 | 2.05 | 1 78 | 0.03             | 0.03  | 0.20  |
| VBR068C            | BAP2         |        | $\frac{21}{20}$ | 0.52  | 0.38 | 0.32 | 4.78 | -0.03            | -0.03 | 0.03  |
| VBR069C            | VAP1         | Δ      | 20              | 0.32  | 0.30 | 0.32 | 0.27 | -0.12            | -0.14 | 0.05  |
| VBR070C            | VAL I        | л<br>л | 20              | 0.24  | 0.23 | 0.27 | 0.22 | 0.05             | 0.00  | 0     |
| VBR071W            |              |        | 20              | 0.19  | 0.15 | 0.17 | 0.15 | 0                | -0.09 | 0     |
| VRD072W            | USD26        | A      | 20              | 0.13  | 0.05 | 0.09 | 4.62 | 0.1              | 0 20  | 0.75  |
| VPP072W            |              |        | 20              | 0.00  | 0.24 | 0.10 | 4.02 | -0.4             | -0.59 | 0.75  |
| VBD077C            | KDI134       | A      | 20              | 0.09  | 0.07 | 0.07 | 0.09 | 0.25             | 0     | 0     |
| IDKU//C<br>VDD079W | ECM22        | A      | 21<br>41        | 0.1   | 0.00 | 0.11 | 0.09 | -0.25            | 0.12  | 0.01  |
| IDRU/OW<br>VDD070C | DDC1         | A      | 41              | 0.0   | 0.04 | 0.55 | 0.09 | -0.05            | -0.15 | 0.01  |
| IDKU/9C            | KPG1         | A      | 20              | 0.17  | 0.23 | 0.13 | 0.27 | 0.04             | 0     | 0     |
| I DKUOUC           | SEC18        | A      | 21              | 0.14  | 0.15 | 0.14 | 0.10 |                  | 0 07  | 0.24  |
| I DKU62C           | UDC4<br>TEC1 | A      | 20              | 1.38  | 1.2  | 1.09 | 2.78 | -0.00            | 0.07  | 0.12  |
| IDKU05W            | DDI 10A      | A      | 20              | 0.12  | 0.07 | 0.09 | 0.54 | 0 02             | 0     | 0.15  |
| IDKU04C-A          | KPL19A       | A      | 40              | 0.45  | 0.55 | 0.24 | 0.5  | 0.02             | 0     | 0     |
| I BKU84W           | MIST         | A      | 20              | 0.1   | 0.1  | 0.07 | 0.12 | 0                | 0     | 0     |
| YBR085W            | AAC3         | A      | 20              | 0.09  | 0.12 | 0.07 | 0.09 | -0.08            | 0     | 0     |
| YBR086C            | DEGS         | A      | 20              | 0.98  | 1.04 | 0.68 | 1.01 | -0.04            | -0.2  | 0     |
| YBR08/W            | RFC5         | A      | 20              | 0.11  | 0.11 | 0.08 | 0.09 | 0                | 0     | 0     |
| YBR088C            | POL30        | A      | 20              | 0.38  | 0.43 | 0.44 | 0.13 | 0.04             | 0.03  | -0.1  |
| YBR090C            | NUDCD        | A      | 54              | 0.12  | 0.08 | 0.13 | 0.22 | -0.26            | -0.06 | 0.03  |
| YBR090C-A          | NHP6B        | A      | 21              | 0.39  | 0.3  | 0.25 | 0.59 | -0.07            | -0.07 | 0.19  |
| YBR091C            | MRS5         | A      | 20              | 0.09  | 0.11 | 0.14 | 0.1  | 0                | 0.08  | 0     |
| YBR092C            | PHO3         | A      | 20              | 0.35  | 0.41 | 0.15 | 0.4  | 0.07             | -0.28 | 0     |
| YBR093C            | PHO5         | A      | 21              | 0.15  | 0.14 | 0.07 | 0.19 | -0.11            | 0     | 0     |
| YBR096W            |              | A      | 20              | 0.39  | 0.33 | 0.23 | 0.55 | -0.02            | 0     | 0.15  |
| YBRIOIC            |              | A      | 20              | 0.29  | 0.23 | 0.11 | 0.17 | -0.1             | -0.32 | -0.18 |
| YBR105C            | DUODO        | A      | 20              | 0.15  | 0.06 | 0.12 | 0.22 | 0                | 0     | 0.17  |
| YBR106W            | PHO88        | A      | 21              | 2.11  | 0.76 | 0.34 | 1.85 | -0.46            | -0.7  | -0.03 |
| YBR10/C            |              | A      | 21              | 0.09  | 0.06 | 0.07 | 0.09 | -0.32            | 0     | 0     |
| YBR108W            |              | A      | 21              | 0.09  | 0.04 | 0.07 | 0.09 | 0                | 0     | 0     |
| YBR109C            | CMDI         | A      | 21              | 1.34  | 0.96 | 1.1  | 1.52 | -0.05            | -0.01 | 0.06  |
| YBR111C            | YSA1         | A      | 21              | 0.73  | 0.63 | 0.71 | 0.93 | -0.11            | -0.01 | 0.14  |
| YBR115C            | LYS2         | A      | 21              | 1.82  | 0.72 | 0.9  | 0.66 | -0.29            | -0.26 | -0.28 |
| YBR116C            |              | A      | 21              | 0.09  | 0.05 | 0.09 | 0.17 | 0                | 0     | 0.17  |
| YBR117C            | TKL2         | Α      | 20              | 0.09  | 0.04 | 0.07 | 0.3  | 0                | 0     | 0.44  |
| YBR118W            | TEF2         | А      | 20              | 16.27 | 7.88 | 7.86 | 9.63 | -0.14            | -0.24 | -0.1  |
| YBR121C            | GRS1         | Α      | 20              | 0.46  | 0.41 | 0.31 | 0.41 | 0.03             | -0.05 | 0     |
| YBR122C            | MRPL36       | А      | 20              | 0.11  | 0.1  | 0.11 | 0.11 | -0.09            | 0     | 0     |
| YBR123C            | TFC1         | А      | 20              | 0.09  | 0.04 | 0.1  | 0.09 | 0                | 0     | 0     |
| YBR125C            |              | А      | 20              | 0.09  | 0.07 | 0.09 | 0.09 | 0                | 0     | 0     |
| YBR126C            | TPS1         | А      | 20              | 0.91  | 0.58 | 0.68 | 1.53 | -0.23            | -0.14 | 0.12  |
| YBR127C            | VMA2         | А      | 21              | 0.79  | 0.87 | 0.64 | 0.86 | -0.01            | -0.09 | 0.06  |
| YBR129C            | OPY1         | А      | 20              | 0.09  | 0.04 | 0.08 | 0.09 | 0                | 0     | 0     |
| YBR132C            | AGP2         | А      | 20              | 0.12  | 0.07 | 0.07 | 0.09 | 0                | 0     | 0     |
| YBR133C            | HSL7         | А      | 21              | 0.09  | 0.1  | 0.07 | 0.09 | 0                | 0     | 0     |

| YBR135W             | CKS1         | А | 20              | 0.18  | 0.16  | 0.14  | 0.12  | 0     | 0.01  | 0     |
|---------------------|--------------|---|-----------------|-------|-------|-------|-------|-------|-------|-------|
| YBR137W             |              | А | 20              | 0.13  | 0.1   | 0.2   | 0.14  | 0     | 0.13  | 0     |
| YBR139W             |              | А | 21              | 0.36  | 0.19  | 0.13  | 0.46  | -0.25 | -0.15 | 0     |
| YBR140C             | IRA1         | А | 20              | 0.11  | 0.07  | 0.07  | 0.11  | 0     | 0     | 0     |
| YBR143C             | SUP45        | А | 21              | 0.22  | 0.2   | 0.16  | 0.18  | 0.01  | -0.04 | 0     |
| YBR145W             | ADH5         | А | 20              | 0.58  | 0.22  | 0.59  | 0.26  | -0.29 | 0.04  | -0.22 |
| YBR146W             | MRPS9        | A | 21              | 0.15  | 0.16  | 0.14  | 0.18  | -0.21 | 0     | 0     |
| YBR147W             |              | A | 20              | 0.39  | 0.11  | 0.37  | 0.18  | -0.52 | -0.03 | -0.17 |
| YBR149W             |              | A | 20              | 0.69  | 0.45  | 0.87  | 1.05  | -0.17 | 0.06  | 0.25  |
| YBR151W             |              | A | 20              | 0.19  | 0.09  | 0.07  | 0.19  | 0     | -0.15 | 0.01  |
| YBR154C             | RPB5         | A | 21              | 0.11  | 01    | 0.11  | 0.19  | 0     | -0.03 | 0.14  |
| YBR157C             | IC DU        | A | 20              | 01    | 0.06  | 0.08  | 0.09  | Ő     | 0     | 0     |
| YBR158W             |              | A | $\frac{20}{20}$ | 0.58  | 0.57  | 0.69  | 0.81  | -0.01 | 0.04  | 0 14  |
| YBR159W             |              | A | 20              | 0.88  | 0.72  | 1.01  | 0.77  | -0.14 | 0.01  | -0.02 |
| YBR160W             | CDC28        | Δ | 20              | 0.00  | 0.72  | 0.21  | 0.77  | 0.11  | 0     | 0.02  |
| YBR162C             | CDC20        | Δ | 20              | 0.21  | 0.23  | 0.21  | 0.20  | 0.05  | -0.07 | -0.05 |
| $VBR162W_{-}\Delta$ | VSV6         | Δ | 21              | 0.0   | 0.01  | 0.54  | 0.40  | -0.18 | 0.07  | 0.05  |
| VBR163W             | 1510         | Δ | $\frac{21}{20}$ | 0.09  | 0.15  | 0.15  | 0.14  | -0.10 | 0     | 0     |
| VBR164C             | <b>ADI 1</b> |   | 20              | 0.09  | 0.00  | 0.07  | 0.09  | 0     | 0     | 0     |
| VRD165W             |              |   | 20              | 0.09  | 0.09  | 0.07  | 0.11  | 0.02  | 0.01  | 0     |
| VDD166C             | TVP1         | A | 20              | 0.11  | 0.12  | 0.11  | 0.09  | -0.02 | 0.01  | 0     |
| VDD160C             |              | A | 20              | 0.09  | 0.04  | 0.07  | 0.09  | 0     | 0     | 0.17  |
| IDK109C             | SSE2         | A | 20              | 0.2   | 0.00  | 0.07  | 0.20  | 0.04  | -0.2  | 0.17  |
| IDKI/IW<br>VDD172C  | SEC00        | A | 20              | 0.21  | 0.18  | 0.13  | 0.14  | -0.04 | 0.02  | 016   |
| IDKI/SC<br>VDD175W  | UMPT         | A | 20              | 0.11  | 0.11  | 0.14  | 0.14  | -0.02 | 0.01  | 0.10  |
| IBRI/SW             |              | A | 21              | 0.11  | 0.09  | 0.12  | 0.09  | -0.12 | 0     | 0     |
| YBRI//C             | DDCCD        | A | 20              | 0.6   | 0.4   | 0.45  | 0.46  | -0.14 | 0     | -0.11 |
| IBRIOIC             | KPS0B        | A | 40              | 0.85  | 0.80  | 0.9   | 1.07  | -0.01 | -0.09 | 0     |
| YBR183W             |              | A | 20              | 0.24  | 0.22  | 0.2   | 0.38  | -0.2  | -0.13 | 0     |
| YBR185C             | MBAI         | A | 21              | 0.28  | 0.29  | 0.36  | 0.4   | -0.09 | -0.02 | 0.09  |
| YBR18/W             | NEGOO        | A | 21              | 0.93  | 0.7   | 0.54  | 0.61  | 0     | -0.23 | -0.15 |
| YBR188C             | NIC20        | A | 20              | 0.09  | 0.05  | 0.08  | 0.09  | 0     | 0     | 0     |
| YBR189W             | RPS9B        | A | 20              | 2.94  | 2.79  | 1.98  | 1.94  | -0.08 | -0.15 | -0.21 |
| YBR191W             | RPL21A       | A | 17              | 28.82 | 26.13 | 15.15 | 13.93 | 0     | -0.1  | -0.18 |
| YBR196C             | PGII         | A | 20              | 1.85  | 1.73  | 1.52  | 1.88  | -0.02 | -0.14 | 0     |
| YBR198C             | TAF90        | A | 21              | 0.09  | 0.07  | 0.07  | 0.09  | -0.18 | 0     | 0     |
| YBR199W             | KTR4         | A | 20              | 0.14  | 0.09  | 0.15  | 0.19  | -0.19 | 0     | 0     |
| YBR201W             | DERI         | A | 20              | 0.09  | 0.05  | 0.15  | 0.09  | 0     | 0.12  | 0     |
| YBR205W             | KTR3         | A | 20              | 0.11  | 0.08  | 0.07  | 0.11  | 0     | 0     | 0     |
| YBR206W             |              | A | 21              | 0.09  | 0.05  | 0.07  | 0.11  | 0     | 0     | 0     |
| YBR207W             |              | A | 21              | 0.42  | 0.32  | 0.31  | 0.37  | -0.07 | -0.04 | 0     |
| YBR210W             |              | A | 20              | 0.1   | 0.06  | 0.12  | 0.09  | 0     | 0     | 0     |
| YBR211C             | MAE1         | A | 21              | 0.09  | 0.04  | 0.07  | 0.09  | 0     | 0     | 0     |
| YBR212W             | NGR1         | A | 21              | 0.09  | 0.04  | 0.07  | 0.09  | 0     | 0     | 0     |
| YBR213W             | MET8         | А | 21              | 0.09  | 0.04  | 0.1   | 0.09  | 0     | -0.05 | 0     |
| YBR214W             |              | А | 20              | 0.34  | 0.2   | 0.23  | 0.53  | -0.27 | 0     | 0.09  |
| YBR218C             | PYC2         | А | 20              | 0.24  | 0.09  | 0.11  | 0.09  | 0     | 0     | -0.1  |
| YBR220C             |              | А | 21              | 0.22  | 0.14  | 0.17  | 0.13  | -0.1  | -0.08 | -0.1  |
| YBR221C             | PDB1         | А | 21              | 0.75  | 0.63  | 0.61  | 0.62  | -0.08 | -0.09 | -0.11 |
| YBR222C             | FAT2         | А | 20              | 0.15  | 0.16  | 0.21  | 0.27  | 0.01  | 0.07  | 0.18  |
| YBR227C             |              | А | 20              | 0.09  | 0.04  | 0.07  | 0.09  | 0     | 0     | 0     |
| YBR230C             |              | А | 21              | 0.87  | 0.35  | 0.78  | 0.76  | -0.32 | -0.06 | -0.1  |
| YBR231C             |              | А | 20              | 0.09  | 0.04  | 0.07  | 0.11  | 0     | 0     | 0     |
| YBR234C             |              | А | 20              | 0.62  | 0.56  | 0.51  | 0.63  | -0.14 | -0.1  | 0.01  |
| YBR235W             |              | А | 21              | 0.09  | 0.09  | 0.07  | 0.09  | 0     | 0     | 0     |
| YBR239C             |              | А | 21              | 0.09  | 0.06  | 0.07  | 0.09  | -0.17 | 0     | 0     |

| YBR242W         A         21         0.09         0.07         0.07         0.09         0         0         0.08           YBR244W         A         20         0.09         0.06         0.07         0.09         0         0         0         0           YBR244W         A         21         0.11         0.08         0.15         0.13         0         0.04           YBR246C         HIS7         A         20         0.09         0.04         0.12         0.00         0.01         -0.17           YBR25DW         DUT1         A         20         0.09         0.04         0.12         0.09         0.01         -0.18         0.03         -0.18           YBR25C         RIS5         A         20         0.09         0.04         0.02         0.03         -0.18         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                               | YBR241C |         | А | 21              | 0.49 | 0.18 | 0.31 | 0.58 | -0.23 | 0     | 0.14  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---|-----------------|------|------|------|------|-------|-------|-------|
| YBR243C         ALG7         A         21         0.17         0.11         0.1         0.09         0         0         -0.08           YBR244W         A         20         0.09         0.06         0.07         0.09         0         0         0           YBR24W         A         21         0.11         0.08         0.11         0.15         0.12         0         0.01         0           YBR24SU         AROA         20         2.24         1.79         2.23         0.92         0.06         0.11         0.01         0         0.03         -0.18           YBR25C         DUT1         A         21         0.05         0.58         0.62         0.35         -0.01         -0.03         -0.18           YBR25C         RB5         A         20         0.09         0.06         0.07         0.09         0.01         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td< td=""><td>YBR242W</td><td></td><td>А</td><td>21</td><td>0.09</td><td>0.07</td><td>0.07</td><td>0.09</td><td>0</td><td>0</td><td>0</td></td<>              | YBR242W |         | А | 21              | 0.09 | 0.07 | 0.07 | 0.09 | 0     | 0     | 0     |
| YBR244W         A         20         0.09         0.06         0.07         0.09         0         0           YBR246W         A         21         0.11         0.08         0.15         -0.13         0         0.04           YBR248C         HIS7         A         20         0.09         0.08         0.15         -0.13         0.00         0.01         0.01           YBR248C         MRO4         A         20         2.24         1.79         2.23         0.92         0.06         0.01         -0.03         -0.18           YBR253W         DUT1         A         21         0.09         0.04         0.12         0.09         0.01         0         YBR256C         RIB5         20         0.09         0.06         0.07         0.09         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>YBR243C</td> <td>ALG7</td> <td>А</td> <td>21</td> <td>0.17</td> <td>0.11</td> <td>0.1</td> <td>0.09</td> <td>0</td> <td>0</td> <td>-0.08</td> | YBR243C | ALG7    | А | 21              | 0.17 | 0.11 | 0.1  | 0.09 | 0     | 0     | -0.08 |
| YBR246W         A         21         0.11         0.08         0.11         0.15         -0.13         0         0.04           YBR248C         HIS7         A         20         0.09         0.08         0.15         0.12         0         0.00         0           YBR249C         AROA         20         2.24         1.79         2.23         0.92         0.06         0.11         0.17           YBR253CW         DUT1         A         21         0.55         0.58         0.62         0.35         -0.01         0.01         0           YBR254C         A         20         0.09         0.06         0.07         0.09         0.01         0         0           YBR256C         R         20         0.09         0.06         0.07         0.09         0.0         0         0           YBR261C         A         21         0.27         0.21         0.37         0.26         -0.13         0.12         0           YBR263W         MRH137         A         20         0.26         0.05         0.14         0.11         -0.12         -0.24           YBR264C         A         21         0.39         0.18                                                                                                                                                      | YBR244W |         | A | 20              | 0.09 | 0.06 | 0.07 | 0.09 | 0     | 0     | 0     |
| YBR248C         HIS7         A         20         0.09         0.08         0.15         0.12         0         0.01         0           YBR249C         ARO4         A         20         2.24         1.79         2.23         0.92         0.06         0.11         -0.13         -0.18           YBR253W         DUT1         A         21         0.59         0.62         0.33         -0.01         -0.03         -0.18           YBR254C         RIB5         A         20         0.09         0.14         0.09         -0.21         0         0           YBR256C         RIB5         A         20         0.09         0.06         0.07         0.09         -0.19         0         0           YBR263C         A         21         0.15         0.18         0.22         0.12         -0.08         -0.07         0         0         7         0.78         0.26         -0.13         0.12         0         0         10         10         10.8         -0.02         -0.05         -0.1         10.12         0         0.26         0.38         0.21         -0.1         -0.05         0         11         10.12         0.025         0                                                                                                                              | YBR246W |         | А | 21              | 0.11 | 0.08 | 0.11 | 0.15 | -0.13 | 0     | 0.04  |
| YBR249C         AR04         A         20         2.24         1.79         2.23         0.92         0.06         0.11         -0.17           YBR253W         DUT1         A         21         0.55         0.58         0.62         0.35         -0.01         -0.03         -0.18           YBR253C         RA         21         0.09         0.04         0.12         0.09         0.01         0           YBR256C         RIB5         A         20         0.09         0.06         0.07         0.09         0.11         0           YBR256C         RA         21         0.15         0.18         0.22         0.12         0.08         0.07         0         0         0           YBR261C         A         21         0.17         0.18         0.22         0.12         -0.08         -0.07         0           YBR263W         SHM1         A         21         0.07         0.55         0.55         0.55         0.55         0.55         0.05         0         YBR263W         A         20         0.38         0.21         0.11         0.11         0.13         0.18         0.32         0.33         -0.11         0.10                                                                                                                                      | YBR248C | HIS7    | A | 20              | 0.09 | 0.08 | 0.15 | 0.12 | 0     | 0.01  | 0     |
| YBR252W         DUT1         A         21         0.55         0.58         0.62         0.35         -0.01         -0.03         -0.18           YBR253W         SRB6         A         20         0.09         0.04         0.12         0.09         0.01         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                           | YBR249C | ARO4    | A | 20              | 2.24 | 1.79 | 2.23 | 0.92 | 0.06  | 0.11  | -0.17 |
| YBR253W         SRB6         A         20         0.09         0.04         0.12         0.09         0.01         0           YBR25C         A         20         0.09         0.1         0.1         0.09         0.01         0           YBR25C         RIB5         A         20         0.09         0.06         0.07         0.09         0.01         0           YBR26C         A         21         0.07         0.09         0.00         0         0           YBR26C         A         21         0.07         0.09         0         0         0           YBR26C         A         21         0.07         0.05         0.52         -0.08         -0.07         0           YBR263W         SHM1         A         21         0.07         0.55         0.52         -0.05         -0.12         0.26           YBR268W         MRPL37         A         20         0.26         0.38         0.21         -0.1         0.12         0.22         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0<                                                                                                                                                               | YBR252W | DUT1    | A | 21              | 0.55 | 0.58 | 0.62 | 0.35 | -0.01 | -0.03 | -0.18 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YBR253W | SRB6    | A | 20              | 0.09 | 0.04 | 0.12 | 0.09 | 0     | 0.01  | 0     |
| YBR256C         RIB5         A         20         0.09         0.09         0.04         0.09         -0.21         0         0           YBR256C         A         20         0.09         0.06         0.07         0.09         0.0         0         0         0         0           YBR261C         A         21         0.15         0.18         0.22         0.12         -0.08         -0.07         0           YBR263C         A         21         0.27         0.21         0.37         0.26         -0.13         0.12         0           YBR263W         SHM1         A         21         0.09         0.06         0.08         0.09         0         -0.05         -0.17           YBR263W         MRPL37         A         20         0.38         0.26         0.38         0.21         -0.12         -0.24           YBR264C         A         21         0.039         0.18         0.32         0.33         -0.11         0.1         0.08           YBR266C         A         21         0.109         0.07         0.08         0.09         0         0         0           YBR276C         PPS1         A         <                                                                                                                                                  | YBR254C | 51120   | A | 21              | 0.09 | 0.1  | 0.1  | 0.09 | 0.01  | 0     | 0     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | YBR256C | RIB5    | A | 20              | 0.09 | 0.09 | 0.14 | 0.09 | -0.21 | Ő     | Ő     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | YBR258C | KID5    | A | 20              | 0.09 | 0.05 | 0.07 | 0.09 | -0.19 | 0     | 0     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | YBR260C |         | Δ | 20              | 0.09 | 0.00 | 0.07 | 0.02 | 0.17  | 0     | 0     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VBR261C |         | Δ | 21              | 0.05 | 0.00 | 0.07 | 0.02 | -0.08 | -0.07 | 0     |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VBR262C |         | Δ | 21              | 0.15 | 0.10 | 0.22 | 0.12 | -0.00 | -0.07 | 0     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VBR263W | SHM1    | Δ | 21              | 0.27 | 0.21 | 0.57 | 0.20 | -0.15 | -0.06 | -0.11 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VBP264C | SIIWII  |   | 21              | 0.75 | 0.55 | 0.0  | 0.52 | -0.05 | -0.00 | -0.11 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VBD265W |         | A | $\frac{21}{20}$ | 0.09 | 0.00 | 0.08 | 0.09 | 01    | -0.05 | 01    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VBD268W | MDDI 37 | A | 20              | 0.38 | 0.20 | 0.38 | 0.21 | -0.1  | -0.05 | -0.1  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IDK200W | MIKFL3/ | A | 20              | 0.20 | 0.05 | 0.14 | 0.11 | -0.42 | -0.12 | -0.24 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IDK209C |         | A | 21              | 0.39 | 0.18 | 0.52 | 0.55 | -0.11 | 0.1   | 0.08  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IDK2/4W | DDC 1   | A | 21              | 0.09 | 0.07 | 0.08 | 0.09 | 0 02  | 0     | 0     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | YBR2/6C | PPS1    | A | 20              | 0.1  | 0.11 | 0.13 | 0.18 | -0.02 | 0     | 0     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YBR2/9W | PAFI    | A | 20              | 0.09 | 0.06 | 0.14 | 0.12 | -0.25 | 0.05  | 0     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YBR280C |         | A | 21              | 0.12 | 0.08 | 0.07 | 0.09 | 0     | 0     | 0     |
| YBR285C       SSH1       A       21       0.52       0.43       0.51       0.42       -0.01       -0.12       -0.02         YBR286W       APE3       A       20       3.04       2.18       2.54       4.85       -0.13       -0.15       0.15         YBR287W       A       20       0.48       0.31       0.38       0.54       0       -0.06       0.14         YBR288C       APM3       A       20       0.09       0.05       0.07       0.09       0       0       0       0         YBR290W       BSD2       A       20       0.09       0.47       0.46       0.55       -0.21       -0.21       -0.21       -0.21       -0.22         YBR297W       MAL33       A       20       0.09       0.04       0.08       0.09       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                      | YBR282W | MRPL2/  | A | 21              | 0.13 | 0.08 | 0.14 | 0.13 | 0     | 0     | 0     |
| YBR286W       APE3       A       20 $3.04$ $2.18$ $2.54$ $4.85$ $-0.15$ $0.15$ $0.15$ YBR287W       A       20 $0.48$ $0.31$ $0.38$ $0.54$ $0$ $-0.06$ $0.14$ YBR288C       APM3       A       20 $0.09$ $0.07$ $0.09$ $0$ $0$ $0$ YBR290W       BSD2       A       20 $0.09$ $0.07$ $0.09$ $0.025$ $0$ $0$ YBR291C       CTP1       A       21 $0.9$ $0.47$ $0.46$ $0.56$ $-0.21$ $-0.21$ $-0.21$ YBR297W       MAL33       A       20 $0.09$ $0.04$ $0.08$ $0.15$ $0$ $0$ $0$ YBR301W       A       20 $0.14$ $0.08$ $0.15$ $0.16$ $0.09$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ <td>YBR283C</td> <td>SSHI</td> <td>A</td> <td>21</td> <td>0.52</td> <td>0.43</td> <td>0.31</td> <td>0.42</td> <td>-0.01</td> <td>-0.12</td> <td>-0.02</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | YBR283C | SSHI    | A | 21              | 0.52 | 0.43 | 0.31 | 0.42 | -0.01 | -0.12 | -0.02 |
| YBR28/W       A       20 $0.48$ $0.31$ $0.38$ $0.54$ $0$ $-0.06$ $0.14$ YBR288C       APM3       A       20 $0.09$ $0.05$ $0.07$ $0.09$ $0$ $0$ $0$ YBR290W       BSD2       A       20 $0.09$ $0.07$ $0.07$ $0.09$ $0.025$ $0$ $0$ YBR291C       CTP1       A       21 $0.9$ $0.47$ $0.46$ $0.56$ $-0.21$ $-0.21$ $-0.22$ YBR293W       A       20 $0.09$ $0.04$ $0.08$ $0.11$ $0$ $0$ $0$ YBR301W       A       20 $0.09$ $0.04$ $0.08$ $0.09$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | YBR286W | APE3    | A | 20              | 3.04 | 2.18 | 2.54 | 4.85 | -0.13 | -0.15 | 0.15  |
| YBR288C       APM3       A       20 $0.09$ $0.05$ $0.07$ $0.09$ $0$ $0$ $0$ $0$ YBR290W       BSD2       A       20 $0.09$ $0.07$ $0.07$ $0.09$ $0.025$ $0$ $0$ YBR291C       CTP1       A       21 $0.9$ $0.47$ $0.46$ $0.56$ $-0.21$ $-0.21$ $-0.22$ YBR293W       A       20 $0.09$ $0.04$ $0.08$ $0.11$ $0$ $0$ $0$ YBR297W       MAL33       A       20 $0.09$ $0.04$ $0.08$ $0.09$ $0$ $0$ $0$ $0$ YBR202C       A       20 $0.93$ $0.54$ $0.58$ $0.65$ $-0.17$ $0$ $-0.06$ YCL01W       RER1       A       20 $0.19$ $0.2$ $0.14$ $0.16$ $-0.06$ $0.01$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | YBR28/W |         | A | 20              | 0.48 | 0.31 | 0.38 | 0.54 | 0     | -0.06 | 0.14  |
| YBR290W       BSD2       A       20 $0.09$ $0.07$ $0.07$ $0.09$ $-0.25$ $0$ $0$ YBR291C       CTP1       A       21 $0.9$ $0.47$ $0.46$ $0.56$ $-0.21$ $-0.21$ $-0.21$ $-0.21$ $-0.21$ YBR293W       A       20 $0.09$ $0.04$ $0.08$ $0.11$ $0$ $0$ $0$ YBR297W       MAL33       A       20 $0.09$ $0.04$ $0.08$ $0.09$ $0$ $0$ $0$ $0$ YBR301W       A       20 $0.14$ $0.08$ $0.07$ $0.09$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | YBR288C | APM3    | A | 20              | 0.09 | 0.05 | 0.07 | 0.09 | 0     | 0     | 0     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | YBR290W | BSD2    | A | 20              | 0.09 | 0.07 | 0.07 | 0.09 | -0.25 | 0     | 0     |
| YBR293WA20 $0.09$ $0.04$ $0.08$ $0.11$ $0$ $0$ $0$ YBR297WMAL33A20 $0.09$ $0.04$ $0.08$ $0.09$ $0$ $0$ $0$ YBR301WA20 $0.14$ $0.08$ $0.08$ $0.15$ $0$ $0$ $0$ YBR302CA20 $0.93$ $0.54$ $0.58$ $0.65$ $-0.17$ $0$ $-0.06$ YCL001WRER1A20 $0.1$ $0.08$ $0.07$ $0.09$ $0$ $0$ $0$ YCL002CA20 $0.15$ $0.12$ $0.07$ $0.1$ $-0.15$ $0$ $0$ YCL008CA20 $0.15$ $0.12$ $0.07$ $0.1$ $-0.15$ $0$ $0$ YCL009CILV6A20 $1.26$ $0.91$ $1.04$ $0.75$ $-0.1$ $-0.01$ $-0.12$ YCL011CGBP2A21 $0.25$ $0.25$ $0.26$ $0.27$ $0.01$ $0$ $0$ YCL017CNFS1A21 $0.52$ $0.64$ $0.52$ $0.45$ $0.01$ $0.03$ $0$ YCL018WLEU2A20 $0.14$ $0.09$ $0.15$ $0.09$ $0$ $0$ $0$ YCL018WLEU2A20 $0.51$ $0.27$ $0.47$ $0.65$ $-0.2$ $-0.02$ $0$ YCL027WFUS1A21 $0.09$ $0.06$ $0.07$ $0.11$ $0$ $0$ $0$ $0$ $0$ YCL028W <t< td=""><td>YBR291C</td><td>CTP1</td><td>Α</td><td>21</td><td>0.9</td><td>0.47</td><td>0.46</td><td>0.56</td><td>-0.21</td><td>-0.21</td><td>-0.22</td></t<>                                                                                                                                                                                                                                                                                                                                                       | YBR291C | CTP1    | Α | 21              | 0.9  | 0.47 | 0.46 | 0.56 | -0.21 | -0.21 | -0.22 |
| YBR297WMAL33A20 $0.09$ $0.04$ $0.08$ $0.09$ $0$ $0$ $0$ $0$ YBR301WA20 $0.14$ $0.08$ $0.08$ $0.15$ $0$ $0$ $0$ YBR302CA20 $0.93$ $0.54$ $0.58$ $0.65$ $-0.17$ $0$ $-0.06$ YCL001WRER1A20 $0.11$ $0.08$ $0.07$ $0.09$ $0$ $0$ $0$ YCL002CA20 $0.19$ $0.2$ $0.14$ $0.16$ $-0.06$ $-0.1$ $0$ YCL008CA20 $0.15$ $0.12$ $0.07$ $0.1$ $-0.15$ $0$ YCL009CILV6A20 $1.26$ $0.91$ $1.04$ $0.75$ $-0.1$ $-0.01$ YCL011CGBP2A21 $0.25$ $0.25$ $0.26$ $0.27$ $0.01$ $0$ $0$ YCL017CNFS1A21 $0.52$ $0.64$ $0.52$ $0.45$ $0.01$ $0.03$ $0$ YCL018WLEU2A20 $0.1$ $0.09$ $0$ $0$ $0$ $0$ YCL018WLEU2A20 $0.51$ $0.27$ $0.47$ $0.65$ $-0.2$ $-0.02$ $0$ YCL025CAGP1A20 $0.51$ $0.27$ $0.47$ $0.65$ $-0.2$ $-0.02$ $0$ YCL027WFUS1A21 $0.09$ $0.06$ $0.07$ $0.11$ $0$ $0$ $0$ YCL028WA21 $0.24$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | YBR293W |         | А | 20              | 0.09 | 0.04 | 0.08 | 0.11 | 0     | 0     | 0     |
| YBR301WA20 $0.14$ $0.08$ $0.08$ $0.15$ $0$ $0$ $0$ YBR302CA20 $0.93$ $0.54$ $0.58$ $0.65$ $-0.17$ $0$ $-0.06$ YCL001WRER1A20 $0.11$ $0.08$ $0.07$ $0.09$ $0$ $0$ $0$ $0$ YCL002CA20 $0.19$ $0.2$ $0.14$ $0.16$ $-0.06$ $-0.1$ $0$ YCL008CA20 $0.15$ $0.12$ $0.07$ $0.1$ $-0.15$ $0$ $0$ YCL009CILV6A20 $1.26$ $0.91$ $1.04$ $0.75$ $-0.1$ $-0.01$ $-0.12$ YCL011CGBP2A $21$ $0.25$ $0.25$ $0.26$ $0.27$ $0.01$ $0$ $0$ $0$ YCL017CNFS1A $21$ $0.52$ $0.64$ $0.52$ $0.45$ $0.01$ $0.03$ $0$ YCL018WLEU2A $20$ $0.11$ $0.09$ $0.15$ $0.09$ $0$ $0$ $0$ YCL027WFUS1A $21$ $0.09$ $0.08$ $0.07$ $0.09$ $0$ $0$ $0$ YCL028WA $21$ $0.24$ $0.06$ $0.07$ $0.11$ $0$ $0$ $0$ YCL038CA $20$ $0.27$ $0.14$ $0.27$ $0.33$ $-0.08$ $0.12$ $0.06$ YCL038CA $21$ $0.09$ $0.06$ $0.07$ $0.11$ $0$ $0$ $0$ YCL038CA <td>YBR297W</td> <td>MAL33</td> <td>А</td> <td>20</td> <td>0.09</td> <td>0.04</td> <td>0.08</td> <td>0.09</td> <td>0</td> <td>0</td> <td>0</td>                                                                                                                                                                                                                                                                                                                                                  | YBR297W | MAL33   | А | 20              | 0.09 | 0.04 | 0.08 | 0.09 | 0     | 0     | 0     |
| YBR302CA20 $0.93$ $0.54$ $0.58$ $0.65$ $-0.17$ $0$ $-0.06$ YCL001WRER1A20 $0.11$ $0.08$ $0.07$ $0.09$ $0$ $0$ $0$ YCL002CA20 $0.19$ $0.2$ $0.14$ $0.16$ $-0.06$ $-0.1$ $0$ YCL008CA20 $0.15$ $0.12$ $0.07$ $0.1$ $-0.15$ $0$ $0$ YCL009CILV6A20 $1.26$ $0.91$ $1.04$ $0.75$ $-0.1$ $-0.01$ $-0.12$ YCL011CGBP2A21 $0.25$ $0.25$ $0.26$ $0.27$ $0.01$ $0$ $0$ YCL016CA20 $0.09$ $0.05$ $0.07$ $0.09$ $0$ $0$ $0$ YCL017CNFS1A21 $0.52$ $0.64$ $0.52$ $0.45$ $0.01$ $0.03$ $0$ YCL018WLEU2A20 $1.04$ $0.85$ $1.17$ $1.21$ $-0.22$ $-0.08$ $0$ YCL025CAGP1A20 $0.51$ $0.27$ $0.47$ $0.65$ $-0.2$ $-0.02$ $0$ YCL027WFUS1A21 $0.09$ $0.06$ $0.07$ $0.11$ $0$ $0$ $0$ YCL028WA21 $0.24$ $0.16$ $0.18$ $0.21$ $-0.19$ $0$ YCL029CBIK1A21 $0.09$ $0.06$ $0.07$ $0.11$ $0$ $0$ YCL033CA20 $0.16$ <td>YBR301W</td> <td></td> <td>А</td> <td>20</td> <td>0.14</td> <td>0.08</td> <td>0.08</td> <td>0.15</td> <td>0</td> <td>0</td> <td>0</td>                                                                                                                                                                                                                                                                                                                                                                  | YBR301W |         | А | 20              | 0.14 | 0.08 | 0.08 | 0.15 | 0     | 0     | 0     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YBR302C |         | А | 20              | 0.93 | 0.54 | 0.58 | 0.65 | -0.17 | 0     | -0.06 |
| YCL002CA20 $0.19$ $0.2$ $0.14$ $0.16$ $-0.06$ $-0.1$ $0$ YCL008CA20 $0.15$ $0.12$ $0.07$ $0.1$ $-0.15$ $0$ $0$ YCL009CILV6A20 $1.26$ $0.91$ $1.04$ $0.75$ $-0.1$ $-0.01$ $-0.12$ YCL011CGBP2A21 $0.25$ $0.25$ $0.26$ $0.27$ $0.01$ $0$ $0$ YCL016CA20 $0.09$ $0.05$ $0.07$ $0.09$ $0$ $0$ $0$ YCL017CNFS1A21 $0.52$ $0.64$ $0.52$ $0.45$ $0.01$ $0.03$ $0$ YCL018WLEU2A20 $1.04$ $0.85$ $1.17$ $1.21$ $-0.22$ $-0.08$ $0$ YCL025CAGP1A20 $0.51$ $0.27$ $0.47$ $0.65$ $-0.2$ $-0.02$ $0$ YCL027WFUS1A21 $0.09$ $0.08$ $0.07$ $0.09$ $0$ $0$ $0$ YCL028WA21 $0.24$ $0.16$ $0.18$ $0.21$ $-0.19$ $0$ YCL030CHIS4A21 $0.38$ $0.32$ $0.33$ $0.36$ $-0.1$ $-0.08$ YCL033CA20 $0.16$ $0.2$ $0.27$ $0.33$ $-0.08$ $0.12$ $0.23$ YCL034WA20 $0.27$ $0.14$ $0.27$ $0.33$ $-0.06$ $0.05$ YCL036WA21 $0.09$ $0.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | YCL001W | RER1    | А | 20              | 0.1  | 0.08 | 0.07 | 0.09 | 0     | 0     | 0     |
| YCL008CA20 $0.15$ $0.12$ $0.07$ $0.1$ $-0.15$ $0$ $0$ YCL009CILV6A20 $1.26$ $0.91$ $1.04$ $0.75$ $-0.1$ $-0.01$ $-0.12$ YCL011CGBP2A21 $0.25$ $0.25$ $0.26$ $0.27$ $0.01$ $0$ $0$ YCL016CA20 $0.09$ $0.05$ $0.07$ $0.09$ $0$ $0$ $0$ YCL017CNFS1A21 $0.52$ $0.64$ $0.52$ $0.45$ $0.01$ $0.03$ $0$ YCL018WLEU2A20 $1.04$ $0.85$ $1.17$ $1.21$ $-0.22$ $-0.08$ $0$ YCL025CAGP1A20 $0.51$ $0.27$ $0.47$ $0.65$ $-0.2$ $-0.02$ $0$ YCL027WFUS1A21 $0.09$ $0.08$ $0.07$ $0.09$ $0$ $0$ $0$ YCL028WA21 $0.24$ $0.16$ $0.18$ $0.21$ $-0.19$ $0$ YCL030CHIS4A21 $0.09$ $0.06$ $0.07$ $0.11$ $0$ $0$ YCL033CA20 $0.16$ $0.2$ $0.27$ $0.33$ $-0.08$ $0.12$ $0.23$ YCL034WA20 $0.27$ $0.14$ $0.27$ $0.26$ $-0.13$ $-0.06$ $-0.05$ YCL036WA21 $0.09$ $0.04$ $0.07$ $0.09$ $0$ $0$ $0$ $0$ YCL038CA20 $0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | YCL002C |         | А | 20              | 0.19 | 0.2  | 0.14 | 0.16 | -0.06 | -0.1  | 0     |
| YCL009CILV6A201.26 $0.91$ $1.04$ $0.75$ $-0.1$ $-0.01$ $-0.12$ YCL011CGBP2A21 $0.25$ $0.25$ $0.26$ $0.27$ $0.01$ $0$ $0$ YCL016CA20 $0.09$ $0.05$ $0.07$ $0.09$ $0$ $0$ $0$ YCL017CNFS1A21 $0.52$ $0.64$ $0.52$ $0.45$ $0.01$ $0.03$ $0$ YCL018WLEU2A20 $1.04$ $0.85$ $1.17$ $1.21$ $-0.22$ $-0.08$ $0$ YCL019WA20 $0.1$ $0.09$ $0.15$ $0.09$ $0$ $0$ $0$ YCL025CAGP1A20 $0.51$ $0.27$ $0.47$ $0.65$ $-0.2$ $-0.02$ $0$ YCL027WFUS1A21 $0.09$ $0.08$ $0.07$ $0.09$ $0$ $0$ $0$ YCL028WA21 $0.24$ $0.16$ $0.18$ $0.21$ $-0.19$ $0$ YCL030CHIS4A21 $0.09$ $0.06$ $0.07$ $0.11$ $0$ $0$ YCL033CA20 $0.16$ $0.2$ $0.27$ $0.33$ $-0.08$ $0.12$ $0.23$ YCL034WA20 $0.27$ $0.14$ $0.27$ $0.26$ $-0.13$ $-0.06$ $-0.05$ YCL036WA21 $0.09$ $0.04$ $0.07$ $0.09$ $0$ $0$ $0$ $0$ YCL038CA20 $0.11$ <td>YCL008C</td> <td></td> <td>А</td> <td>20</td> <td>0.15</td> <td>0.12</td> <td>0.07</td> <td>0.1</td> <td>-0.15</td> <td>0</td> <td>0</td>                                                                                                                                                                                                                                                                                                                                                               | YCL008C |         | А | 20              | 0.15 | 0.12 | 0.07 | 0.1  | -0.15 | 0     | 0     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | YCL009C | ILV6    | А | 20              | 1.26 | 0.91 | 1.04 | 0.75 | -0.1  | -0.01 | -0.12 |
| YCL016CA20 $0.09$ $0.05$ $0.07$ $0.09$ $0$ $0$ $0$ $0$ YCL017CNFS1A21 $0.52$ $0.64$ $0.52$ $0.45$ $0.01$ $0.03$ $0$ YCL018WLEU2A20 $1.04$ $0.85$ $1.17$ $1.21$ $-0.22$ $-0.08$ $0$ YCL019WA20 $0.1$ $0.09$ $0.15$ $0.09$ $0$ $0$ $0$ $0$ YCL025CAGP1A20 $0.51$ $0.27$ $0.47$ $0.65$ $-0.2$ $-0.02$ $0$ YCL027WFUS1A21 $0.09$ $0.08$ $0.07$ $0.09$ $0$ $0$ $0$ YCL028WA21 $0.24$ $0.16$ $0.18$ $0.21$ $-0.19$ $0$ $0$ YCL029CBIK1A21 $0.09$ $0.06$ $0.07$ $0.11$ $0$ $0$ $0$ YCL030CHIS4A21 $0.38$ $0.32$ $0.33$ $0.36$ $-0.1$ $-0.08$ $0$ YCL033CA20 $0.16$ $0.2$ $0.27$ $0.33$ $-0.08$ $0.12$ $0.23$ YCL034WA20 $0.27$ $0.14$ $0.27$ $0.26$ $-0.13$ $-0.06$ $-0.05$ YCL036WA21 $0.09$ $0.04$ $0.07$ $0.09$ $0$ $0$ $0$ YCL037CSRO9A20 $0.11$ $0.11$ $0.08$ $0.11$ $-0.06$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | YCL011C | GBP2    | А | 21              | 0.25 | 0.25 | 0.26 | 0.27 | 0.01  | 0     | 0     |
| YCL017C       NFS1       A       21       0.52       0.64       0.52       0.45       0.01       0.03       0         YCL018W       LEU2       A       20       1.04       0.85       1.17       1.21       -0.22       -0.08       0         YCL019W       A       20       0.1       0.09       0.15       0.09       0       0       0         YCL025C       AGP1       A       20       0.51       0.27       0.47       0.65       -0.2       -0.02       0         YCL027W       FUS1       A       21       0.09       0.08       0.07       0.09       0       0       0         YCL028W       A       21       0.24       0.16       0.18       0.21       -0.19       0       0         YCL030C       BIK1       A       21       0.38       0.32       0.33       0.36       -0.1       -0.08       0         YCL033C       A       20       0.16       0.2       0.27       0.33       -0.08       0.12       0.23         YCL034W       A       20       0.27       0.14       0.27       0.26       -0.13       -0.06       -0.05                                                                                                                                                                                                                                                      | YCL016C |         | А | 20              | 0.09 | 0.05 | 0.07 | 0.09 | 0     | 0     | 0     |
| YCL018W       LEU2       A       20       1.04       0.85       1.17       1.21       -0.22       -0.08       0         YCL019W       A       20       0.1       0.09       0.15       0.09       0       0       0         YCL025C       AGP1       A       20       0.51       0.27       0.47       0.65       -0.2       -0.02       0         YCL027W       FUS1       A       21       0.09       0.08       0.07       0.09       0       0       0       0         YCL028W       A       21       0.24       0.16       0.18       0.21       -0.19       0       0         YCL030C       BIK1       A       21       0.38       0.32       0.33       0.36       -0.1       -0.08       0         YCL033C       A       20       0.16       0.2       0.27       0.33       -0.08       0.12       0.23         YCL034W       A       20       0.27       0.14       0.27       0.26       -0.13       -0.06       -0.05         YCL035C       A       20       0.16       0.43       1.09       1.7       -0.16       0.03       0.39                                                                                                                                                                                                                                                      | YCL017C | NFS1    | А | 21              | 0.52 | 0.64 | 0.52 | 0.45 | 0.01  | 0.03  | 0     |
| YCL019WA20 $0.1$ $0.09$ $0.15$ $0.09$ $0$ $0$ $0$ $0$ YCL025CAGP1A20 $0.51$ $0.27$ $0.47$ $0.65$ $-0.2$ $-0.02$ $0$ YCL027WFUS1A21 $0.09$ $0.08$ $0.07$ $0.09$ $0$ $0$ $0$ YCL028WA21 $0.24$ $0.16$ $0.18$ $0.21$ $-0.19$ $0$ $0$ YCL029CBIK1A21 $0.09$ $0.06$ $0.07$ $0.11$ $0$ $0$ $0$ YCL030CHIS4A21 $0.38$ $0.32$ $0.33$ $0.36$ $-0.1$ $-0.08$ $0$ YCL033CA20 $0.16$ $0.2$ $0.27$ $0.33$ $-0.08$ $0.12$ $0.23$ YCL034WA20 $0.27$ $0.14$ $0.27$ $0.26$ $-0.13$ $-0.06$ $-0.05$ YCL035CA20 $1.16$ $0.43$ $1.09$ $1.7$ $-0.16$ $0.03$ $0.39$ YCL036WA21 $0.09$ $0.04$ $0.07$ $0.09$ $0$ $0$ $0$ YCL037CSRO9A20 $0.11$ $0.11$ $0.22$ $0$ $0$ $0$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | YCL018W | LEU2    | А | 20              | 1.04 | 0.85 | 1.17 | 1.21 | -0.22 | -0.08 | 0     |
| YCL025C       AGP1       A       20       0.51       0.27       0.47       0.65       -0.2       -0.02       0         YCL027W       FUS1       A       21       0.09       0.08       0.07       0.09       0       0       0         YCL028W       A       21       0.24       0.16       0.18       0.21       -0.19       0       0         YCL029C       BIK1       A       21       0.09       0.06       0.07       0.11       0       0       0         YCL030C       HIS4       A       21       0.38       0.32       0.33       0.36       -0.1       -0.08       0         YCL033C       A       20       0.16       0.2       0.27       0.33       -0.08       0.12 <b>0.23</b> YCL034W       A       20       0.27       0.14       0.27       0.26       -0.13       -0.06       -0.05         YCL035C       A       20       1.16       0.43       1.09       1.7       -0.16       0.03 <b>0.39</b> YCL036W       A       21       0.09       0.04       0.07       0.09       0       0       0       0       0                                                                                                                                                                                                                                                                   | YCL019W |         | А | 20              | 0.1  | 0.09 | 0.15 | 0.09 | 0     | 0     | 0     |
| YCL027W       FUS1       A       21       0.09       0.08       0.07       0.09       0       0       0         YCL028W       A       21       0.24       0.16       0.18       0.21       -0.19       0       0         YCL029C       BIK1       A       21       0.09       0.06       0.07       0.11       0       0       0         YCL030C       HIS4       A       21       0.38       0.32       0.33       0.36       -0.1       -0.08       0         YCL033C       A       20       0.16       0.2       0.27       0.33       -0.08       0.12 <b>0.23</b> YCL034W       A       20       0.27       0.14       0.27       0.26       -0.13       -0.06       -0.05         YCL035C       A       20       1.16       0.43       1.09       1.7       -0.16       0.03 <b>0.39</b> YCL036W       A       21       0.09       0.04       0.07       0.09       0       0       0         YCL037C       SRO9       A       20       0.11       0.11       0.08       0.11       -0.06       0       0       0       15 <td>YCL025C</td> <td>AGP1</td> <td>А</td> <td>20</td> <td>0.51</td> <td>0.27</td> <td>0.47</td> <td>0.65</td> <td>-0.2</td> <td>-0.02</td> <td>0</td>                                                                                                               | YCL025C | AGP1    | А | 20              | 0.51 | 0.27 | 0.47 | 0.65 | -0.2  | -0.02 | 0     |
| YCL028W       A       21       0.24       0.16       0.18       0.21       -0.19       0       0         YCL029C       BIK1       A       21       0.09       0.06       0.07       0.11       0       0       0         YCL030C       HIS4       A       21       0.38       0.32       0.33       0.36       -0.1       -0.08       0         YCL033C       A       20       0.16       0.2       0.27       0.33       -0.08       0.12       0.23         YCL034W       A       20       0.16       0.2       0.27       0.13       -0.06       -0.05         YCL035C       A       20       1.16       0.43       1.09       1.7       -0.16       0.03       0.39         YCL036W       A       21       0.09       0.04       0.07       0.09       0       0       0         YCL037C       SRO9       A       20       0.11       0.11       0.08       0.11       -0.06       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <t< td=""><td>YCL027W</td><td>FUS1</td><td>А</td><td>21</td><td>0.09</td><td>0.08</td><td>0.07</td><td>0.09</td><td>0</td><td>0</td><td>0</td></t<>                                                                                                         | YCL027W | FUS1    | А | 21              | 0.09 | 0.08 | 0.07 | 0.09 | 0     | 0     | 0     |
| YCL029C       BIK1       A       21       0.09       0.06       0.07       0.11       0       0       0         YCL030C       HIS4       A       21       0.38       0.32       0.33       0.36       -0.1       -0.08       0         YCL033C       A       20       0.16       0.2       0.27       0.33       -0.08       0.12       0.23         YCL034W       A       20       0.27       0.14       0.27       0.26       -0.13       -0.06       -0.05         YCL035C       A       20       1.16       0.43       1.09       1.7       -0.16       0.03       0.39         YCL036W       A       21       0.09       0.04       0.07       0.09       0       0         YCL037C       SRO9       A       20       0.11       0.11       0.08       0.11       -0.06       0         YCL038C       A       20       0.12       0.07       0.11       0.2       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                             | YCL028W |         | Α | 21              | 0.24 | 0.16 | 0.18 | 0.21 | -0.19 | 0     | 0     |
| YCL030C       HIS4       A       21       0.38       0.32       0.33       0.36       -0.1       -0.08       0         YCL033C       A       20       0.16       0.2       0.27       0.33       -0.08       0.12       0.23         YCL034W       A       20       0.27       0.14       0.27       0.26       -0.13       -0.06       -0.05         YCL035C       A       20       1.16       0.43       1.09       1.7       -0.16       0.03       0.39         YCL036W       A       21       0.09       0.04       0.07       0.09       0       0       0         YCL037C       SRO9       A       20       0.11       0.11       0.08       0.11       -0.06       0       0         YCL038C       A       20       0.12       0.07       0.11       0.2       0       0       0       15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | YCL029C | BIK1    | А | 21              | 0.09 | 0.06 | 0.07 | 0.11 | 0     | 0     | 0     |
| YCL033C       A       20       0.16       0.2       0.27       0.33       -0.08       0.12       0.23         YCL034W       A       20       0.27       0.14       0.27       0.26       -0.13       -0.06       -0.05         YCL035C       A       20       1.16       0.43       1.09       1.7       -0.16       0.03       0.39         YCL036W       A       21       0.09       0.04       0.07       0.09       0       0       0         YCL037C       SRO9       A       20       0.11       0.11       0.08       0.11       -0.06       0       0       0       15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | YCL030C | HIS4    | А | 21              | 0.38 | 0.32 | 0.33 | 0.36 | -0.1  | -0.08 | 0     |
| YCL034W       A       20       0.27       0.14       0.27       0.26       -0.13       -0.06       -0.05         YCL035C       A       20       1.16       0.43       1.09       1.7       -0.16       0.03       0.39         YCL036W       A       21       0.09       0.04       0.07       0.09       0       0       0         YCL037C       SR09       A       20       0.11       0.11       0.08       0.11       -0.06       0       0         YCL038C       A       20       0.12       0.07       0.11       0.2       0       0       0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | YCL033C |         | А | 20              | 0.16 | 0.2  | 0.27 | 0.33 | -0.08 | 0.12  | 0.23  |
| YCL035C       A       20       1.16       0.43       1.09       1.7       -0.16       0.03       0.39         YCL036W       A       21       0.09       0.04       0.07       0.09       0       0       0         YCL037C       SR09       A       20       0.11       0.11       0.08       0.11       -0.06       0       0         YCL038C       A       20       0.12       0.07       0.11       0.2       0       0       0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YCL034W |         | А | 20              | 0.27 | 0.14 | 0.27 | 0.26 | -0.13 | -0.06 | -0.05 |
| YCL036W       A       21       0.09       0.04       0.07       0.09       0       0       0         YCL037C       SRO9       A       20       0.11       0.11       0.08       0.11       -0.06       0       0         YCL038C       A       20       0.12       0.07       0.11       0.2       0       0       0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | YCL035C |         | А | 20              | 1.16 | 0.43 | 1.09 | 1.7  | -0.16 | 0.03  | 0.39  |
| YCL037C         SRO9         A         20         0.11         0.11         0.08         0.11         -0.06         0         0           YCL038C         A         20         0.12         0.07         0.11         0.2         0         0         0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | YCL036W |         | А | 21              | 0.09 | 0.04 | 0.07 | 0.09 | 0     | 0     | 0     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | YCL037C | SRO9    | Ā | 20              | 0.11 | 0.11 | 0.08 | 0.11 | -0.06 | 0     | 0     |
| $\Lambda 20 0.12 0.07 0.11 0.2 0 0 0.13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | YCL038C |         | A | 20              | 0.12 | 0.07 | 0.11 | 0.2  | 0     | 0     | 0.15  |

| YCL039W   |              | А      | 20 | 0.09 | 0.05 | 0.08 | 0.09         | 0     | 0     | 0     |
|-----------|--------------|--------|----|------|------|------|--------------|-------|-------|-------|
| YCL040W   | GLK1         | А      | 21 | 4.56 | 2.52 | 5.11 | 4.42         | -0.32 | -0.09 | 0.01  |
| YCL042W   |              | А      | 20 | 0.31 | 0.15 | 0.19 | 0.37         | 0     | 0     | 0     |
| YCL043C   | PDI1         | А      | 21 | 2.02 | 1.06 | 2.34 | 2.3          | -0.1  | 0.12  | 0.12  |
| YCL044C   |              | А      | 20 | 0.09 | 0.05 | 0.08 | 0.09         | 0     | 0     | 0     |
| YCL045C   |              | А      | 20 | 0.11 | 0.05 | 0.1  | 0.09         | 0     | 0     | 0     |
| YCL047C   |              | А      | 20 | 0.11 | 0.07 | 0.12 | 0.09         | 0     | -0.01 | 0     |
| YCL049C   |              | А      | 20 | 0.18 | 0.09 | 0.15 | 0.2          | 0     | 0     | 0     |
| YCL050C   | APA1         | А      | 20 | 0.42 | 0.37 | 0.35 | 0.52         | -0.04 | 0     | 0.09  |
| YCL056C   |              | А      | 20 | 0.09 | 0.11 | 0.14 | 0.13         | -0.09 | -0.09 | 0     |
| YCL057W   | PRD1         | А      | 21 | 0.09 | 0.04 | 0.08 | 0.11         | 0     | 0     | 0     |
| YCL064C   | CHA1         | A      | 20 | 0.7  | 0.62 | 0.7  | 1            | -0.07 | 0     | 0.12  |
| YCL066W   | ALPHA1       | A      | 20 | 0.09 | 0.51 | 0.07 | 0.09         | 0.67  | 0     | 0     |
| YCL067C   | ALPHA2       | A      | 20 | 0.09 | 0.12 | 0.13 | 0.12         | 0     | 0     | 0     |
| YCL073C   | 11211112     | A      | 20 | 0.12 | 0.12 | 0.13 | 0.12         | 0     | Ő     | Ő     |
| YCLX06C   |              | A      | 20 | 0.09 | 0.07 | 0.1  | 0.12         | 0     | Ő     | Ő     |
| YCLX12W   |              | Δ      | 21 | 0.09 | 0.06 | 0.07 | 0.02         | -0 28 | Ő     | Ő     |
| YCR002C   | CDC10        | A      | 21 | 0.51 | 0.00 | 0.35 | 0.02         | -0.09 | -0.03 | -0.06 |
| YCR004C   | YCP4         | Δ      | 21 | 0.51 | 0.40 | 0.55 | 0.5          | -0.14 | 0.05  | 0.00  |
| VCR005C   | CIT2         | Δ      | 20 | 1.05 | 0.53 | 0.19 | 0.04         | -0.21 | -0.52 | -0 24 |
| VCR008W   | SAT4         | л<br>л | 20 | 0.00 | 0.55 | 0.19 | 0.40         | -0.21 | -0.52 | -0.24 |
| VCP000C   | DVS161       | л<br>л | 20 | 0.09 | 0.05 | 0.07 | 0.09         | 0.01  | 0.1   | 0.07  |
| VCP011C   |              | A      | 20 | 0.5  | 0.51 | 0.40 | 0.44         | -0.01 | 0.1   | 0.07  |
| VCP012W   | ADE1<br>DGK1 | A      | 20 | 0.09 | 5.85 | 0.08 | 0.15<br>8 72 | 0.44  | 0.35  | 0.09  |
| VCP012C   | FUKI         | A      | 20 | 23.1 | 0.14 | 9.14 | 0.12         | -0.44 | -0.55 | -0.25 |
| ICR015C   |              | A      | 21 | 0.14 | 0.14 | 0.09 | 0.15         | -0.21 | 0 10  | 0.00  |
| ICK01/C   |              | A      | 21 | 0.55 | 0.23 | 0.17 | 0.20         | -0.11 | -0.19 | -0.09 |
| ICK018C   | SKD1         | A      | 21 | 0.09 | 0.04 | 0.15 | 0.09         | 0     | 0.00  | 0     |
| YCR020C   | PEI 18       | A      | 20 | 0.09 | 0.08 | 0.15 | 0.1          | 0     | 0     | 0     |
| YCR020C-A | MAK51        | A      | 20 | 0.09 | 0.11 | 0.15 | 0.1          | -0.05 | 0 02  | 0 25  |
| YCR021C   | HSP30        | A      | 21 | 2.85 | 2.05 | 5.07 | 7.83         | -0.18 | 0.02  | 0.35  |
| YCR023C   |              | A      | 21 | 0.28 | 0.16 | 0.17 | 0.13         | -0.12 | 0     | -0.03 |
| YCR024C-A | PMP1         | A      | 20 | 1.83 | 0.54 | 0.8  | 1.02         | -0.0  | -0.38 | -0.32 |
| YCR029C   |              | A      | 21 | 0.09 | 0.09 | 0.07 | 0.11         | -0.27 | 0     | 0     |
| YCR029C-A | KIMI         | A      | 40 | 0.88 | 0.53 | 0.95 | 0.71         | -0.06 | 0.03  | -0.1  |
| YCR030C   | DD0144       | A      | 20 | 0.09 | 0.05 | 0.07 | 0.09         | 0     | 0     | 0     |
| YCR031C   | RPS14A       | A      | 20 | 8.73 | 4.9  | 6.89 | 6.4          | 0     | -0.09 | -0.2  |
| YCR034W   | FENI         | A      | 20 | 0.75 | 0.4  | 0.55 | 0.22         | 0     | -0.2  | -0.37 |
| YCR035C   | KKP43        | A      | 21 | 0.09 | 0.08 | 0.07 | 0.11         | 0     | 0     | 0     |
| YCR036W   | KBK1         | A      | 20 | 0.09 | 0.08 | 0.07 | 0.09         | 0     | 0     | 0     |
| YCR03/C   | PHO8/        | A      | 20 | 0.09 | 0.06 | 0.08 | 0.14         | 0     | 0     | 0     |
| YCR039C   | ALPHA2       | A      | 20 | 0.09 | 0.14 | 0.14 | 0.1          | 0.01  | 0     | 0     |
| YCR040W   | ALPHAI       | A      | 20 | 0.09 | 0.37 | 0.07 | 0.09         | 0.63  | 0     | 0     |
| YCR043C   |              | A      | 21 | 0.21 | 0.22 | 0.2  | 0.15         | -0.06 | 0     | -0.14 |
| YCR044C   | D (G)        | A      | 20 | 0.25 | 0.26 | 0.23 | 0.29         | -0.11 | 0     | 0     |
| YCR046C   | IMG1         | A      | 20 | 0.36 | 0.19 | 0.34 | 0.32         | 0     | -0.05 | 0     |
| YCR047C   |              | A      | 20 | 0.09 | 0.06 | 0.07 | 0.09         | 0     | 0     | 0     |
| YCR048W   | ARE1         | A      | 21 | 0.16 | 0.06 | 0.1  | 0.17         | -0.26 | 0     | 0     |
| YCR051W   |              | А      | 20 | 0.17 | 0.2  | 0.16 | 0.14         | 0.02  | 0     | 0     |
| YCR052W   | RSC6         | А      | 20 | 0.11 | 0.07 | 0.09 | 0.09         | -0.27 | 0     | 0     |
| YCR053W   | THR4         | А      | 20 | 0.87 | 1.16 | 0.76 | 0.83         | 0.08  | -0.02 | 0.06  |
| YCR057C   | PWP2         | А      | 20 | 0.09 | 0.06 | 0.07 | 0.09         | 0     | 0     | 0     |
| YCR059C   |              | А      | 21 | 0.17 | 0.2  | 0.23 | 0.22         | 0     | 0.01  | 0     |
| YCR060W   |              | А      | 20 | 0.11 | 0.12 | 0.13 | 0.13         | -0.09 | -0.08 | 0     |
| YCR061W   |              | А      | 20 | 0.28 | 0.11 | 0.1  | 0.14         | -0.3  | 0     | 0     |
| YCR062W   |              | А      | 20 | 0.17 | 0.11 | 0.12 | 0.19         | -0.22 | 0     | 0     |

| YCR065W  | HCM1   | А      | 21              | 0.13 | 0.07 | 0.07 | 0.09 | 0     | 0     | -0.07 |
|----------|--------|--------|-----------------|------|------|------|------|-------|-------|-------|
| YCR067C  | SED4   | А      | 21              | 0.09 | 0.08 | 0.1  | 0.14 | -0.14 | 0     | 0     |
| YCR069W  | SCC3   | А      | 20              | 0.37 | 0.14 | 0.21 | 0.2  | 0     | -0.12 | -0.02 |
| YCR070W  | SCC3   | А      | 20              | 0.38 | 0.27 | 0.27 | 0.38 | -0.17 | -0.1  | 0     |
| YCR071C  | IMG2   | А      | 21              | 0.09 | 0.04 | 0.08 | 0.09 | 0     | 0     | 0     |
| YCR072C  |        | А      | 20              | 0.09 | 0.04 | 0.09 | 0.09 | 0     | 0     | 0     |
| YCR075C  | ERS1   | А      | 21              | 0.13 | 0.1  | 0.1  | 0.09 | -0.12 | -0.1  | -0.03 |
| YCR076C  |        | А      | 20              | 0.12 | 0.09 | 0.18 | 0.19 | -0.15 | 0     | 0     |
| YCR077C  | PAT1   | А      | 20              | 0.16 | 0.21 | 0.15 | 0.19 | -0.05 | 0     | 0     |
| YCR079W  |        | А      | 20              | 0.27 | 0.24 | 0.24 | 0.25 | -0.02 | 0.02  | 0     |
| YCR080W  |        | А      | 21              | 0.09 | 0.08 | 0.07 | 0.09 | -0.05 | 0     | 0     |
| YCR082W  |        | A      | 20              | 0.15 | 0.1  | 0.16 | 0.21 | -0.16 | -0.01 | 0.1   |
| YCR083W  |        | A      | 20              | 0.24 | 0.18 | 0.27 | 0.42 | -0.1  | 0.08  | 0.35  |
| YCR084C  | TUP1   | A      | $\frac{20}{20}$ | 0.25 | 0.32 | 0.19 | 0.21 | -0.05 | 0     | 0     |
| YCR087W  | 1011   | A      | 20              | 0.09 | 0.04 | 0.17 | 0.09 | 0.05  | 0     | Ő     |
| YCR088W  | ABP1   | Δ      | 21              | 0.11 | 0.01 | 0.07 | 0.02 | -0.19 | 0     | 0     |
| YCR090C  |        | Δ      | 20              | 0.11 | 0.00 | 0.07 | 0.1  | 0.17  | 0.02  | 0     |
| VCR096C  | ۸2     | A<br>A | 20              | 0.02 | 0.07 | 0.11 | 0.07 | 0.01  | 0.02  | 0     |
| VCR104W  |        |        | 20              | 0.12 | 0.17 | 0.13 | 0.17 | 0.01  | 0.02  | 0     |
| VCDV07W  | r AUS  |        | 20              | 0.15 | 0.22 | 0.12 | 0.10 | -0.08 | 0     | 0     |
| ICKA0/W  |        | A      | 21              | 0.09 | 0.00 | 0.1  | 0.09 | 0 12  | 0     | 0.02  |
| ICKAU8W  | 501.2  | A      | 20              | 0.11 | 0.14 | 0.08 | 0.17 | -0.12 | 0.04  | 0.05  |
| ICRAI5W  | SOL2   | A      | 20              | 0.3  | 0.2  | 0.22 | 0.5  | -0.11 | -0.04 | 0.07  |
| YCRXI/W  |        | A      | 20              | 0.3  | 0.22 | 0.25 | 0.48 | -0.05 | 0.03  | 0.16  |
| YCRXI9W  |        | A      | 21              | 0.09 | 0.06 | 0.07 | 0.09 | 0     | 0     | 0     |
| YCRX2IC  |        | A      | 21              | 0.09 | 0.05 | 0.07 | 0.09 | 0     | 0     | 0     |
| YDL001W  |        | A      | 21              | 0.09 | 0.05 | 0.07 | 0.09 | 0     | 0     | 0     |
| YDL004W  | ATP16  | A      | 20              | 1.08 | 0.83 | 3.21 | 0.77 | -0.16 | 0.21  | -0.08 |
| YDL005C  | MED2   | A      | 21              | 0.09 | 0.06 | 0.09 | 0.09 | -0.28 | 0     | 0     |
| YDL007W  | RPT2   | А      | 20              | 0.18 | 0.19 | 0.2  | 0.39 | -0.12 | -0.05 | 0.26  |
| YDL008W  | APC11  | Α      | 20              | 0.14 | 0.13 | 0.13 | 0.15 | 0     | 0     | 0     |
| YDL009C  |        | А      | 21              | 0.11 | 0.1  | 0.14 | 0.09 | -0.13 | 0     | 0     |
| YDL010W  |        | Α      | 20              | 0.12 | 0.07 | 0.07 | 0.09 | 0     | 0     | 0     |
| YDL012C  |        | А      | 41              | 0.24 | 0.17 | 0.19 | 0.19 | 0     | 0     | -0    |
| YDL014W  | NOP1   | Α      | 20              | 0.63 | 0.94 | 0.77 | 0.71 | 0.13  | -0.06 | -0.04 |
| YDL015C  |        | А      | 20              | 0.46 | 0.29 | 0.39 | 0.49 | -0.17 | 0     | 0.01  |
| YDL018C  |        | А      | 20              | 0.09 | 0.06 | 0.07 | 0.12 | 0     | 0     | 0     |
| YDL022W  | GPD1   | Α      | 20              | 4.4  | 2.94 | 2.84 | 3.92 | -0.21 | -0.13 | -0.06 |
| YDL024C  |        | А      | 21              | 0.09 | 0.04 | 0.07 | 0.14 | 0     | 0     | 0     |
| YDL029W  | ARP2   | А      | 20              | 0.52 | 0.4  | 0.63 | 0.54 | -0.05 | 0.12  | 0.05  |
| YDL033C  |        | А      | 20              | 0.09 | 0.07 | 0.07 | 0.09 | -0.13 | 0     | 0     |
| YDL038C  |        | А      | 21              | 0.09 | 0.14 | 0.09 | 0.2  | -0.08 | 0     | 0.13  |
| YDL039C  |        | А      | 21              | 0.14 | 0.1  | 0.12 | 0.23 | -0.16 | -0.05 | 0.05  |
| YDL040C  | NAT1   | А      | 21              | 0.09 | 0.06 | 0.15 | 0.09 | 0     | -0.03 | 0.02  |
| YDL042C  | SIR2   | А      | 20              | 0.09 | 0.06 | 0.07 | 0.1  | 0     | 0     | 0     |
| YDL046W  |        | A      | 21              | 0.78 | 0.43 | 0.47 | 0.62 | -0.15 | -0.18 | 0.06  |
| YDL047W  | SIT4   | A      | 21              | 0.09 | 0.05 | 0.08 | 0.09 | -0.33 | 0     | 0     |
| YDL 048C | STP4   | A      | 20              | 0.83 | 0.35 | 11   | 1 77 | -0.18 | 0.21  | 0.29  |
| YDL 049C | KNH1   | Δ      | 20              | 0.00 | 0.04 | 0.1  | 0.09 | 0.10  | 0.07  | 0     |
| VDL051W  | VI A1  | Δ      | 21              | 0.07 | 0.04 | 0.12 | 0.02 | 0     | 0.07  | 0     |
| VDI 052C | SI C1  | Λ<br>Λ | 21              | 0.11 | 0.1  | 0.12 | 0.10 | _0.11 | _0.01 | 0     |
| VDI 052C | SLUI   | л<br>л | 20              | 0.44 | 0.55 | 0.42 | 0.42 | 0.11  | -0.02 | 0     |
| VDL053C  |        | A<br>A | 20              | 0.33 | 0.23 | 0.4  | 0.4  | -0.15 | 0.04  | 0     |
| VDL055C  | DC A 1 | A      | 20              | 1 00 | 1 10 | 0.15 | 0.12 | 0 1 1 | 0.07  | 0.05  |
| VDL055U  | L2VI   | A      | 20<br>21        | 1.00 | 1.10 | 1.33 | 2.20 | -0.11 | 0.02  | 0.03  |
| YDL05/W  | DADSO  | A      | 21              | 0.09 | 0.05 | 0.07 | 0.09 | -0.27 | 0     | 0     |
| I DL039C | KAD39  | A      | 21              | 0.09 | 0.05 | 0.07 | 0.09 | 0     | 0     | 0     |

| YDL061C  | RPS29B         | А      | 22       | 3.87  | 3.76  | 2.79        | 2.04  | -0.07 | -0.14 | -0.22 |
|----------|----------------|--------|----------|-------|-------|-------------|-------|-------|-------|-------|
| YDL064W  |                | А      | 21       | 0.25  | 0.25  | 0.17        | 0.28  | 0     | -0.02 | 0     |
| YDL066W  | IDP1           | А      | 20       | 0.64  | 0.5   | 0.92        | 0.54  | -0.08 | 0.18  | -0.03 |
| YDL067C  | COX9           | А      | 20       | 1.43  | 1.01  | 2.49        | 1.15  | -0.07 | 0.28  | -0.09 |
| YDL072C  |                | А      | 20       | 1.46  | 0.79  | 1.3         | 1.58  | -0.12 | -0.08 | 0     |
| YDL075W  | RPL31A         | А      | 66       | 1.57  | 1.75  | 1.45        | 1.03  | -0.07 | 0     | -0.1  |
| YDL076C  |                | А      | 20       | 0.09  | 0.08  | 0.07        | 0.1   | 0     | 0     | 0     |
| YDL078C  | MDH3           | А      | 21       | 0.3   | 0.25  | 0.25        | 0.37  | -0.17 | -0.01 | 0.09  |
| YDL080C  | THI3           | А      | 20       | 0.1   | 0.05  | 0.1         | 0.09  | 0     | 0     | 0     |
| YDL081C  | RPP1A          | А      | 20       | 7.2   | 5.21  | 6.1         | 2.72  | -0.08 | -0.26 | -0.31 |
| YDL082W  | RPL13A         | А      | 20       | 2.42  | 4.59  | 2.31        | 2.23  | 0.11  | -0.05 | -0.03 |
| YDL083C  | RPS16B         | A      | 20       | 5.9   | 4.64  | 3.26        | 3.72  | -0.04 | -0.16 | -0.21 |
| YDL084W  |                | А      | 20       | 0.53  | 0.37  | 0.43        | 0.42  | -0.07 | 0     | -0.1  |
| YDL085W  |                | А      | 21       | 0.09  | 0.04  | 0.12        | 0.09  | 0     | 0     | 0     |
| YDL086W  |                | A      | 20       | 0.51  | 0.15  | 0.25        | 0.31  | 0     | 0     | 0     |
| YDL092W  | SRP14          | A      | 20       | 0.09  | 0.07  | 0.07        | 0.11  | 0     | 0     | 0     |
| YDL093W  | PMT5           | A      | 20       | 0.11  | 0.05  | 0.11        | 0.09  | 0     | 0     | -0    |
| YDL095W  | PMT1           | A      | 20       | 0.29  | 0.16  | 0.2         | 0.28  | -0.14 | 0     | Ő     |
| YDL097C  | RPN6           | A      | 20       | 0.13  | 0.08  | 0.11        | 0.20  | 0     | Ő     | 016   |
| YDL100C  | iu i to        | A      | 20       | 0.15  | 0.00  | 0.59        | 0.6   | -0.12 | 0.06  | 0.08  |
| YDL102W  | CDC2           | A      | 20       | 0.10  | 0.05  | 0.07        | 0.09  | 0.12  | 0.00  | 0.00  |
| YDI 103C | ORI1           | Δ      | 20       | 0.09  | 0.03  | 0.12        | 0.09  | -0.2  | 0     | 0     |
| YDL109C  | Qiui           | A      | 20       | 0.02  | 0.07  | 0.09        | 0.02  | -0.17 | -0.08 | 0     |
| YDL 110C |                | Δ      | 21       | 0.19  | 0.00  | 0.02        | 0.14  | -0.25 | 0.00  | 0     |
| VDL111C  | RRP/17         | Δ      | 20       | 0.17  | 0.13  | 0.22        | 0.21  | -0.23 | -0.03 | 011   |
| VDI 112W | KKI 72         | Δ      | 20       | 0.14  | 0.12  | 0.11        | 0.24  | -0.07 | -0.05 | 0.11  |
| VDI 120W | VFH1           | Δ      | 21       | 0.1   | 0.00  | 0.1         | 0.13  | -0.04 | 0.13  | 0     |
| VDI 122W | URD1           | Λ<br>Λ | 20       | 0.1   | 0.07  | 0.17        | 0.15  | 0     | 0.15  | 0     |
| VDI 122W | ODI I          | л<br>л | 20       | 0.09  | 0.07  | 0.11        | 0.09  | 0     | -0.07 | 0     |
| VDI 124W |                | Δ      | 20       | 1 10  | 0.11  | 2.02        | 1.83  | -0.18 | 0.13  | 0.21  |
| VDI 125C | HNT1           | Λ<br>Λ | 21<br>41 | 1.17  | 3 51  | 2.02<br>8 1 | 1.05  | -0.10 | 0.15  | 0.21  |
| VDI 126C | CDC48          | A      | 20       | 4.95  | 0.3   | 0.1         | 4.01  | -0.14 | 0.2   | -0.08 |
| VDI 128W | VCX1           | л<br>л | 20       | 1.07  | 0.5   | 1.22        | 1.58  | -0.18 | 0.02  | 0.15  |
| VDI 130W | DDD1D          | л<br>л | 21<br>41 | 20.02 | 22.16 | 1.22        | 13.96 | -0.07 | -0.05 | 0.10  |
| VDI 131W | L VS21         | A      | 20       | 1 46  | 0.62  | 14.29       | 13.80 | 0.02  | -0.10 | -0.23 |
| VDI 122W | CDC52          | A      | 20       | 1.40  | 0.02  | 1.4         | 0.0   | -0.20 | -0.02 | -0.22 |
| VDI 132W | CDC55          | A      | 21       | 0.09  | 0.07  | 0.07        | 0.09  | -0.20 | 0     | 0     |
| VDI 134C | DDU21          | A      | 21       | 0.09  | 0.04  | 0.07        | 0.09  | 02    | 0.03  | 0     |
| VDL 125C |                | A      | 20       | 0.13  | 0.08  | 0.13        | 0.13  | -0.2  | 0.05  | 0     |
| VDL 126W | DDI 25D        | A      | 20       | 0.15  | 0.09  | 0.1         | 0.11  | 0.01  | 0.05  | 0.19  |
| VDI 137W | ADE2           | A      | 20       | 2.71  | 1.19  | 2.2         | 1.06  | -0.01 | -0.05 | -0.18 |
| VDL140C  | ART2<br>DDO21  | A      | 20       | 2.71  | 1.0   | 0.2         | 0.10  | -0.10 | 0.05  | -0.07 |
| VDI 141W | DDI 1          | A      | 20       | 0.15  | 0.09  | 0.2         | 0.19  | 0     | 0     | 0     |
| VDL 142C | CPD1           | A      | 20       | 0.09  | 0.04  | 0.08        | 0.09  | 0     | 0     | 0     |
| VDI 142W | CKD1<br>CCT4   | A      | 20       | 0.15  | 0.07  | 0.07        | 0.1   | 0.00  | 0     | 0     |
| VDL 144C | CC14           | A      | 20       | 0.1   | 0.09  | 0.1         | 0.11  | -0.09 | 0.05  | 0     |
| IDL144C  | CODI           | A      | 21       | 0.20  | 0.29  | 0.24        | 0.55  | -0.01 | -0.05 | 0     |
| IDL145C  | COP1           | A      | 20       | 0.09  | 0.11  | 0.07        | 0.09  | 0     | 0     | 0.06  |
| IDL14/W  | KPINJ<br>SASIO | A      | 21       | 0.09  | 0.05  | 0.07        | 0.15  | 0     | 0     | 0.00  |
| IDLISSC  | SAS10          | A      | 20<br>20 | 0.09  | 0.05  | 0.07        | 0.09  | 0     | 0     | 0     |
| IDLISSW  | CLB3           | A      | 20       | 0.09  | 0.05  | 0.07        | 0.09  | U     | 0     | 0     |
| IDLIS/C  |                | A      | 20       | 0.22  | 0.21  | 0.28        | 0.21  | 0     | 0.04  | 0.01  |
| IDLISSC  | DIUII          | A      | 20       | 0.11  | 0.1   | 0.0/        | 0.09  | -0.21 | -0.2  | 0     |
| IDL160C  | DHHI           | A      | 21       | 0.23  | 0.15  | 0.15        | 0.18  | -0.21 | 0.07  | 0     |
| IDL165W  | CDC36          | A      | 20       | 0.26  | 0.15  | 0.31        | 0.27  | -0.11 | 0.07  | 0.08  |
| YDL168W  | SFAI           | Α      | 20       | 0.25  | 0.15  | 0.27        | 0.41  | -0.17 | -0.08 | 0.13  |

| VDI 171C            | CI T1    | ٨ | 20              | 0.20 | 0.27 | 0.27 | 0.22 | 0.05  | 0.06  | 0     |
|---------------------|----------|---|-----------------|------|------|------|------|-------|-------|-------|
| IDLI/IC<br>VDL 172W | GLII     | A | 20              | 0.29 | 0.27 | 0.27 | 0.52 | -0.05 | -0.00 | 0     |
| IDL175W             | DI D1    | A | 20              | 0.09 | 0.00 | 0.07 | 0.12 | 0     | 0     | 0     |
| YDL1/4C             | DLDI     | A | 21              | 0.25 | 0.18 | 0.19 | 0.31 | -0.24 | -0.13 | -0.03 |
| YDL178W             | AIP2     | A | 20              | 0.09 | 0.06 | 0.11 | 0.1  | 0     | 0     | 0     |
| YDL179W             | PCL9     | A | 21              | 0.09 | 0.04 | 0.07 | 0.09 | 0     | -0.08 | 0     |
| YDL180W             |          | А | 20              | 0.09 | 0.05 | 0.07 | 0.09 | 0     | 0     | 0     |
| YDL181W             | INH1     | А | 20              | 1.31 | 1.63 | 1.78 | 1.27 | -0.03 | 0.12  | -0.05 |
| YDL182W             | LYS20    | А | 21              | 6.35 | 3.03 | 4.98 | 3.4  | -0.29 | -0.15 | -0.27 |
| YDL185W             | TFP1     | А | 21              | 0.77 | 0.52 | 0.64 | 0.94 | -0.13 | -0.09 | 0.08  |
| YDL188C             | PPH22    | А | 20              | 0.9  | 0.78 | 0.9  | 0.72 | -0.13 | -0.08 | 0     |
| YDL190C             | UFD2     | Α | 20              | 0.1  | 0.07 | 0.1  | 0.1  | 0     | 0     | 0     |
| YDL191W             | RPL35A   | А | 20              | 2.15 | 2.03 | 2.42 | 1.82 | 0     | -0.03 | -0.13 |
| YDL192W             | ARF1     | А | 20              | 3.84 | 4.11 | 7.41 | 4.11 | 0.06  | 0.13  | 0.04  |
| YDL193W             |          | А | 20              | 0.09 | 0.05 | 0.1  | 0.15 | 0     | -0    | 0     |
| YDL195W             | SEC31    | А | 21              | 0.41 | 0.31 | 0.17 | 0.32 | -0.12 | 0     | 0.02  |
| YDL198C             | YHM1     | A | 21              | 0.56 | 0.38 | 0.54 | 0.36 | -0.16 | -0.05 | -0.06 |
| YDL200C             | MGT1     | Α | 21              | 0.09 | 0.06 | 0.08 | 0.1  | -0.25 | 0     | 0     |
| VDI 201W            | MOTT     | Δ | 21              | 0.02 | 0.00 | 0.00 | 0.1  | -0.25 | 0     | 0     |
| VDI 202W            | MPDI 11  | Λ | $\frac{21}{20}$ | 0.09 | 0.00 | 0.07 | 0.09 | 015   | 0     | 0     |
| VDL202W             | WIKE LTT | A | 20              | 0.09 | 0.07 | 0.11 | 0.09 | -0.15 | 01    | 0.37  |
| IDL204W             | LIEN/2   | A | 20              | 0.17 | 0.1  | 0.08 | 0.40 | 0     | -0.1  | 0.57  |
| YDL205C             | HEM5     | A | 20              | 0.09 | 0.07 | 0.07 | 0.09 | 0     | 0     | 0     |
| YDL208W             | NHP2     | A | 20              | 0.46 | 0.72 | 0.57 | 0.44 | 0.17  | 0.07  | 0     |
| YDL212W             | SHR3     | A | 20              | 0.7  | 0.51 | 0.54 | 0.36 | -0.15 | 0     | -0.13 |
| YDL213C             |          | A | 21              | 0.09 | 0.04 | 0.07 | 0.09 | 0     | 0     | 0     |
| YDL215C             | GDH2     | А | 20              | 0.11 | 0.07 | 0.12 | 0.14 | 0     | 0     | 0.05  |
| YDL217C             | TIM22    | А | 20              | 0.09 | 0.08 | 0.11 | 0.09 | 0     | 0     | 0     |
| YDL220C             | CDC13    | А | 20              | 0.13 | 0.07 | 0.07 | 0.09 | 0     | 0     | 0     |
| YDL222C             |          | А | 21              | 0.23 | 0.05 | 0.07 | 0.97 | 0     | -0.2  | 0.45  |
| YDL223C             |          | А | 20              | 0.11 | 0.06 | 0.07 | 0.42 | 0     | 0     | 0.39  |
| YDL224C             | WHI4     | А | 20              | 0.09 | 0.11 | 0.07 | 0.1  | 0     | 0     | 0     |
| YDL226C             | GCS1     | Α | 20              | 0.17 | 0.1  | 0.17 | 0.18 | -0.13 | -0.06 | 0     |
| YDL228C             |          | А | 21              | 0.09 | 0.05 | 0.08 | 0.1  | 0     | 0     | 0     |
| YDL229W             | SSB1     | А | 20              | 5.02 | 5.31 | 3.74 | 3.35 | 0.04  | -0.14 | -0.15 |
| YDL230W             | PTP1     | А | 21              | 0.09 | 0.04 | 0.07 | 0.11 | 0     | 0     | 0.07  |
| YDL232W             | OST4     | А | 21              | 1.16 | 1.19 | 1.12 | 1.17 | -0.06 | -0.08 | -0.02 |
| YDL234C             | GYP7     | А | 20              | 0.09 | 0.04 | 0.08 | 0.09 | 0     | 0     | 0     |
| YDL235C             | YPD1     | A | 20              | 0.09 | 0.05 | 0.12 | 01   | 0     | 0     | 0     |
| YDL236W             | PHO13    | A | 21              | 0.25 | 0.18 | 0.27 | 0.32 | -011  | -0.01 | 0.07  |
| YDI 237W            | 111012   | Δ | 21              | 0.23 | 0.25 | 0.27 | 0.29 | -0.13 | -0.05 | 0.08  |
| VDI 241W            |          | Δ | $\frac{21}{20}$ | 0.04 | 0.05 | 0.5  | 0.29 | 0.15  | 0.05  | 0.00  |
| VDI 246C            |          | Λ | 20              | 0.07 | 0.05 | 0.07 | 0.09 | 0.23  | 0.01  | 0     |
| VDP001C             |          |   | 20              | 0.14 | 0.15 | 0.10 | 0.09 | -0.23 | -0.01 | 0.21  |
| IDR001C             |          | A | 20              | 0.17 | 0.09 | 0.11 | 0.20 | 0 15  | 0.02  | 0.51  |
| IDR002W             |          | A | 20              | 0.52 | 0.3  | 0.40 | 0.32 | -0.15 | -0.05 | -0.1  |
| IDR005W             |          | A | 20              | 0.13 | 0.08 | 0.15 | 0.09 | -0.18 | 0     | 0     |
| YDR005C             |          | A | 21              | 0.12 | 0.06 | 0.1  | 0.11 | -0.25 | -0.05 | 0     |
| YDR006C             |          | A | 20              | 0.09 | 0.04 | 0.1  | 0.1  | 0     | -0.03 | 0.07  |
| YDR007W             | TRP1     | А | 21              | 0.21 | 0.12 | 0.27 | 0.27 | -0.28 | 0.03  | 0.12  |
| YDR009W             | GAL3     | А | 20              | 0.09 | 0.04 | 0.29 | 0.09 | 0     | 0.49  | 0     |
| YDR011W             | SNQ2     | А | 20              | 0.24 | 0.1  | 0.17 | 0.3  | -0.17 | 0     | 0     |
| YDR012W             | RPL4B    | А | 35              | 8.95 | 6.22 | 4.99 | 5.42 | -0.11 | -0.18 | -0.17 |
| YDR016C             |          | А | 20              | 0.11 | 0.07 | 0.07 | 0.09 | -0.14 | 0     | 0     |
| YDR017C             | KCS1     | А | 21              | 0.09 | 0.04 | 0.07 | 0.09 | 0     | 0     | 0     |
| YDR019C             | GCV1     | А | 21              | 0.16 | 0.17 | 0.13 | 1    | -0.13 | -0.07 | 0.64  |
| YDR020C             |          | А | 20              | 0.09 | 0.05 | 0.07 | 0.09 | 0     | 0     | 0     |
| YDR023W             | SES1     | А | 20              | 0.47 | 0.38 | 0.33 | 0.42 | -0.05 | -0.1  | -0.07 |

| YDR024W |          | А      | 20 | 0.09  | 0.08  | 0.08  | 0.09  | 0     | 0     | 0     |
|---------|----------|--------|----|-------|-------|-------|-------|-------|-------|-------|
| YDR025W | RPS11A   | А      | 94 | 1.05  | 1.34  | 1.27  | 1.25  | 0.03  | -0.05 | -0.03 |
| YDR027C |          | А      | 20 | 0.09  | 0.05  | 0.07  | 0.09  | 0     | 0     | 0     |
| YDR031W |          | А      | 20 | 0.09  | 0.04  | 0.09  | 0.1   | 0     | 0     | 0     |
| YDR032C |          | А      | 20 | 1.87  | 1.2   | 1.29  | 3.17  | -0.25 | -0.2  | 0.16  |
| YDR033W |          | А      | 20 | 9.07  | 6.59  | 5.58  | 6.13  | -0.06 | -0.16 | -0.22 |
| YDR035W | ARO3     | А      | 20 | 0.73  | 0.63  | 1.11  | 0.66  | -0.08 | 0.17  | 0     |
| YDR036C |          | А      | 21 | 0.09  | 0.1   | 0.1   | 0.15  | 0     | -0.09 | 0.1   |
| YDR037W | KRS1     | A      | 20 | 0.34  | 0.42  | 0.43  | 0.43  | 0.03  | 0.02  | 0.1   |
| YDR038C | ENA5     | A      | 20 | 0.11  | 0.08  | 0.09  | 0.09  | 0     | 0     | 0     |
| YDR039C | ENA2     | A      | 20 | 0.24  | 0.27  | 0.24  | 0.38  | -0.01 | -0.02 | 01    |
| YDR041W |          | A      | 20 | 01    | 0.06  | 0.12  | 0.09  | 0     | 0.07  | 0     |
| YDR043C |          | A      | 20 | 0.09  | 0.07  | 0.07  | 01    | 0     | 0     | Ő     |
| YDR044W | HEM13    | A      | 20 | 0.02  | 0.22  | 0.39  | 0.31  | 0     | Ő     | 0.01  |
| YDR045C | THENTI'S | A      | 20 | 0.11  | 0.07  | 0.08  | 0.11  | 0     | 0     | 0.01  |
| YDR046C | RAP3     | Δ      | 20 | 0.11  | 0.07  | 0.00  | 0.11  | -0.15 | 0     | 0 18  |
| VDR047W | HFM12    | Δ      | 20 | 0.25  | 0.21  | 0.12  | 0.3   | -0.09 | -0.09 | 0.10  |
| VDR050C | TPI1     | Δ      | 21 | 20.73 | 18 17 | 15.12 | 12.24 | -0.07 | -0.07 | -0.12 |
| VDR051C | 1111     | Δ      | 21 | 0.00  | 0.05  | 0.1   | 0.00  | -0.1  | -0.2  | -0.12 |
| VDR055W |          | л<br>л | 20 | 1.54  | 1.32  | 1.82  | 5.63  | 0.14  | 0.08  | 0.57  |
| VDP056C |          |        | 21 | 0.17  | 0.18  | 0.34  | 0.23  | -0.14 | 0.08  | 0.57  |
| VDP050C | LIBC5    |        | 20 | 0.17  | 0.10  | 0.34  | 0.23  | -0.15 | 0.04  | 01    |
| IDR039C | LCP2     | A      | 20 | 0.17  | 0.12  | 0.22  | 0.25  | -0.10 | 0.04  | 0.1   |
| IDR002W | LCD2     | A      | 20 | 0.52  | 0.22  | 0.15  | 0.19  | 0.06  | -0.19 | -0.1  |
| IDR003W | DDC12    | A      | 20 | 0.25  | 0.25  | 0.52  | 0.20  | -0.00 | -0.04 | -0.08 |
| IDR004W | KP515    | A      | 21 | 7.08  | 0.41  | 4.79  | 4.32  | -0.08 | -0.22 | -0.20 |
| YDR06/C |          | A      | 20 | 0.09  | 0.09  | 0.08  | 0.09  | 0     | -0.05 | 0 52  |
| YDR070C |          | A      | 21 | 0.51  | 0.08  | 0.52  | 2.18  | 0     | -0.05 | 0.52  |
| YDR0/IC | IDT 1    | A      | 20 | 0.17  | 0.12  | 0.16  | 0.10  | 0     | -0.02 | 0     |
| YDR072C |          | A      | 21 | 0.37  | 0.27  | 0.32  | 0.43  | -0.13 | -0.06 | 0     |
| YDR0/3W | SNF11    | A      | 20 | 0.09  | 0.06  | 0.07  | 0.09  | 0     | 0     | 0     |
| YDR0/4W | IPS2     | A      | 20 | 0.29  | 0.09  | 0.15  | 0.21  | 0     | -0.11 | 0     |
| YDR0//W | SEDI     | A      | 20 | 6.78  | 5.06  | 6.65  | /.48  | -0.14 | -0.1  | 0.03  |
| YDR0/9W | PETIOO   | A      | 21 | 0.12  | 0.09  | 0.13  | 0.13  | -0.17 | 0.06  | 0     |
| YDR082W | STNI     | A      | 21 | 0.09  | 0.04  | 0.07  | 0.09  | 0     | 0     | 0     |
| YDR084C | ~~~      | A      | 20 | 0.45  | 0.3   | 0.34  | 0.36  | -0.12 | 0     | -0.05 |
| YDR086C | SSSI     | A      | 21 | 0.88  | 0.62  | 0.66  | 0.48  | -0.09 | -0.08 | -0.15 |
| YDR090C |          | A      | 21 | 0.16  | 0.11  | 0.15  | 0.18  | -0.1  | -0.08 | 0     |
| YDR091C |          | A      | 20 | 0.13  | 0.16  | 0.16  | 0.19  | 0     | 0     | 0     |
| YDR092W | UBC13    | Α      | 20 | 0.44  | 0.42  | 0.73  | 0.66  | -0.04 | 0.1   | 0.09  |
| YDR093W |          | A      | 20 | 0.09  | 0.05  | 0.1   | 0.09  | 0     | 0     | 0     |
| YDR094W |          | А      | 21 | 0.1   | 0.04  | 0.11  | 0.1   | 0     | -0.06 | 0     |
| YDR097C | MSH6     | А      | 20 | 0.09  | 0.06  | 0.07  | 0.09  | 0     | 0     | 0     |
| YDR098C |          | А      | 21 | 0.12  | 0.1   | 0.1   | 0.13  | -0.17 | 0     | 0     |
| YDR099W | BMH2     | А      | 20 | 0.72  | 0.56  | 0.48  | 0.7   | -0.12 | 0     | 0.05  |
| YDR100W |          | А      | 20 | 0.87  | 0.46  | 0.5   | 0.82  | -0.26 | -0.2  | -0.03 |
| YDR101C |          | А      | 20 | 0.09  | 0.06  | 0.08  | 0.09  | 0     | 0     | 0     |
| YDR103W | STE5     | А      | 20 | 0.09  | 0.05  | 0.07  | 0.09  | 0     | 0     | 0     |
| YDR105C |          | А      | 20 | 0.19  | 0.11  | 0.24  | 0.18  | -0.2  | 0     | 0     |
| YDR107C |          | А      | 21 | 0.29  | 0.18  | 0.23  | 0.15  | -0.14 | -0.07 | -0.06 |
| YDR111C |          | А      | 21 | 0.09  | 0.08  | 0.07  | 0.09  | -0.16 | 0     | 0     |
| YDR115W |          | А      | 20 | 0.2   | 0.15  | 0.23  | 0.24  | -0.07 | 0     | 0.09  |
| YDR116C |          | А      | 20 | 0.11  | 0.05  | 0.07  | 0.09  | 0     | 0     | 0     |
| YDR117C |          | А      | 20 | 0.09  | 0.07  | 0.07  | 0.09  | 0     | 0     | 0     |
| YDR119W |          | А      | 20 | 0.11  | 0.1   | 0.08  | 0.14  | 0     | 0     | 0     |
| YDR120C | TRM1     | А      | 20 | 0.09  | 0.05  | 0.07  | 0.09  | 0     | 0     | 0     |

| YDR121W            |                | А      | 20              | 0.09  | 0.05         | 0.07          | 0.09  | 0     | 0     | 0     |
|--------------------|----------------|--------|-----------------|-------|--------------|---------------|-------|-------|-------|-------|
| YDR123C            | INO2           | А      | 21              | 0.09  | 0.06         | 0.09          | 0.09  | -0.31 | 0     | 0     |
| YDR126W            |                | А      | 20              | 0.09  | 0.12         | 0.07          | 0.14  | -0.16 | 0     | 0     |
| YDR127W            | ARO1           | А      | 21              | 0.2   | 0.16         | 0.21          | 0.19  | -0.1  | 0     | 0     |
| YDR128W            |                | А      | 21              | 0.09  | 0.04         | 0.07          | 0.09  | 0     | 0     | 0     |
| YDR129C            | SAC6           | А      | 21              | 0.41  | 0.2          | 0.31          | 0.3   | -0.18 | -0.07 | -0.04 |
| YDR130C            |                | А      | 20              | 0.09  | 0.05         | 0.07          | 0.09  | 0     | 0     | 0     |
| YDR133C            |                | A      | 16              | 10.29 | 8.07         | 6.47          | 5.16  | -0.13 | -0.19 | -0.24 |
| YDR134C            |                | A      | 34              | 14.56 | 12.15        | 12.18         | 9.7   | -0.12 | -0.13 | -0.18 |
| YDR138W            | HPR1           | A      | 21              | 0.09  | 0.04         | 0.07          | 0.09  | 0     | 0     | 0     |
| YDR139C            | RUB1           | A      | 40              | 0.24  | 0.17         | 0.19          | 0.22  | -011  | -0.02 | 0.01  |
| YDR140W            | Rebi           | A      | 21              | 0.12  | 0.22         | 0.12          | 0.33  | -0.1  | -0.01 | 0.09  |
| YDR141C            |                | A      | 20              | 0.09  | 0.04         | 0.08          | 0.09  | 0     | 0     | 0     |
| YDR142C            | PEX7           | A      | $\frac{20}{20}$ | 0.09  | 0.06         | 0.09          | 01    | -0.23 | Ő     | Ő     |
| YDR143C            | SAN1           | A      | 20              | 0.09  | 0.00         | 0.07          | 0.09  | 0     | 0     | 0     |
| YDR144C            | MKC7           | A      | 21              | 0.09  | 0.09         | 0.07          | 0.09  | -0.18 | 0     | 0     |
| YDR146C            | SWI5           | Δ      | 20              | 0.09  | 0.05         | 0.07          | 0.09  | -0.22 | 0     | 0     |
| YDR147W            | 5 115          | Δ      | 20              | 0.09  | 0.00         | 0.07          | 0.02  | -0.22 | 0     | 0 09  |
| YDR148C            | KGD2           | Δ      | 20              | 0.02  | 0.07         | 0.07          | 0.12  | 0     | 011   | -0.05 |
| VDR151C            | CTH1           | л<br>л | 20              | 0.01  | 0.17         | 0.4           | 0.17  | 0.11  | 0.11  | -0.05 |
| VDR152W            | CIIII          | л<br>л | 20              | 0.09  | 0.08         | 0.07          | 0.1   | -0.11 | 0     | 0     |
| VDP152C            |                |        | 20              | 0.09  | 0.08         | 0.07          | 0.09  | 0     | 0     | 0     |
| VDP154C            |                | A      | 20              | 20.52 | 32.8         | 0.12<br>36.58 | 25.26 | 0.06  | 01    | 0.02  |
| VDP155C            | CDU1           | A      | 20              | 071   | 22.0<br>8.22 | 8.00          | 10.17 | -0.00 | -0.1  | -0.02 |
| VDP156W            | DDA14          | A      | 20              | 9.71  | 0.33         | 0.09          | 0.44  | -0.11 | -0.14 | 0     |
| IDRIJOW<br>VDD159W | KPA14          | A      | 20              | 0.3   | 0.42         | 0.34          | 0.44  | 0.07  | -0.01 | 0     |
| IDR138W            | HOM2           | A      | 20              | 2.28  | 1.08         | 2.78          | 1.01  | -0.07 | 0.14  | -0    |
| IDR100W            | 55 I I<br>TCI1 | A      | 21              | 0.09  | 0.04         | 0.07          | 0.09  | 0     | 0     | 0     |
| YDR161W            | ICII           | A      | 20              | 0.09  | 0.07         | 0.07          | 0.09  | 0     | 0     | 0     |
| YDR105W            |                | A      | 21              | 0.09  | 0.06         | 0.07          | 0.09  | 0     | 0     | 0     |
| IDR105W            | SEC.           | A      | 20              | 0.09  | 0.00         | 0.07          | 0.09  | 0     | 0     | 0     |
| YDR166C            | SECS           | A      | 21              | 0.09  | 0.05         | 0.07          | 0.09  | 0     | 0     | 0     |
| YDR16/W            | IAF25          | A      | 20              | 0.1   | 0.04         | 0.09          | 0.09  | 0     | 0     | 0     |
| YDR170C            | SEC/           | A      | 21              | 0.09  | 0.06         | 0.07          | 0.09  | -0.22 | 0     | 0     |
| YDR1/IW            | HSP42          | A      | 20              | 0.5   | 0.34         | 0.27          | 0.36  | -0.3  | -0.3  | -0.15 |
| YDR1/2W            | SUP35          | A      | 20              | 0.23  | 0.27         | 0.23          | 0.26  | -0.19 | 0     | 0     |
| YDR174W            | UDCI           | A      | 21              | 0.57  | 0.42         | 0.49          | 0.9   | -0.13 | 0     | 0.09  |
| YDR1//W            | UBCI           | A      | 21              | 0.21  | 0.21         | 0.26          | 0.24  | -0.04 | 0.11  | 0.06  |
| YDR1/8W            | SDH4           | A      | 20              | 2.47  | 1.95         | 4.61          | 2.07  | -0.14 | 0.2   | -0.06 |
| YDR182W            | CDCI           | A      | 20              | 0.13  | 0.1          | 0.21          | 0.11  | -0.1  | -0.02 | 0     |
| YDR185C            |                | A      | 20              | 0.09  | 0.05         | 0.08          | 0.09  | 0     | 0     | 0     |
| YDR18/C            | COT            | A      | 20              | 0.09  | 0.06         | 0.07          | 0.09  | 0     | 0     | 0     |
| YDR188W            | CCT6           | A      | 20              | 0.32  | 0.26         | 0.26          | 0.32  | -0.06 | -0.06 | 0.07  |
| YDR190C            |                | A      | 20              | 0.15  | 0.18         | 0.16          | 0.23  | 0.01  | 0     | 0     |
| YDR194C            | MSS116         | A      | 20              | 0.11  | 0.09         | 0.07          | 0.09  | 0     | 0     | 0     |
| YDR196C            |                | Α      | 20              | 0.1   | 0.07         | 0.1           | 0.1   | 0     | 0     | 0     |
| YDR204W            | COQ4           | А      | 21              | 0.12  | 0.11         | 0.11          | 0.23  | -0.3  | 0     | 0.19  |
| YDR205W            |                | А      | 21              | 0.09  | 0.06         | 0.07          | 0.1   | 0     | 0     | 0     |
| YDR208W            | MSS4           | А      | 20              | 0.09  | 0.05         | 0.07          | 0.09  | 0     | 0     | 0     |
| YDR209C            |                | А      | 21              | 0.09  | 0.07         | 0.07          | 0.09  | -0.21 | 0     | 0     |
| YDR210W            |                | А      | 20              | 0.25  | 0.23         | 0.3           | 0.22  | -0.15 | 0.08  | -0.01 |
| YDR212W            | TCP1           | А      | 21              | 0.18  | 0.11         | 0.11          | 0.17  | -0.24 | -0.18 | 0.05  |
| YDR214W            |                | А      | 20              | 0.27  | 0.16         | 0.23          | 1.09  | -0.24 | -0.02 | 0.53  |
| YDR216W            | ADR1           | А      | 20              | 0.09  | 0.07         | 0.08          | 0.09  | 0     | 0     | 0     |
| YDR220C            |                | А      | 20              | 0.09  | 0.1          | 0.07          | 0.09  | -0.17 | 0     | 0     |
| YDR222W            |                | А      | 21              | 0.09  | 0.12         | 0.08          | 0.26  | -0.15 | 0     | 0.3   |

| YDR224C  | HTB1         | А      | 19              | 1.72 | 2    | 1.75 | 1.31  | -0.01 | 0.02  | -0.13 |
|----------|--------------|--------|-----------------|------|------|------|-------|-------|-------|-------|
| YDR225W  | HTA1         | А      | 32              | 4.13 | 2.61 | 3.02 | 2.54  | -0.07 | -0.07 | -0.19 |
| YDR226W  | ADK1         | А      | 20              | 3.57 | 2.45 | 4.6  | 3.44  | -0.11 | 0.02  | -0.05 |
| YDR231C  |              | А      | 20              | 0.29 | 0.1  | 0.29 | 0.17  | -0.18 | 0.13  | 0     |
| YDR232W  | HEM1         | А      | 21              | 0.7  | 0.57 | 0.6  | 0.71  | -0.08 | -0.04 | 0     |
| YDR233C  |              | А      | 20              | 2.35 | 2.2  | 2.24 | 2.57  | -0.06 | -0.05 | -0.01 |
| YDR234W  | LYS4         | A      | 20              | 1.09 | 0.81 | 0.87 | 0.46  | -0.15 | 0     | -0.19 |
| YDR235W  | PRP42        | A      | 20              | 0.09 | 0.04 | 0.07 | 0.09  | 0     | 0     | 0     |
| YDR236C  |              | A      | 21              | 0.13 | 0.13 | 0.11 | 0.17  | 0     | 0     | 0     |
| YDR238C  | SEC26        | A      | 21              | 0.19 | 0.19 | 0.25 | 0.31  | -0.12 | 0.01  | 0.02  |
| YDR239C  | 22020        | A      | 21              | 0.1  | 0.05 | 0.07 | 0.09  | 0     | 0     | 0     |
| YDR242W  | AMD2         | A      | 21              | 0.09 | 0.05 | 0.09 | 0.09  | 0     | 0.02  | Ő     |
| YDR245W  | MNN10        | A      | 20              | 0.13 | 0.02 | 0.11 | 0.12  | 0     | 0     | Ő     |
| YDR247W  | 1011 (1110   | A      | $\frac{20}{20}$ | 0.13 | 0.16 | 0.29 | 0.28  | -0.21 | 0.03  | 011   |
| YDR248C  |              | Δ      | 20              | 0.23 | 0.10 | 0.2) | 0.20  | -0.17 | 0.05  | 0.11  |
| VDR252W  | BTT1         | Δ      | 20              | 0.11 | 0.07 | 0.08 | 0.12  | 0.17  | -0.07 | 0     |
| VDR258C  | HSD78        | л<br>л | 20              | 0.02 | 0.04 | 0.00 | 0.09  | 0     | -0.07 | 0.17  |
| VDP260C  | 1151 / 6     | A      | 20              | 0.15 | 0.04 | 0.00 | 0.19  | 0     | 0     | 0.17  |
| VDP261C  | EVC2         | A      | 20              | 0.09 | 0.09 | 0.14 | 0.09  | 0.11  | 0     | 01    |
| IDK201C  | EAU2         | A      | 21              | 0.10 | 0.14 | 0.15 | 0.29  | -0.11 | 0.01  | 0.1   |
| IDK202W  |              | A      | 21              | 0.18 | 0.11 | 0.11 | 0.2   | -0.17 | -0.01 | 0.09  |
| YDR264C  | AKKI         | A      | 20              | 0.11 | 0.06 | 0.12 | 0.2   | 0     | 0     | 0.10  |
| YDR266C  |              | A      | 21              | 0.11 | 0.08 | 0.07 | 0.09  | -0.23 | 0     | 0     |
| YDR26/C  |              | A      | 21              | 0.09 | 0.06 | 0.1  | 0.1   | 0     | 0     | 0     |
| YDR2/IC  |              | A      | 20              | 0.09 | 0.06 | 0.07 | 0.09  | 0     | 0     | 0     |
| YDR272W  | GLO2         | A      | 20              | 0.21 | 0.16 | 0.26 | 0.33  | 0     | 0.06  | 0.16  |
| YDR275W  |              | Α      | 20              | 0.11 | 0.1  | 0.13 | 0.24  | -0.05 | 0.02  | 0.18  |
| YDR276C  |              | А      | 21              | 8.06 | 5.35 | 6.18 | 6.68  | -0.21 | -0.11 | -0.03 |
| YDR280W  |              | А      | 21              | 0.09 | 0.09 | 0.09 | 0.09  | -0.08 | 0     | 0     |
| YDR284C  | DPP1         | А      | 21              | 0.54 | 0.3  | 0.26 | 0.33  | -0.21 | -0.19 | -0.15 |
| YDR286C  |              | А      | 20              | 0.1  | 0.07 | 0.08 | 0.13  | 0     | 0     | 0     |
| YDR287W  |              | А      | 20              | 0.09 | 0.05 | 0.07 | 0.09  | 0     | 0     | 0     |
| YDR291W  |              | А      | 20              | 0.09 | 0.06 | 0.07 | 0.09  | 0     | 0     | 0     |
| YDR292C  | SRP101       | А      | 20              | 0.09 | 0.06 | 0.09 | 0.13  | 0     | 0     | 0     |
| YDR293C  | SSD1         | А      | 21              | 0.09 | 0.06 | 0.07 | 0.1   | 0     | 0     | 0     |
| YDR294C  | DPL1         | Α      | 20              | 0.16 | 0.15 | 0.17 | 0.3   | 0     | 0     | 0.15  |
| YDR296W  |              | А      | 20              | 0.17 | 0.11 | 0.18 | 0.16  | -0.24 | 0     | 0     |
| YDR297W  | SUR2         | А      | 20              | 1.38 | 0.95 | 1.3  | 1.66  | 0     | -0.03 | 0.11  |
| YDR298C  | ATP5         | А      | 20              | 2.2  | 1.67 | 3.27 | 1.49  | -0.09 | 0.12  | -0.15 |
| YDR300C  | PRO1         | Α      | 20              | 0.09 | 0.07 | 0.13 | 0.09  | -0.12 | 0     | 0     |
| YDR301W  | CFT1         | Α      | 21              | 0.09 | 0.04 | 0.07 | 0.09  | -0.31 | 0     | 0     |
| YDR302W  |              | Α      | 20              | 0.09 | 0.1  | 0.09 | 0.09  | -0.23 | 0     | 0     |
| YDR303C  |              | А      | 20              | 0.09 | 0.05 | 0.07 | 0.09  | 0     | 0     | 0     |
| YDR304C  | CYP5         | А      | 21              | 1.16 | 0.83 | 1.11 | 1.48  | -0.09 | -0.06 | 0.09  |
| YDR306C  |              | А      | 20              | 0.09 | 0.05 | 0.12 | 0.11  | 0     | 0     | 0     |
| YDR307W  |              | А      | 21              | 0.11 | 0.08 | 0.07 | 0.09  | -0.25 | 0     | 0     |
| YDR308C  | SRB7         | А      | 20              | 0.09 | 0.05 | 0.07 | 0.09  | 0     | 0     | 0     |
| YDR309C  |              | А      | 21              | 0.13 | 0.14 | 0.22 | 0.12  | 0     | -0.03 | 0     |
| YDR315C  |              | A      | 20              | 0.09 | 0.04 | 0.07 | 0.09  | 0     | 0     | 0     |
| YDR318W  | MCM21        | A      | 21              | 0.09 | 0.04 | 0.09 | 0.09  | 0     | 0     | Õ     |
| YDR319C  |              | A      | 21              | 0.11 | 0.1  | 0.16 | 0.11  | 0     | -0 09 | Ő     |
| YDR320C  |              | Δ      | 21              | 0.00 | 0.05 | 0.10 | 0.1   | 0     | 0     | 0 07  |
| YDR321W  | <b>4 SD1</b> | Δ      | 20              | 0.09 | 0.05 | 0.18 | 0.17  | -0.00 | 0     | _0.07 |
| VDR322W  | MRDI 25      | Δ      | 20              | 0.20 | 0.2  | 0.16 | 0.17  | 0.07  | 0     | 0.1   |
| VDR322W  | DED7         | л<br>л | 20              | 0.12 | 0.1  | 0.10 | 0.17  | 0     | 0     | 0     |
| VDR329C  |              | л<br>л | 20              | 0.09 | 0.00 | 1 16 | 1 1 2 | 0.05  | 0.04  | 0     |
| 1 DK320C | SKLI         | A      | 20              | 0.93 | 0.04 | 1.10 | 1.10  | -0.05 | 0.04  | U     |

| YDR329C | PEX3     | А | 20 | 0.09  | 0.06  | 0.07  | 0.1   | 0     | 0     | 0     |
|---------|----------|---|----|-------|-------|-------|-------|-------|-------|-------|
| YDR335W | MSN5     | А | 21 | 0.09  | 0.06  | 0.1   | 0.09  | 0     | -0.02 | 0     |
| YDR337W | MRPS28   | А | 20 | 0.12  | 0.05  | 0.12  | 0.12  | 0     | -0.04 | 0     |
| YDR338C |          | А | 20 | 0.09  | 0.06  | 0.08  | 0.09  | 0     | 0     | 0     |
| YDR339C |          | А | 20 | 0.09  | 0.14  | 0.15  | 0.18  | -0.02 | 0.06  | 0.04  |
| YDR341C |          | А | 20 | 0.32  | 0.26  | 0.36  | 0.29  | -0.05 | -0.01 | -0.03 |
| YDR342C | HXT7     | A | 20 | 6.13  | 3.01  | 4.56  | 4.07  | -0.33 | -0.24 | -0.19 |
| YDR343C | HXT6     | A | 20 | 6     | 2.42  | 4.84  | 3.68  | -0.42 | -0.16 | -0.18 |
| YDR345C | HXT3     | A | 20 | 3.77  | 2.58  | 0.09  | 2.42  | -0.16 | -1.4  | -0.18 |
| YDR346C |          | A | 20 | 0.11  | 0.13  | 0.13  | 0.09  | -0.17 | 0     | 0     |
| YDR347W | MRP1     | A | 21 | 0.22  | 0.18  | 0.32  | 03    | -0.19 | 1E-16 | 0     |
| YDR348C | initia i | A | 20 | 0.09  | 0.05  | 0.07  | 0.09  | 0     | 0     | 0     |
| YDR349C | YPS4     | A | 20 | 0.02  | 0.03  | 0.24  | 0.24  | -0.09 | Ő     | 01    |
| YDR350C | TCM10    | A | 21 | 0.09  | 0.21  | 0.07  | 0.09  | 0     | Ő     | 0     |
| YDR352W | remito   | Δ | 21 | 0.09  | 0.07  | 0.07  | 0.09  | -0.18 | 0     | 0     |
| YDR353W | TRR1     | Δ | 20 | 2.14  | 2 43  | 249   | 2 49  | -0.01 | -0.02 | -0.06 |
| VDR354W |          | Δ | 20 | 0.19  | 0.16  | 0.22  | 0.00  | -0.05 | -0.02 | -0.1  |
| YDR357C | 11(14    | Δ | 20 | 0.19  | 0.10  | 0.22  | 0.02  | -0.05 | -0.00 | -0.1  |
| VDR358W |          |   | 20 | 0.09  | 0.08  | 0.09  | 0.09  | -0.22 | 0.06  | 0     |
| VDP362C | TEC6     |   | 21 | 0.09  | 0.05  | 0.08  | 0.09  | -0.23 | -0.00 | 0     |
| VDP264C | CDC40    |   | 21 | 0.09  | 0.05  | 0.07  | 0.09  | 0     | 0     | 0     |
| IDK304C | CDC40    | A | 20 | 0.09  | 0.04  | 0.08  | 0.09  | 0     | 0     | 0     |
| IDR505C |          | A | 20 | 0.09  | 0.08  | 0.07  | 0.09  | 0     | 0.07  | 0.01  |
| IDK50/W | VDD 1    | A | 20 | 0.54  | 0.51  | 0.41  | 0.57  | -0.1  | -0.07 | 0.01  |
| IDK506W | IPKI     | A | 20 | 0.91  | 0.78  | 1.05  | 1.05  | -0.15 | 0.05  | 0.08  |
| IDK5/5W | DCC1     | A | 20 | 0.09  | 0.05  | 0.07  | 0.1   | 0     | 0     | 0     |
| IDK5/5C | BCS1     | A | 21 | 0.09  | 0.04  | 0.07  | 0.09  | 0 17  | 0     | 0     |
| IDK5/0W | AKHI     | A | 20 | 0.09  | 0.07  | 0.07  | 0.09  | -0.17 | 0     | 0     |
| YDR3//W | AIP1/    | A | 20 | 0.48  | 0.33  | 0.62  | 0.39  | -0.2  | 0.19  | -0.05 |
| YDR3/8C |          | A | 20 | 0.13  | 0.15  | 0.16  | 0.18  | -0.2  | 0     | 0     |
| YDR381W | YRAI     | A | 20 | 0.41  | 0.47  | 0.5   | 0.26  | 0     | -0.01 | -0.16 |
| YDR382W | RPP2B    | A | 20 | 30.31 | 23.08 | 17.09 | 13.72 | -0.08 | -0.25 | -0.33 |
| YDR384C |          | A | 21 | 0.5   | 0.37  | 0.12  | 0.34  | -0.07 | -0.25 | -0.07 |
| YDR385W | EF12     | A | 20 | 3.6   | 3.35  | 2.35  | 3     | -0.07 | -0.19 | -0.09 |
| YDR38/C |          | A | 21 | 0.09  | 0.04  | 0.09  | 0.11  | 0     | 0     | 0     |
| YDR388W | RVS167   | A | 21 | 2.09  | 1.5   | 1.57  | 2.45  | -0.11 | -0.11 | 0.04  |
| YDR389W | SAC7     | A | 21 | 0.09  | 0.05  | 0.07  | 0.09  | 0     | 0     | 0     |
| YDR390C | UBA2     | A | 20 | 0.09  | 0.05  | 0.07  | 0.09  | 0     | 0     | 0     |
| YDR391C | ~~~~     | A | 20 | 0.31  | 0.22  | 0.27  | 0.34  | -0.24 | -0.07 | 0.07  |
| YDR392W | SPT3     | A | 21 | 0.09  | 0.04  | 0.09  | 0.09  | 0     | -0.02 | 0     |
| YDR394W | RPT3     | A | 21 | 0.15  | 0.1   | 0.09  | 0.16  | -0.23 | 0     | 0     |
| YDR395W | SXM1     | A | 20 | 0.1   | 0.11  | 0.13  | 0.13  | -0.06 | -0.06 | 0     |
| YDR397C | NCB2     | Α | 20 | 0.09  | 0.04  | 0.13  | 0.1   | 0     | 0     | 0     |
| YDR398W |          | Α | 21 | 0.09  | 0.11  | 0.15  | 0.09  | 0.1   | 0.07  | 0.04  |
| YDR399W | HPT1     | Α | 21 | 0.22  | 0.38  | 0.22  | 0.29  | 0.12  | -0.04 | 0.11  |
| YDR400W |          | А | 21 | 0.11  | 0.11  | 0.18  | 0.09  | -0.11 | 0.18  | 0     |
| YDR404C | RPB7     | А | 20 | 1.63  | 1.23  | 0.9   | 1.17  | -0.04 | -0.14 | -0.07 |
| YDR407C |          | А | 20 | 0.09  | 0.06  | 0.07  | 0.09  | 0     | 0     | 0     |
| YDR408C | ADE8     | А | 21 | 0.26  | 0.27  | 0.24  | 0.27  | -0.06 | 0     | 0.01  |
| YDR409W |          | А | 20 | 0.09  | 0.05  | 0.07  | 0.09  | 0     | 0     | 0     |
| YDR410C | STE14    | А | 20 | 0.4   | 0.27  | 0.25  | 0.42  | -0.16 | 0     | 0.06  |
| YDR411C |          | А | 20 | 0.33  | 0.33  | 0.59  | 0.28  | -0.05 | 0.18  | -0.04 |
| YDR415C |          | А | 20 | 0.09  | 0.06  | 0.07  | 0.11  | 0     | 0     | 0     |
| YDR418W | RPL12B   | А | 20 | 4.88  | 4.53  | 3.91  | 2.88  | -0.09 | -0.17 | -0.18 |
| YDR422C | SIP1     | А | 20 | 0.09  | 0.05  | 0.07  | 0.09  | 0     | 0     | 0     |
| YDR423C | CAD1     | Α | 21 | 0.11  | 0.07  | 0.09  | 0.09  | 0     | 0     | 0     |

| YDR424C   | DYN2          | Α      | 20 | 0.12         | 0.08         | 0.15 | 0.14 | -0.2  | 0.07  | 0.04  |
|-----------|---------------|--------|----|--------------|--------------|------|------|-------|-------|-------|
| YDR427W   | RPN9          | Α      | 21 | 0.19         | 0.16         | 0.22 | 0.28 | -0.16 | -0.05 | 0.14  |
| YDR429C   | TIF35         | А      | 20 | 0.35         | 0.32         | 0.3  | 0.35 | -0.04 | 0     | 0     |
| YDR432W   | NPL3          | А      | 20 | 0.19         | 0.13         | 0.1  | 0.14 | -0.19 | 0     | 0     |
| YDR433W   |               | А      | 31 | 1.23         | 1.3          | 0.93 | 1.98 | 0.02  | -0.08 | 0.17  |
| YDR434W   |               | А      | 20 | 0.17         | 0.28         | 0.26 | 0.29 | -0.01 | 0.14  | 0.11  |
| YDR435C   |               | А      | 21 | 0.13         | 0.07         | 0.16 | 0.09 | 0     | 0     | -0    |
| YDR436W   | PPZ2          | А      | 20 | 0.09         | 0.04         | 0.07 | 0.09 | 0     | 0     | 0     |
| YDR441C   | APT2          | А      | 20 | 0.33         | 0.46         | 0.36 | 0.34 | 0.02  | -0.01 | 0     |
| YDR447C   | RPS17B        | А      | 20 | 3.3          | 3.09         | 3.09 | 1.85 | -0.03 | -0.11 | -0.14 |
| YDR450W   | RPS18A        | А      | 26 | 1.45         | 3.12         | 2.91 | 2.15 | 0.2   | 0.23  | 0.01  |
| YDR451C   |               | A      | 20 | 0.09         | 0.06         | 0.07 | 0.09 | 0     | 0     | 0     |
| YDR452W   |               | A      | 20 | 0.15         | 0.11         | 0.17 | 0.22 | 0     | 0     | 0     |
| YDR453C   |               | A      | 20 | 0.2          | 0.07         | 0.14 | 1.66 | 0     | 0     | 0.88  |
| YDR454C   | GUK1          | A      | 21 | 3.37         | 2.96         | 3.18 | 2.07 | -0.06 | -0.02 | -0.21 |
| YDR456W   | NHX1          | A      | 20 | 0.09         | 0.14         | 0.07 | 0.11 | -0.19 | 0     | 0     |
| YDR457W   | TOM1          | A      | 20 | 0.09         | 0.12         | 0.11 | 0.09 | 0.06  | -0.05 | Ő     |
| YDR459C   | 10001         | Δ      | 21 | 0.09         | 0.12         | 0.11 | 0.02 | -0.23 | 0.05  | -0.03 |
| YDR461W   | MFA1          | Δ      | 21 | 0.17<br>4 42 | 0.12<br>0.04 | 4 53 | 5 25 | -0.23 | 0.02  | 0.05  |
| VDR461W   | MPDI 28       | Λ      | 21 | 0.1          | 0.04         | 0.18 | 0.17 | -1.90 | 0.02  | 0.00  |
| VDR462W   | STP1          | л<br>л | 21 | 0.1          | 0.08         | 0.10 | 0.17 | 0     | 0.07  | 0.15  |
| VDD464W   | STF1<br>SDD41 | A      | 20 | 0.09         | 0.09         | 0.1  | 0.11 | 0.01  | 0     | 0.00  |
| 1 DR404 W | 56641         | A      | 20 | 0.1          | 0.12         | 0.11 | 0.09 | 0.01  | 0     | 0     |
| IDK403C   |               | A      | 21 | 0.09         | 0.09         | 0.07 | 0.09 | -0.03 | 0     | 0     |
| IDR400W   |               | A      | 20 | 0.09         | 0.08         | 0.07 | 0.09 | -0.2  | 0     | 0     |
| YDR468C   | ILGI          | A      | 21 | 0.09         | 0.05         | 0.09 | 0.11 | -0.3  | 0     | 0     |
| YDR4/0C   |               | A      | 20 | 0.09         | 0.08         | 0.07 | 0.09 | 0     | 0     | 0     |
| YDR4/1W   | RPL2/B        | A      | 20 | 0.82         | 1.28         | 1.39 | 1.35 | 0.21  | 0.25  | 0.19  |
| YDR472W   |               | A      | 20 | 0.14         | 0.11         | 0.17 | 0.17 | 0     | 0.07  | 0.13  |
| YDR474C   |               | A      | 20 | 0.09         | 0.06         | 0.1  | 0.1  | 0     | 0     | 0.06  |
| YDR476C   |               | A      | 21 | 0.72         | 0.52         | 0.93 | 0.62 | -0.05 | 0.08  | -0.03 |
| YDR477W   | SNF1          | A      | 21 | 0.29         | 0.16         | 0.13 | 0.29 | -0.1  | 0     | 0     |
| YDR479C   |               | A      | 21 | 0.15         | 0.09         | 0.1  | 0.13 | -0.19 | -0.07 | 0     |
| YDR481C   | PHO8          | Α      | 21 | 0.25         | 0.26         | 0.26 | 0.37 | -0.04 | 0     | 0.16  |
| YDR482C   |               | А      | 21 | 0.09         | 0.04         | 0.1  | 0.09 | 0     | 0     | 0     |
| YDR483W   | KRE2          | А      | 20 | 0.67         | 0.58         | 0.85 | 1.13 | 0     | 0.02  | 0.16  |
| YDR486C   |               | А      | 20 | 0.09         | 0.06         | 0.09 | 0.09 | 0     | -0.06 | 0     |
| YDR487C   | RIB3          | А      | 20 | 0.13         | 0.21         | 0.35 | 0.22 | 0.09  | 0.31  | 0.19  |
| YDR489W   |               | А      | 21 | 0.09         | 0.06         | 0.07 | 0.09 | -0.25 | 0     | 0     |
| YDR490C   |               | А      | 21 | 0.12         | 0.05         | 0.08 | 0.09 | -0.33 | 0     | 0     |
| YDR492W   |               | А      | 21 | 0.24         | 0.28         | 0.4  | 0.42 | 0.09  | 0.12  | 0.18  |
| YDR493W   |               | А      | 20 | 0.09         | 0.06         | 0.08 | 0.09 | -0.24 | 0     | 0     |
| YDR494W   |               | А      | 21 | 0.09         | 0.04         | 0.07 | 0.09 | 0     | 0     | 0     |
| YDR497C   | ITR1          | А      | 20 | 4.04         | 3.86         | 6.05 | 3.14 | 0.01  | 0.25  | -0.13 |
| YDR498C   | SEC20         | Α      | 21 | 0.11         | 0.11         | 0.2  | 0.14 | -0.02 | 0.11  | 0     |
| YDR500C   | RPL37B        | А      | 21 | 5.12         | 7.72         | 8.36 | 5.04 | 0.15  | 0.21  | -0.01 |
| YDR502C   | SAM2          | А      | 20 | 2.5          | 2.08         | 2.09 | 2.01 | -0.04 | -0.04 | -0.07 |
| YDR503C   | LPP1          | А      | 20 | 0.14         | 0.12         | 0.18 | 0.14 | -0.21 | 0     | 0.05  |
| YDR504C   |               | А      | 20 | 0.18         | 0.16         | 0.18 | 0.22 | -0.12 | 0     | 0     |
| YDR505C   | PSP1          | А      | 20 | 0.09         | 0.06         | 0.07 | 0.1  | 0     | 0     | 0     |
| YDR506C   |               | А      | 21 | 0.09         | 0.07         | 0.07 | 0.09 | -0.33 | 0     | 0     |
| YDR508C   | GNP1          | A      | 20 | 0.53         | 0.66         | 0.5  | 0.69 | 0.1   | 0     | 0     |
| YDR510W   | SMT3          | A      | 21 | 0.28         | 0.5          | 0.55 | 0.36 | 0.12  | 0.18  | 0     |
| YDR511W   | ~             | A      | 20 | 0.09         | 0.07         | 0.18 | 0.16 | 0     | 0.07  | 0 09  |
| YDR512C   |               | A      | 20 | 0.09         | 0.04         | 0.11 | 0.10 | 0     | 0     | 0.07  |
| YDR513W   | TTR 1         | A      | 21 | 0.68         | 0.55         | 1.36 | 1.2  | -0.01 | 0.28  | 0.25  |
|           |               |        |    | 0.00         | 0.00         | 1.00 | -·   | 0.01  | 0.40  | 0.20  |

| YDR514C   |        | А      | 21 | 0.09 | 0.05 | 0.07 | 0.09 | 0     | 0     | 0     |
|-----------|--------|--------|----|------|------|------|------|-------|-------|-------|
| YDR516C   |        | А      | 21 | 0.54 | 0.32 | 0.51 | 0.26 | -0.31 | -0.02 | -0.3  |
| YDR517W   |        | А      | 20 | 0.4  | 0.27 | 0.37 | 0.21 | -0.15 | -0.09 | -0.02 |
| YDR518W   | EUG1   | А      | 21 | 0.14 | 0.17 | 0.2  | 0.2  | -0.14 | 0.01  | 0     |
| YDR519W   | FKB2   | А      | 20 | 0.97 | 0.92 | 0.84 | 1.13 | 0.02  | 0.14  | 0.05  |
| YDR520C   |        | А      | 20 | 0.09 | 0.07 | 0.07 | 0.09 | 0     | 0     | 0     |
| YDR529C   | OCR7   | A      | 21 | 0.75 | 0.24 | 1.27 | 0.46 | -0.3  | 0.23  | -0.17 |
| YDR531W   | Quit,  | A      | 20 | 0.09 | 0.08 | 0.1  | 0.09 | 0     | 0     | 0     |
| YDR533C   |        | A      | 20 | 1 53 | 1.01 | 2.53 | 9.8  | -016  | 016   | 0.65  |
| YDR534C   |        | A      | 21 | 0.09 | 0.09 | 0.07 | 0.09 | 0     | 0     | 0     |
| YDR538W   | PAD1   | A      | 20 | 0.09 | 0.14 | 0.08 | 0.14 | -0.11 | Ő     | Ő     |
| YDR539W   | mer    | A      | 20 | 0.09 | 0.05 | 0.00 | 0.11 | 0     | 0     | 0     |
| YDR541C   |        | A      | 20 | 0.09 | 0.05 | 0.07 | 0.12 | 0     | 0     | 01    |
| VDR5/2W   |        | Δ      | 20 | 0.02 | 0.00 | 0.29 | 0.10 | -0.12 | 0     | 0.1   |
| YDR543C   |        | Δ      | 20 | 0.20 | 0.21 | 0.09 | 0.21 | 0.12  | 0     | 0     |
| VDR545C   |        | Δ      | 20 | 0.14 | 0.11 | 0.62 | 0.15 | -0.24 | 0.04  | 0.05  |
| VEL 001C  |        | B      | 20 | 0.03 | 0.57 | 0.02 | 0.75 | -0.24 | 0.04  | 0.05  |
| VEL 002C  | W/RD1  | B      | 20 | 0.44 | 0.01 | 0.37 | 0.38 | 0     | 0.1   | 0.11  |
| VEL002C   | W DI 1 | B      | 20 | 0.51 | 0.23 | 0.27 | 0.51 | 0     | 0     | 0.01  |
| VEL 007W  |        | D<br>D | 20 | 0.10 | 0.00 | 0.10 | 0.10 | 0.00  | 0.15  | 0.05  |
| IEL007W   | CCN4   | D      | 20 | 0.1  | 0.14 | 0.22 | 1 99 | 0.08  | 0.15  | 0.52  |
| I EL009C  | CLC2   | D      | 20 | 4.55 | 0.11 | 5.05 | 4.00 | -0.09 | 0.01  | 0.02  |
| I ELUIIW  |        | D      | 21 | 0.12 | 0.11 | 0.25 | 0.05 | 0     | 0.00  | 0     |
| I ELUIZW  |        | D      | 21 | 0.07 | 0.07 | 0.07 | 0.05 | 0     | 0     | 0     |
| I ELUISW  | VACo   | D      | 20 | 0.11 | 0.07 | 0.1  | 0.14 | -0.1  | 0     | 0     |
| YELOIDO   |        | B      | 20 | 0.07 | 0.07 | 0.07 | 0.08 | 0 11  | 0.05  | 0 15  |
| YELOI/C-A | PMP2   | В      | 31 | 4.02 | 3.44 | 3.85 | 0.39 | -0.11 | -0.05 | 0.15  |
| YEL01/W   |        | В      | 21 | 0.13 | 0.12 | 0.07 | 0.21 | 0     | 0     | 0.01  |
| YEL020C   |        | В      | 21 | 0.07 | 0.07 | 0.07 | 0.08 | 0     | 0     | -0.1  |
| YEL021W   | URA3   | В      | 21 | 0.14 | 0.13 | 0.14 | 0.13 | 0     | -0.01 | -0.08 |
| YEL024W   | RIPI   | В      | 20 | 0.7  | 0.33 | 1.21 | 0.58 | -0.18 | 0.18  | -0.09 |
| YEL026W   |        | В      | 20 | 1.59 | 2.96 | 2.14 | 3.21 | 0.24  | 0.14  | 0.27  |
| YEL02/W   | CUP5   | В      | 21 | 6.11 | 8.08 | 4.37 | 7.51 | 0.02  | -0.06 | 0.07  |
| YEL031W   | SPF1   | В      | 21 | 0.21 | 0.07 | 0.21 | 0.51 | -0.32 | 0     | 0.29  |
| YEL034W   | HYP2   | В      | 20 | 3.65 | 2.59 | 4.14 | 5.92 | -0.05 | 0     | -0.01 |
| YEL036C   | ANPI   | В      | 21 | 0.13 | 0.14 | 0.22 | 0.18 | 0     | 0.01  | 0.1   |
| YEL03/C   | RAD23  | В      | 21 | 0.07 | 0.07 | 0.12 | 0.13 | 0     | 0     | 0.16  |
| YEL038W   | UTR4   | В      | 20 | 0.19 | 0.17 | 0.21 | 0.25 | -0.04 | 0     | -0.01 |
| YEL040W   | UTR2   | В      | 21 | 0.36 | 0.75 | 0.28 | 0.36 | 0.2   | -0.03 | 0     |
| YEL042W   | GDA1   | В      | 20 | 0.16 | 0.07 | 0.29 | 0.25 | 0     | 0.18  | 0.07  |
| YEL043W   | ~~~~   | В      | 21 | 0.07 | 0.07 | 0.07 | 0.09 | 0     | 0     | 0.09  |
| YEL046C   | GLY1   | В      | 20 | 0.51 | 0.35 | 0.86 | 0.96 | -0.2  | 0.2   | 0.12  |
| YEL047C   |        | В      | 21 | 0.18 | 0.12 | 0.18 | 0.27 | 0     | 0     | 0.21  |
| YEL049W   | PAU2   | В      | 20 | 0.15 | 0.08 | 0.13 | 0.13 | 0     | 0     | -0.08 |
| YEL050C   | RML2   | В      | 20 | 0.15 | 0.11 | 0.13 | 0.18 | 0     | 0     | -0.07 |
| YEL051W   | VMA8   | В      | 20 | 0.15 | 0.09 | 0.17 | 0.26 | -0.1  | 0.03  | 0.13  |
| YEL052W   | AFG1   | В      | 20 | 0.09 | 0.08 | 0.11 | 0.15 | 0     | 0     | 0.1   |
| YEL054C   | RPL12A | В      | 21 | 1.73 | 1.94 | 2.37 | 1.57 | 0     | 0.08  | -0.01 |
| YEL056W   | HAT2   | В      | 20 | 0.12 | 0.07 | 0.08 | 0.12 | -0.12 | 0     | 0     |
| YEL057C   |        | В      | 20 | 0.07 | 0.07 | 0.13 | 0.05 | 0     | 0.24  | 0     |
| YEL058W   | PCM1   | В      | 21 | 0.31 | 0.17 | 0.2  | 0.27 | -0.14 | 0.15  | 0.01  |
| YEL059C-A | SOM1   | В      | 21 | 0.16 | 0.17 | 0.34 | 0.29 | 0     | 0.21  | 0.12  |
| YEL059W   |        | В      | 21 | 0.07 | 0.07 | 0.07 | 0.05 | 0     | 0     | 0     |
| YEL060C   | PRB1   | В      | 20 | 0.26 | 0.17 | 0.4  | 0.49 | -0.15 | 0.16  | 0.16  |
| YEL063C   | CAN1   | В      | 20 | 0.09 | 0.07 | 0.07 | 0.1  | 0     | 0     | -0.09 |
| YEL066W   | HPA3   | В      | 20 | 0.07 | 0.07 | 0.19 | 0.28 | 0     | 0.27  | 0.38  |

| YEL071W   |              | В   | 20              | 0.2  | 0.16 | 0.21 | 0.31 | -0.1  | 0     | 0.15  |
|-----------|--------------|-----|-----------------|------|------|------|------|-------|-------|-------|
| YEL073C   |              | В   | 20              | 0.26 | 0.15 | 0.25 | 0.26 | -0.21 | 0.05  | 0     |
| YEL074W   |              | В   | 10              | 0.07 | 0.07 | 0.07 | 0.06 | 0     | 0     | 0     |
| YEL075C   |              | В   | 20              | 0.07 | 0.07 | 0.07 | 0.05 | 0     | 0     | 0     |
| YEL077C   |              | В   | 22              | 0.29 | 0.22 | 0.35 | 0.44 | -0.11 | 0     | 0.2   |
| YER001W   | MNN1         | В   | 21              | 0.07 | 0.07 | 0.08 | 0.1  | 0     | 0     | 0.03  |
| YER003C   | PMI40        | В   | 21              | 0.23 | 0.07 | 0.27 | 0.18 | -0.2  | 0.19  | 0     |
| YER004W   |              | В   | 21              | 0.36 | 0.27 | 0.62 | 0.38 | -0.1  | 0.13  | 0.15  |
| YER005W   |              | B   | 20              | 0.07 | 0.07 | 0.07 | 0.13 | 0     | 0     | 0.08  |
| YER007C-A |              | B   | 21              | 0.13 | 0.07 | 0.07 | 0.09 | 0     | Ő     | 0.00  |
| YER009W   | NTF2         | B   | 20              | 1 33 | 1.02 | 1 42 | 0.09 | 0.06  | 0.07  | -0.08 |
| YER010C   | 10112        | B   | 20              | 0.14 | 0.1  | 0.17 | 0.23 | -0.01 | 0.07  | 0.00  |
| YER011W   | TIR 1        | B   | $\frac{20}{20}$ | 2 52 | 3.07 | 19   | 2.23 | 0.06  | -0.03 | 0.03  |
| YFR012W   | PRF1         | B   | 20              | 0.27 | 0.22 | 0.18 | 0.41 | 0.00  | 0.05  | 0.03  |
| VER014W   | HEM14        | B   | 21              | 0.27 | 0.22 | 0.10 | 0.41 | 0     | 0.11  | 0.27  |
| VER016W   | RIM1         | B   | $\frac{21}{20}$ | 0.07 | 0.07 | 0.07 | 0.05 | -0.03 | 0     | 0     |
| VER017C   | AEG3         | B   | 20              | 0.1  | 0.07 | 0.07 | 0.05 | -0.05 | 0     | 0.11  |
| VER010C A | SBH2         | B   | $\frac{21}{20}$ | 0.07 | 0.07 | 0.07 | 0.00 | 01    | 0.03  | -0.11 |
| VER019C-A | SDI12        | B   | 20              | 0.95 | 0.50 | 0.01 | 0.05 | -0.1  | -0.03 | -0.00 |
| VEDO20W   | CDA2         | D   | 21              | 0.10 | 0.11 | 0.11 | 0.15 | -0.02 | -0.02 | 0.04  |
| IER020W   | DDN2         | D   | 21              | 0.28 | 0.19 | 0.57 | 0.4  | -0.08 | 0.01  | 0.04  |
| IERU21W   | KENJ<br>SDD4 |     | 21<br>(25       | 0.09 | 0.09 | 0.10 | 0.25 | 0 11  | 0.1   | 0.17  |
| YER022W   | SKB4         | A-D | 025             | 0.11 | 0.08 | 0.07 | 0.09 | -0.11 | 0 07  | 0     |
| IERU23W   | PROS         | D   | 20              | 0.94 | 1.05 | 1.4  | 0.5  | -0.05 | 0.07  | -0.07 |
| YER024W   | CCD11        | Б   | 20              | 0.08 | 0.07 | 0.07 | 0.06 | 0     | 0     | 0     |
| YER025W   | GCDII        | В   | 21              | 0.21 | 0.2  | 0.12 | 0.15 | 0     | 0     |       |
| YER026C   | CHUI         | В   | 20              | 0.97 | 0.41 | 0.64 | 0.67 | -0.32 | -0.19 | -0.2  |
| YER02/C   | GAL83        | В   | 21              | 0.09 | 0.07 | 0.07 | 0.1  | -0    | 0     | -0.07 |
| YER028C   |              | В   | 21              | 0.09 | 0.07 | 0.07 | 0.05 | 0     | 0     | 0     |
| YER029C   | SMB1         | В   | 20              | 0.07 | 0.07 | 0.08 | 0.05 | 0     | 0     | 0     |
| YER030W   | I IDTO (     | В   | 20              | 0.07 | 0.07 | 0.09 | 0.09 | 0     | 0     | 0.05  |
| YER031C   | YPT31        | В   | 20              | 0.29 | 0.12 | 0.34 | 0.23 | -0.1  | 0     | -0.08 |
| YER034W   |              | В   | 21              | 0.07 | 0.07 | 0.07 | 0.05 | 0     | 0     | 0     |
| YER035W   |              | В   | 20              | 0.31 | 0.18 | 0.21 | 0.98 | 0     | 0     | 0.3   |
| YER036C   |              | В   | 20              | 0.16 | 0.17 | 0.21 | 0.3  | 0     | 0     | 0.22  |
| YER037W   |              | В   | 21              | 0.07 | 0.07 | 0.07 | 0.15 | 0     | 0     | 0.28  |
| YER039C   | HVG1         | В   | 21              | 0.07 | 0.07 | 0.07 | 0.05 | 0     | 0     | 0     |
| YER042W   |              | В   | 20              | 0.07 | 0.07 | 0.07 | 0.29 | 0     | 0     | 0.41  |
| YER043C   | SAH1         | В   | 21              | 4.32 | 2.8  | 3.21 | 2.86 | -0.16 | -0.14 | -0.2  |
| YER044C   |              | В   | 21              | 0.65 | 0.33 | 0.44 | 0.72 | -0.19 | -0.19 | 0     |
| YER045C   |              | В   | 21              | 0.07 | 0.07 | 0.07 | 0.12 | 0     | 0     | 0.19  |
| YER046W   |              | В   | 21              | 0.07 | 0.07 | 0.07 | 0.08 | 0     | 0     | -0.14 |
| YER048C   | CAJ1         | В   | 20              | 0.07 | 0.07 | 0.08 | 0.1  | 0     | 0     | 0     |
| YER049W   |              | В   | 20              | 0.07 | 0.07 | 0.07 | 0.05 | 0     | 0     | 0     |
| YER050C   |              | В   | 20              | 0.07 | 0.07 | 0.07 | 0.1  | 0     | 0     | 0     |
| YER052C   | HOM3         | В   | 20              | 0.16 | 0.17 | 0.27 | 0.24 | 0     | 0.31  | 0.14  |
| YER053C   |              | В   | 20              | 0.75 | 0.33 | 0.71 | 1.03 | -0.26 | 0     | 0.15  |
| YER055C   | HIS1         | В   | 20              | 0.97 | 0.6  | 0.86 | 0.79 | -0.19 | -0.01 | -0.12 |
| YER056C   | FCY2         | В   | 20              | 0.68 | 0.79 | 0.79 | 1.41 | -0.05 | -0.05 | 0.17  |
| YER056C-A | RPL34A       | В   | 20              | 2.49 | 1.66 | 1.83 | 1.35 | 0     | -0.14 | -0.17 |
| YER057C   | HIG1         | В   | 21              | 0.89 | 0.77 | 1.13 | 1.21 | 0.02  | 0.06  | 0.08  |
| YER058W   | PET117       | В   | 20              | 0.07 | 0.07 | 0.07 | 0.07 | 0     | 0     | 0     |
| YER060W   | FCY21        | В   | 20              | 0.07 | 0.07 | 0.07 | 0.16 | 0     | 0     | 0.18  |
| YER060W-A | FCY22        | В   | 20              | 0.09 | 0.07 | 0.07 | 0.16 | 0     | 0     | 0.01  |
| YER061C   | CEM1         | В   | 20              | 0.07 | 0.07 | 0.07 | 0.07 | 0     | 0     | 0     |
| YER062C   | HOR2         | В   | 20              | 0.59 | 0.65 | 0.4  | 2.05 | -0.07 | -0.04 | 0.5   |

| YER063W     |           | В      | 21              | 0.15 | 0.07 | 0.08 | 0.05 | -0.06  | 0     | 0     |
|-------------|-----------|--------|-----------------|------|------|------|------|--------|-------|-------|
| YER064C     |           | В      | 20              | 0.08 | 0.07 | 0.09 | 0.14 | 0      | 0     | 0.11  |
| YER066W     |           | В      | 20              | 0.11 | 0.08 | 0.12 | 0.06 | -0.08  | 0     | 0     |
| YER067W     |           | В      | 21              | 0.35 | 0.22 | 1.03 | 0.23 | -0.19  | 0.36  | -0.17 |
| YER068W     | MOT2      | В      | 20              | 0.07 | 0.08 | 0.07 | 0.1  | 0      | 0     | -0.03 |
| YER069W     | ARG5.6    | В      | 20              | 0.27 | 0.13 | 0.5  | 0.27 | -0.07  | 0.37  | 0.03  |
| YER072W     | ,-        | B      | 21              | 1.02 | 1.05 | 0.91 | 1.14 | 0.07   | 0.11  | 0.16  |
| YER073W     |           | B      | 21              | 0.1  | 0.13 | 0.18 | 0.13 | 0.09   | 0.11  | 0.15  |
| YER074W     | RPS24A    | B      | 42              | 0.49 | 0.72 | 0.57 | 0.63 | 0.17   | 0.07  | 0.02  |
| YER076C     | 10.52.111 | B      | 21              | 0.11 | 0.08 | 0.08 | 0.06 | 0      | 0     | -0.14 |
| YER078C     |           | B      | 20              | 0.07 | 0.07 | 0.07 | 0.07 | Ő      | Ő     | 0     |
| YER079W     |           | B      | 20              | 0.08 | 0.09 | 0.12 | 0.07 | 0      | 0     | -0.05 |
| YER080W     |           | B      | 21              | 0.08 | 0.07 | 0.09 | 0.11 | 0.02   | 0     | 0.05  |
| YFR081W     |           | B      | 21              | 0.00 | 0.07 | 0.07 | 0.09 | 0.02   | 0     | 0.03  |
| YFR082C     |           | B      | 20              | 0.07 | 0.07 | 0.07 | 0.07 | 0      | 0     | 0.05  |
| VER083C     |           | B      | 20              | 0.07 | 0.24 | 0.67 | 0.57 | 0      | 0.12  | 0.12  |
| VER084W     |           | B      | 20              | 0.24 | 0.24 | 0.04 | 0.55 | 0      | 0.12  | 0.12  |
| VED086W     | II V1     | D<br>D | $\frac{21}{20}$ | 0.07 | 0.07 | 0.08 | 0.05 | 0.21   | 0.13  | 0.03  |
| VEDORTC A   |           | D<br>D | 20              | 0.15 | 0.50 | 0.3  | 0.27 | 0.21   | 0.15  | 0.03  |
| IERU0/C-A   | SDHI      | D      | 20              | 0.47 | 0.50 | 0.05 | 0.46 | 0      | 0.07  | -0.04 |
| IEKU8/W     | DOTC      | D      | 20              | 0.07 | 0.07 | 0.07 | 0.1  | 0      | 0     | 0.05  |
| YERU88C     | DO16      | В      | 21              | 0.25 | 0.26 | 0.51 | 0.57 | -0     | 0     | 0.29  |
| YER089C     | PIC2      | В      | 20              | 0.41 | 0.17 | 0.33 | 0.34 | -0.1   | 0     | -0.03 |
| YER090W     | TRP2      | В      | 21              | 0.08 | 0.07 | 0.13 | 0.13 | 0      | 0.05  | 0     |
| YER091C     | ME16      | В      | 20              | 2.23 | 3.16 | 1.47 | 3.65 | 0      | -0.21 | 0.15  |
| YER092W     |           | В      | 21              | 0.07 | 0.07 | 0.07 | 0.06 | 0      | 0     | 0     |
| YER093C-A   |           | В      | 41              | 0.07 | 0.07 | 0.07 | 0.06 | 0      | 0     | -0.12 |
| YER094C     | PUP3      | В      | 20              | 0.68 | 0.7  | 1.18 | 1.14 | 0      | 0.1   | 0.3   |
| YER095W     | RAD51     | В      | 21              | 0.15 | 0.17 | 0.13 | 0.16 | 0      | 0     | -0.07 |
| YER099C     | PRS2      | В      | 21              | 0.1  | 0.07 | 0.08 | 0.18 | 0      | 0     | 0.08  |
| YER100W     | UBC6      | В      | 20              | 0.14 | 0.07 | 0.09 | 0.09 | 0      | 0     | -0.03 |
| YER102W     | RPS8B     | В      | 33              | 6.12 | 5.21 | 5.47 | 4    | 0.01   | -0.08 | -0.23 |
| YER103W     | SSA4      | В      | 20              | 0.26 | 0.09 | 0.12 | 0.84 | -0.16  | -0.1  | 0.5   |
| YER106W     |           | В      | 20              | 0.07 | 0.07 | 0.07 | 0.05 | 0      | 0     | 0     |
| YER107C     | GLE2      | В      | 20              | 0.11 | 0.13 | 0.1  | 0.11 | 0      | 0.06  | -0.05 |
| YER112W     | USS1      | В      | 20              | 0.08 | 0.07 | 0.07 | 0.1  | 0      | 0     | 0     |
| YER113C     |           | В      | 20              | 0.07 | 0.07 | 0.07 | 0.06 | 0      | 0     | 0     |
| YER114C     | BOI2      | В      | 20              | 0.1  | 0.07 | 0.07 | 0.06 | 0      | 0     | 0     |
| YER115C     | SPR6      | В      | 20              | 0.16 | 0.19 | 0.21 | 0.13 | 0      | 0     | -0.04 |
| YER117W     | RPL23B    | В      | 50              | 1.82 | 3.53 | 1.68 | 1.83 | 0.21   | 0.03  | 0.07  |
| YER118C     | SSU81     | В      | 20              | 0.27 | 0.25 | 0.27 | 0.38 | -0.03  | -0.05 | 0.03  |
| YER119C     |           | В      | 21              | 0.07 | 0.09 | 0.11 | 0.19 | 0      | 0     | 0.11  |
| YER120W     | SCS2      | В      | 20              | 1.47 | 1.53 | 0.98 | 2.03 | 0.07   | -0.05 | 0.1   |
| YER121W     |           | В      | 20              | 0.07 | 0.07 | 0.07 | 0.09 | 0      | 0     | 0     |
| YER122C     | GLO3      | В      | 20              | 0.09 | 0.09 | 0.15 | 0.12 | -0.01  | 0     | 0     |
| YER124C     |           | В      | 21              | 0.07 | 0.07 | 0.07 | 0.15 | 0      | 0     | 0.33  |
| YER125W     | RSP5      | В      | 20              | 0.14 | 0.11 | 0.13 | 0.17 | 0      | 0     | -0.12 |
| YER126C     |           | В      | 21              | 0.07 | 0.07 | 0.07 | 0.07 | 0      | 0     | -0.09 |
| YER127W     | LCP5      | B      | 20              | 0.07 | 0.07 | 0.07 | 0.07 | 0      | 0     | 0     |
| YER130C     | 2010      | B      | 20              | 0.07 | 0.09 | 0.07 | 0.17 | 0      | 0     | 0 12  |
| YER131W     | RPS26R    | B      | 20              | 0.6  | 0.76 | 0.46 | 0.17 | 0<br>0 | 0     | 0     |
| YER133W     | GLC7      | R      | 40              | 0.07 | 0.07 | 0.40 | 0.08 | 0      | 0     | -0.05 |
| YER134C     | GLC/      | B      | 20              | 0.18 | 0.07 | 0.07 | 0.00 | -0.04  | 0     | 0.05  |
| VER136W     | GDU       | B      | 20              | 0.17 | 0.16 | 0.10 | 0.17 | _0.04  | 0     | 0.18  |
| VER138C     | UDII      | ы<br>Д | 20<br>70        | 0.17 | 0.10 | 0.17 | 0.59 | -0.01  | 0.05  | 0.10  |
| VED1/1W     | COV15     | ц<br>д | 40<br>20        | 0.27 | 0.17 | 0.24 | 1.24 | 0.04   | 0.05  | 0.49  |
| 1 LIN 141 W | CUAIJ     | D      | 20              | 0.30 | 0.34 | 0.34 | 1.24 | -0.04  | -0.05 | 0.20  |

| YER143W                    | DDI1   | В   | 20  | 0.07 | 0.07 | 0.08 | 0.08  | 0     | 0     | 0     |
|----------------------------|--------|-----|-----|------|------|------|-------|-------|-------|-------|
| YER145C                    | FTR1   | В   | 20  | 0.07 | 0.07 | 0.1  | 0.15  | 0     | 0     | 0.1   |
| YER146W                    |        | В   | 20  | 0.12 | 0.07 | 0.07 | 0.13  | 0     | 0     | 0.03  |
| YER148W                    | SPT15  | A-D | 624 | 0.28 | 0.18 | 0.26 | 0.24  | -0.02 | 0     | 0.02  |
| YER150W                    |        | В   | 20  | 5.59 | 3.51 | 4.4  | 8.47  | -0.2  | -0.09 | 0.19  |
| YER151C                    | UBP3   | В   | 20  | 0.07 | 0.07 | 0.07 | 0.06  | 0     | 0     | 0     |
| YER152C                    |        | В   | 21  | 0.2  | 0.16 | 0.18 | 0.21  | -0.1  | -0.03 | -0.06 |
| YER154W                    | OXA1   | В   | 20  | 0.38 | 0.31 | 0.38 | 0.51  | 0.03  | 0     | 0.2   |
| YER155C                    | BEM2   | В   | 20  | 0.08 | 0.07 | 0.08 | 0.11  | 0     | 0     | 0     |
| YER156C                    |        | B   | 20  | 0.16 | 0.18 | 0.22 | 0.14  | 0.07  | 0.31  | -0.1  |
| YER157W                    |        | B   | 21  | 0.07 | 0.07 | 0.07 | 0.06  | 0     | 0     | -0.16 |
| YER158C                    |        | B   | 20  | 0.07 | 0.15 | 0.08 | 0.22  | 0     | 0     | 0.04  |
| YER159C                    | BUR6   | B   | 21  | 0.09 | 0.07 | 0.07 | 0.06  | 0     | 0     | -0.14 |
| YER160C                    | Dento  | B   | 40  | 0.02 | 0.11 | 0.2  | 0.39  | Ő     | Ő     | 0 39  |
| YER163C                    |        | B   | 20  | 0.12 | 0.11 | 0.19 | 0.32  | -0.01 | 0     | 0.25  |
| VFR164W                    | CHD1   | B   | 20  | 0.07 | 0.10 | 0.17 | 0.42  | -0    | 0     | 0     |
| VER165W                    | PAR1   | B   | 20  | 0.07 | 0.07 | 0.07 | 0.03  | 0.06  | -02   | 0.03  |
| VER166W                    | IADI   | B   | 20  | 0.28 | 0.45 | 0.11 | 0.26  | 0.00  | -0.2  | 0.05  |
| VED167W                    | BCKA   | B   | 20  | 0.07 | 0.07 | 0.07 | 0.00  | 0     | 0     | 0.14  |
| VED170W                    | ADK2   | D   | 20  | 0.07 | 0.07 | 0.07 | 0.08  | 0     | 0     | -0.14 |
| 1 E K 170 W<br>VED $174 C$ | ADK2   | D   | 21  | 0.07 | 0.07 | 0.07 | 0.05  | 0     | 0.07  | 0 15  |
| IERI/4C                    |        | D   | 21  | 0.17 | 0.11 | 0.25 | 0.2   | 0     | 0.07  | -0.13 |
| YER1/5C                    | ECM22  | В   | 20  | 0.07 | 0.07 | 0.09 | 0.08  | 0     | 0     | -0.14 |
| YERI/6W                    | ECM32  | В   | 21  | 0.07 | 0.08 | 0.07 | 0.06  | 0     | 0     | 0     |
| YERI//W                    | RPL23B | В   | 20  | 4.58 | 2.63 | 6.59 | 6.89  | -0.22 | -0.02 | 0.08  |
| YERI/8W                    | PDAI   | В   | 20  | 1.88 | 1.91 | 0.32 | 2.46  | 0.05  | -0.54 | 0.12  |
| YER183C                    |        | В   | 21  | 0.07 | 0.09 | 0.1  | 0.1   | 0     | 0.04  | 0.06  |
| YER185W                    |        | В   | 20  | 0.07 | 0.07 | 0.07 | 0.06  | 0     | 0     | 0     |
| YER186C                    |        | В   | 21  | 0.07 | 0.07 | 0.08 | 0.08  | 0     | 0     | 0     |
| YER190W                    |        | В   | 20  | 0.73 | 0.39 | 0.1  | 0.91  | -0.05 | -0.7  | 0.12  |
| YFL-TYA                    |        | В   | 20  | 0.07 | 0.07 | 0.07 | 0.06  | 0     | 0     | 0     |
| YFL-TYB                    |        | В   | 20  | 0.07 | 0.07 | 0.08 | 0.05  | 0     | 0     | 0     |
| YFL002C                    | SPB4   | В   | 20  | 0.1  | 0.08 | 0.07 | 0.1   | 0     | 0     | 0     |
| YFL005W                    | SEC4   | В   | 21  | 0.14 | 0.14 | 0.19 | 0.15  | 0     | 0     | 0     |
| YFL006W                    |        | В   | 20  | 0.1  | 0.12 | 0.08 | 0.14  | 0     | 0     | 0.04  |
| YFL007W                    |        | В   | 21  | 0.07 | 0.07 | 0.07 | 0.07  | 0     | 0     | -0.15 |
| YFL009W                    | CDC4   | В   | 20  | 0.09 | 0.09 | 0.07 | 0.13  | 0     | 0     | 0     |
| YFL010C                    |        | В   | 20  | 1.22 | 0.76 | 1.01 | 1.45  | -0.15 | -0.05 | 0.1   |
| YFL011W-A                  | AUA1   | В   | 21  | 0.11 | 0.07 | 0.07 | 0.05  | -0.01 | -0.1  | 0     |
| YFL013C                    |        | В   | 21  | 0.07 | 0.07 | 0.07 | 0.05  | 0     | 0     | 0     |
| YFL014W                    | HSP12  | В   | 20  | 2.53 | 1.62 | 2.65 | 16.82 | -0.05 | 0.19  | 0.89  |
| YFL016C                    | MDJ1   | В   | 20  | 0.11 | 0.08 | 0.1  | 0.17  | 0     | 0     | 0.01  |
| YFL017C                    |        | В   | 20  | 0.14 | 0.13 | 0.15 | 0.1   | 0     | 0     | 0     |
| YFL018C                    | LPD1   | В   | 20  | 0.44 | 0.53 | 0.9  | 0.69  | -0.02 | 0.27  | 0.07  |
| YFL018W-A                  | SNP2   | В   | 21  | 0.22 | 0.23 | 0.24 | 0.25  | 0     | 0.17  | -0.04 |
| YFL019C                    |        | В   | 21  | 0.07 | 0.08 | 0.07 | 0.05  | 0     | 0     | 0     |
| YFL020C                    | PAU5   | В   | 20  | 0.12 | 0.12 | 0.1  | 0.14  | 0     | 0     | 0     |
| YFL021W                    | GAT1   | В   | 20  | 0.17 | 0.14 | 0.07 | 0.22  | 0     | -0.3  | -0.01 |
| YFL022C                    | FRS2   | В   | 20  | 0.56 | 0.64 | 0.39 | 1     | 0.11  | 0.03  | 0.23  |
| YFL026W                    | STE2   | В   | 20  | 0.57 | 0.07 | 0.69 | 1.21  | -0.8  | 0.06  | 0.29  |
| YFL027C                    |        | В   | 21  | 0.07 | 0.07 | 0.07 | 0.05  | 0     | 0     | 0     |
| YFL028C                    | CAF16  | B   | 20  | 0.13 | 0.11 | 0.25 | 0.16  | Ō     | 0.09  | -0.06 |
| YFL030W                    |        | B   | 21  | 0.14 | 0.09 | 0.69 | 0.31  | Ō     | 0.32  | 0.14  |
| YFL031W                    | HAC1   | B   | 21  | 1 89 | 1 74 | 1 18 | 2.07  | -0.04 | -0.2  | 0.05  |
| YFL034W                    |        | B   | 21  | 0.07 | 0.07 | 0.07 | 0.06  | 0     | 0     | 0.05  |
| YFL035C-A                  |        | B   | 20  | 0.08 | 0.07 | 0.07 | 0.06  | Ő     | Ő     | Ő     |
|                            |        | -   | ~   |      |      |      |       | -     | -     | -     |

| YFL035C-B |       | В   | 20              | 0.15 | 0.26 | 0.22 | 0.36 | 0.1   | 0.02  | 0.37  |
|-----------|-------|-----|-----------------|------|------|------|------|-------|-------|-------|
| YFL037W   | TUB2  | В   | 21              | 0.48 | 0.6  | 0.75 | 0.54 | 0.01  | 0     | -0.05 |
| YFL038C   | YPT1  | В   | 20              | 0.74 | 0.74 | 1.07 | 1.14 | -0.01 | 0.06  | 0.16  |
| YFL039C   | ACT1  | A-D | 629             | 3.67 | 3.35 | 3.59 | 4.14 | -0.04 | -0.06 | 0.05  |
| YFL041W   | FET5  | В   | 21              | 0.15 | 0.14 | 0.15 | 0.14 | 0     | 0     | 0.02  |
| YFL043C   |       | В   | 20              | 0.07 | 0.07 | 0.07 | 0.08 | 0     | 0     | -0.08 |
| YFL044C   |       | B   | 20              | 0.07 | 0.07 | 0.07 | 0.06 | 0     | 0     | 0     |
| YFL045C   | SEC53 | B   | 21              | 1.25 | 1.49 | 0.29 | 1.42 | 0.09  | -0.71 | -0.14 |
| YFL048C   | EMP47 | B   | 21              | 0.12 | 0.09 | 0.07 | 0.19 | 0     | 0     | 0.18  |
| YFL054C   |       | B   | 21              | 0.08 | 0.07 | 0.07 | 0.08 | 0     | -0.1  | 0     |
| YFL057C   |       | B   | 25              | 0.15 | 0.25 | 0.21 | 0.34 | 0     | 0     | -0.05 |
| YFL058W   | THI5  | B   | $\frac{20}{20}$ | 0.07 | 0.07 | 0.07 | 0.07 | 0     | Ő     | 0     |
| YFL059W   | SNZ3  | B   | 20              | 0.07 | 0.07 | 0.07 | 0.07 | -0    | 0     | 0     |
| YFI 062W  | COS4  | B   | 20              | 0.58 | 0.07 | 0.61 | 0.07 | -0    | 0.06  | 0 17  |
| VEL 066C  | 0054  | B   | 20              | 0.58 | 0.47 | 0.01 | 0.05 | 0.01  | -0.1  | 0.17  |
| VFR001W   |       | B   | 20              | 0.12 | 0.07 | 0.07 | 0.00 | 0.01  | -0.1  | 0     |
| VFR003C   |       | B   | 20              | 0.07 | 0.07 | 0.07 | 0.05 | 0     | 0     | 0     |
| VED004W   | DDN11 | P   | 20              | 0.09 | 0.07 | 0.07 | 0.08 | 0     | 0.12  | 0.25  |
| VED006W   | KENTI | D   | 20              | 0.20 | 0.27 | 0.42 | 0.75 | 0     | 0.12  | 0.43  |
| IFK000W   |       | D   | 20              | 0.15 | 0.07 | 0.14 | 0.12 | 0     | 0     | -0.00 |
| IFK00/W   | CCN20 | D   | 21              | 0.07 | 0.07 | 0.07 | 0.07 | 0 00  | 0     | -0.08 |
| IFK009W   | GCN20 | В   | 20              | 0.17 | 0.20 | 0.2  | 0.27 | 0.08  | 0     | 0.05  |
| YFROIDW   |       | В   | 20              | 0.15 | 0.12 | 0.17 | 0.22 | 0     | 0     | 0.01  |
| YFR011C   | 001/1 | В   | 21              | 0.08 | 0.07 | 0.16 | 0.07 | 0     | 0     | -0.05 |
| YFR015C   | GSYI  | В   | 21              | 0.16 | 0.07 | 0.07 | 0.05 | -0.21 | -0.2  | -0.5  |
| YFR017C   |       | В   | 21              | 0.23 | 0.31 | 0.36 | 0.47 | -0.09 | 0.18  | 0.14  |
| YFR018C   |       | В   | 20              | 0.27 | 0.18 | 0.17 | 0.16 | 0     | 0     | -0.14 |
| YFR020W   |       | В   | 21              | 0.07 | 0.1  | 0.07 | 0.14 | 0     | 0     | -0.04 |
| YFR021W   |       | В   | 21              | 0.07 | 0.07 | 0.07 | 0.07 | 0     | 0     | 0     |
| YFR022W   |       | В   | 20              | 0.08 | 0.07 | 0.09 | 0.36 | 0     | 0     | 0.27  |
| YFR024C   |       | В   | 20              | 0.27 | 0.26 | 0.07 | 0.47 | 0     | -0.5  | 0.02  |
| YFR024C-A |       | В   | 26              | 0.14 | 0.08 | 0.1  | 0.15 | -0.1  | -0.1  | 0.1   |
| YFR025C   | HIS2  | В   | 20              | 0.07 | 0.07 | 0.07 | 0.07 | 0     | 0     | 0     |
| YFR026C   |       | В   | 21              | 0.07 | 0.07 | 0.12 | 0.05 | 0     | 0     | 0     |
| YFR028C   | CDC14 | В   | 20              | 0.09 | 0.07 | 0.07 | 0.09 | 0     | 0     | -0.06 |
| YFR030W   | MET10 | В   | 20              | 0.07 | 0.07 | 0.07 | 0.11 | 0     | 0     | 0.07  |
| YFR031C   | SMC2  | В   | 21              | 0.07 | 0.07 | 0.07 | 0.06 | 0     | 0     | 0     |
| YFR031C-A | RPL2A | В   | 52              | 2.22 | 5.11 | 5.37 | 2.57 | 0.22  | 0.14  | 0.01  |
| YFR033C   | QCR6  | В   | 20              | 0.37 | 0.35 | 0.32 | 0.26 | 0     | 0     | -0.14 |
| YFR034C   | PHO4  | В   | 21              | 0.08 | 0.07 | 0.07 | 0.12 | 0     | 0     | -0.07 |
| YFR036W   | CDC26 | В   | 20              | 0.07 | 0.07 | 0.08 | 0.07 | 0     | 0     | 0     |
| YFR037C   | RSC8  | В   | 20              | 0.13 | 0.1  | 0.15 | 0.24 | 0     | 0     | 0     |
| YFR041C   |       | В   | 21              | 0.07 | 0.07 | 0.08 | 0.07 | 0     | 0     | 0     |
| YFR042W   |       | В   | 20              | 0.07 | 0.08 | 0.07 | 0.15 | 0     | 0     | 0     |
| YFR044C   |       | В   | 21              | 0.72 | 0.86 | 1.03 | 1.57 | 0     | 0.11  | 0.25  |
| YFR045W   |       | В   | 21              | 0.07 | 0.07 | 0.07 | 0.11 | 0     | 0     | 0.07  |
| YFR047C   |       | В   | 21              | 0.43 | 0.53 | 0.95 | 1.28 | -0.01 | 0.3   | 0.39  |
| YFR048W   |       | В   | 21              | 0.07 | 0.07 | 0.07 | 0.08 | 0     | 0     | 0     |
| YFR049W   | YMR31 | В   | 21              | 0.23 | 0.29 | 0.83 | 0.41 | 0.04  | 0.23  | 0     |
| YFR050C   | PRE4  | В   | 20              | 0.45 | 0.57 | 0.52 | 0.98 | -0.01 | 0     | 0.17  |
| YFR051C   | RET2  | В   | 20              | 0.55 | 1.02 | 0.16 | 0.99 | 0.1   | -0.43 | 0.21  |
| YFR052W   | RPN12 | B   | 20              | 0.07 | 0.13 | 0.09 | 0.29 | 0     | 0     | 0.18  |
| YFR053C   | HXK1  | B   | $\frac{-0}{21}$ | 2.94 | 2.87 | 6.72 | 5    | -0.29 | 0.1   | 0.03  |
| YGL001C   |       | B   | 20              | 0.31 | 0.2  | 0.2  | 0.41 | -0.03 | 0     | 0.12  |
| YGL002W   |       | B   | 20              | 0.1  | 0.09 | 0.13 | 0.15 | 0     | Ő     | -0.07 |
| YGL003C   | CDH1  | B   | $\frac{-0}{20}$ | 0.07 | 0.07 | 0.07 | 0.09 | Ő     | Ő     | 0     |
|           |       | -   | -               |      |      |      |      | -     | -     | -     |

| YGL004C    |              | в      | 20              | 0.08 | 0.07 | 0.07 | 0.06 | 0     | 0     | 0          |
|------------|--------------|--------|-----------------|------|------|------|------|-------|-------|------------|
| YGL006W    | PMC1         | B      | $\frac{20}{20}$ | 0.07 | 0.08 | 0.08 | 0.09 | Ő     | Ő     | -0         |
| YGL008C    | PMA1         | B      | 20              | 6.06 | 5 38 | 7 72 | 8 74 | 0.05  | 0 14  | 0 17       |
| YGL009C    | I FUI        | B      | 20              | 0.00 | 0.53 | 0.76 | 0.65 | 0.09  | 0.19  | 0.19       |
| YGL010W    | LLCI         | B      | 21              | 0.12 | 0.55 | 0.76 | 0.05 | 0.02  | 0.17  | 0.08       |
| YGL011C    | SCI 1        | B      | 21              | 0.19 | 0.10 | 0.10 | 0.54 | 0.03  | 0 23  | 0.00       |
| VGL012W    | FRG4         | B      | $\frac{21}{20}$ | 0.57 | 0.5  | 0.07 | 0.54 | 0.03  | 0.25  | 0.03       |
| YGL012C    | PDR 1        | B      | 20              | 0.07 | 0.02 | 0.70 | 0.07 | 0.07  | 0     | -0.05      |
| VGL019W    | CKB1         | B      | 20              | 0.07 | 0.18 | 0.07 | 0.12 | -0    | 0     | 0.00       |
| YGL020C    | CKDI         | B      | 20              | 0.17 | 0.10 | 0.15 | 0.31 | -0    | 0.06  | 0.02       |
| VGL021W    |              | D<br>D | 20              | 0.23 | 0.18 | 0.23 | 0.5  | 0     | 0.00  | 0.12       |
| VGL022W    | ALNI<br>STT2 | D<br>D | 20              | 0.07 | 0.07 | 0.07 | 0.05 | 0.03  | 0     | 0.16       |
| VGL022W    | 5115         | B      | $\frac{21}{20}$ | 0.21 | 0.21 | 0.15 | 0.2  | 0.05  | 0     | 0.10       |
| VCL024W    |              | D      | 20              | 0.07 | 0.00 | 0.07 | 0.09 | 0     | 0     | 0.05       |
| VCL024W    | TDD5         | D      | 20              | 0.07 | 1.09 | 1.26 | 0.07 | 0     | 0 02  | 0.01       |
| YCL020C    | IKPS         | D      | 21              | 0.97 | 1.08 | 1.20 | 1.04 | 0     | 0.02  | 0.01       |
| IGL028C    |              | D      | 20              | 0.10 | 0.17 | 0.17 | 0.4  | 0     | 0.07  | 0.25       |
| YGL029W    | DDI 20       | В      | 20              | 0.09 | 0.08 | 0.07 | 0.09 | 0     | 0 72  | -0.11      |
| YGL030W    | RPL30        | В      | 21              | 4.86 | 9.72 | 0.89 | 5.39 | 0.32  | -0.73 | 0.03       |
| YGL03IC    | RPL24A       | В      | 20              | 2.6  | 2.56 | 2.74 | 3./1 | -0.1  | -0.05 | 0.09       |
| YGL032C    | AGA2         | В      | 20              | 0.6  | 0.07 | 0.53 | 1.09 | -0.9  | 0     | 0.13       |
| YGL035C    | MIGI         | В      | 20              | 0.07 | 0.07 | 0.07 | 0.07 | 0     | 0     | -0.12      |
| YGL036W    | MTC2         | В      | 20              | 0.07 | 0.07 | 0.07 | 0.08 | 0     | 0     | 0.04       |
| YGL037C    |              | В      | 21              | 1.34 | 1.59 | 1.91 | 4.48 | -0.21 | 0.08  | 0.26       |
| YGL038C    | OCH1         | В      | 20              | 0.1  | 0.14 | 0.11 | 0.14 | 0     | -0.01 | 0          |
| YGL039W    |              | В      | 20              | 0.16 | 0.16 | 0.08 | 0.27 | 0     | 0     | 0.12       |
| YGL040C    | HEM2         | В      | 20              | 0.77 | 0.54 | 0.44 | 0.82 | 0     | -0.05 | 0.09       |
| YGL044C    | RNA15        | В      | 20              | 0.07 | 0.07 | 0.07 | 0.08 | 0     | 0     | 0          |
| YGL045W    |              | В      | 20              | 0.07 | 0.07 | 0.07 | 0.08 | 0     | 0     | -0.11      |
| YGL047W    |              | В      | 20              | 0.07 | 0.07 | 0.07 | 0.14 | 0     | 0     | 0.03       |
| YGL048C    | RPT6         | В      | 21              | 0.27 | 0.4  | 0.49 | 0.77 | 0.06  | 0.03  | 0.31       |
| YGL051W    |              | В      | 20              | 0.07 | 0.07 | 0.07 | 0.07 | 0     | 0     | 0          |
| YGL053W    |              | В      | 20              | 0.07 | 0.07 | 0.07 | 0.11 | 0     | 0     | -0.02      |
| YGL054C    |              | В      | 20              | 0.78 | 0.5  | 0.43 | 0.6  | -0.01 | 0     | 0.05       |
| YGL055W    | OLE1         | В      | 20              | 0.65 | 1.19 | 2.44 | 3.08 | 0.22  | 0.51  | 0.62       |
| YGL056C    |              | В      | 20              | 0.07 | 0.11 | 0.07 | 0.1  | 0.08  | 0     | 0          |
| YGL057C    |              | В      | 20              | 0.07 | 0.07 | 0.08 | 0.07 | 0     | 0     | 0          |
| YGL058W    | RAD6         | В      | 21              | 0.07 | 0.07 | 0.11 | 0.12 | 0     | 0.03  | 0.03       |
| YGL062W    | PYC1         | В      | 21              | 0.08 | 0.11 | 0.16 | 0.22 | 0     | 0.03  | 0.09       |
| YGL067W    |              | В      | 21              | 0.25 | 0.18 | 0.28 | 0.34 | -0.09 | 0.12  | 0.11       |
| YGL068W    |              | В      | 20              | 0.14 | 0.2  | 0.2  | 0.26 | 0     | 0.18  | 0.17       |
| YGL070C    | RPB9         | В      | 20              | 0.07 | 0.14 | 0.11 | 0.17 | 0     | 0     | 0.11       |
| YGL076C    | RPL7A        | В      | 41              | 3.81 | 4.11 | 4.26 | 2.99 | 0.06  | 0.01  | -0.17      |
| YGL077C    | HNM1         | В      | 20              | 1.04 | 0.97 | 0.77 | 1.03 | 0     | -0.04 | -0.06      |
| YGL078C    | DBP3         | В      | 20              | 0.15 | 0.16 | 0.12 | 0.16 | 0     | -0.02 | 0          |
| YGL079W    | _            | В      | 20              | 0.1  | 0.07 | 0.07 | 0.06 | 0     | 0     | 0          |
| YGL080W    |              | B      | 20              | 0.21 | 0.24 | 0.28 | 0.29 | -0.03 | 0.03  | 0.02       |
| YGL081W    |              | B      | $\frac{20}{20}$ | 0.07 | 0.07 | 0.07 | 0.05 | 0     | 0     | 0          |
| YGL082W    |              | B      | 20              | 0.07 | 0.07 | 0.07 | 0.05 | 0     | 0     | 0          |
| YGL084C    |              | B      | 20              | 0.09 | 0.07 | 0.07 | 0.00 | -0    | 0     | -0.02      |
| VGL087C    | MMS2         | B      | 20              | 0.07 | 0.07 | 0.1  | 0.1  | -0    | 011   | -0.02      |
| YGL088W    | 11111132     | R      | 20              | 0.10 | 0.11 | 0.21 | 0.2  | 0     | 0.11  | -0.07      |
| VGL080C    | MEan         | B      | 20<br>21        | 0.07 | 3.67 | 0.07 | 0.1  | 1 22  | 0     | -0.03<br>0 |
| VGL001C    | NDD25        | и<br>С | 21              | 0.07 | 0.07 | 0.07 | 0.05 | 1.22  | 0     | 0.02       |
| VCL 00CW   | INDP33       | D      | 20              | 0.07 | 0.07 | 0.00 | 0.12 | 0     | 0     | -0.02      |
| I GLUYOW   | CDM1         | Б<br>Р | 21              | 0.09 | 0.07 | 0.07 | 0.07 | 0     | 0     | -0.15      |
| 1 GL09 / W | SKMI         | в      | 20              | 0.07 | 0.07 | 0.07 | 0.07 | 0     | 0     | -0.1       |

| YGL099W  |               | В      | 20              | 0.09  | 0.1   | 0.07 | 0.08  | 0     | -0    | 0     |
|----------|---------------|--------|-----------------|-------|-------|------|-------|-------|-------|-------|
| YGL100W  | SEH1          | В      | 21              | 0.11  | 0.09  | 0.13 | 0.09  | 0     | 0     | -0.05 |
| YGL101W  |               | В      | 20              | 0.08  | 0.09  | 0.08 | 0.05  | 0     | 0     | 0     |
| YGL102C  |               | В      | 20              | 0.08  | 0.08  | 0.07 | 0.05  | 0     | 0     | 0     |
| YGL103W  | RPL28         | В      | 41              | 3.2   | 4.77  | 5.05 | 4.78  | 0.04  | 0.09  | 0.02  |
| YGL104C  |               | В      | 21              | 0.12  | 0.1   | 0.08 | 0.14  | -0.04 | -0.09 | 0     |
| YGL105W  | ARC1          | В      | 21              | 0.65  | 0.84  | 0.67 | 0.99  | -0.05 | 0     | 0.05  |
| YGL106W  | MLC1          | В      | 20              | 0.16  | 0.51  | 0.07 | 0.46  | 0.35  | -0.22 | 0.33  |
| YGL107C  |               | В      | 21              | 0.07  | 0.07  | 0.07 | 0.05  | 0     | 0     | 0     |
| YGL111W  |               | В      | 20              | 0.08  | 0.07  | 0.07 | 0.1   | 0     | 0     | -0.02 |
| YGL112C  | TAF60         | В      | 20              | 0.12  | 0.08  | 0.12 | 0.11  | 0     | 0     | 0     |
| YGL114W  |               | B      | 21              | 0.09  | 0.08  | 0.11 | 0.1   | 0     | 0     | -0.07 |
| YGL115W  | SNF4          | B      | 21              | 0.27  | 0.13  | 0.3  | 0.31  | 0     | -0.01 | -0.05 |
| YGL117W  |               | B      | 20              | 0.08  | 0.07  | 0.28 | 0.09  | 0     | 0.34  | 0     |
| YGL119W  | ABC1          | B      | 20              | 0.07  | 0.07  | 0.07 | 0.1   | 0     | 0     | 0.16  |
| YGL121C  |               | B      | 20              | 0.15  | 0.13  | 0.43 | 1.53  | -0.07 | 0.44  | 0.82  |
| YGL122C  | NAB2          | B      | 20              | 0.07  | 0.08  | 0.12 | 0.14  | 0     | 0     | 0     |
| YGL123W  | RPS2          | B      | 21              | 4 64  | 7.09  | 5.63 | 7 69  | 0 18  | 0 08  | 012   |
| YGL124C  | 10.52         | B      | $\frac{21}{20}$ | 0.07  | 0.07  | 0.07 | 0.06  | 0.10  | 0.00  | 0.12  |
| YGL125W  | MFT13         | B      | 20              | 0.07  | 0.21  | 0.07 | 0.00  | 01    | 0     | 0.07  |
| YGL126W  | SCS3          | B      | 21              | 0.1   | 0.21  | 0.10 | 0.23  | 0.1   | 0.39  | 0.07  |
| YGL 127C | SOH1          | B      | 20              | 0.17  | 0.17  | 0.01 | 0.45  | 0     | 0.15  | -0.03 |
| YGL 128C | 50111         | B      | 20              | 0.17  | 0.17  | 0.2  | 0.20  | 0     | 0.15  | -0.05 |
| YGL130W  | CEG1          | B      | 21              | 0.07  | 0.07  | 0.07 | 0.07  | 0     | 0     | 0     |
| VGL 134W | PCI 10        | B      | 21              | 0.07  | 0.07  | 0.11 | 0.00  | 0     | 0.10  | 0     |
| VGL135W  | PDI 1B        | B      | $\frac{21}{20}$ | 75    | 7 35  | 8 23 | 10.07 | 0.02  | 0.19  | 0.07  |
| VGL 137W | SEC27         | B      | 20              | 0.14  | 0.17  | 0.23 | 0.22  | -0.02 | 0.01  | 0.07  |
| VGL141W  | SEC27         | D<br>B | 20              | 0.14  | 0.17  | 0.23 | 0.22  | 0     | 0.08  | 0.04  |
| VGL142C  | CDI10         | D<br>D | 21              | 0.07  | 0.07  | 0.07 | 0.07  | 0     | 0     | -0.11 |
| VGL 1/3C | MPF1          | B      | $\frac{21}{20}$ | 0.07  | 0.07  | 0.07 | 0.07  | 0     | 0     | 0     |
| VGL 147C |               | D<br>B | 20              | 1.35  | 2.07  | 0.07 | 1.46  | 0.13  | 0.14  | 0.03  |
| VCL 149W | APO2          | D<br>D | 20              | 0.0   | 0.74  | 0.75 | 0.84  | 0.15  | 0.14  | -0.03 |
| VCL 151W | AKO2<br>NUT1  | D<br>D | $\frac{21}{20}$ | 0.9   | 0.74  | 0.85 | 0.04  | 0     | 0.12  | 0.03  |
| VCL 152W | DEV14         | D      | 20              | 0.07  | 0.07  | 0.07 | 0.05  | 0     | 0     | 0     |
| VGL 154C | I VS5         | D<br>D | 21              | 0.07  | 0.07  | 0.08 | 0.08  | 0     | 0     | 0.01  |
| VCL 155W | CDC42         | D      | 20              | 0.1   | 0.07  | 0.11 | 0.15  | 0     | 0     | 0.01  |
| YCL 156W | AMS1          | D      | 20              | 0.07  | 0.07  | 0.07 | 0.1   | 0     | 0     | 0.07  |
| YCL 157W | AMST          | D      | 21              | 0.12  | 0.07  | 0.08 | 0.2   | 0     | 02    | 0.07  |
| VCL 150W |               | D      | 20              | 0.20  | 0.23  | 0.07 | 0.4   | 0     | -0.5  | 0.15  |
| YCL 160W |               | D      | 20              | 0.07  | 0.07  | 0.08 | 0.05  | 0     | 0     | 0.02  |
| VCL 161C |               | D      | 21              | 0.07  | 0.07  | 0.07 | 0.07  | 0 00  | 0.02  | 0.03  |
| VCL 162W | CUT1          | D      | 20              | 0.04  | 0.45  | 0.34 | 0.70  | -0.08 | 0.02  | 0.12  |
| IGL102W  | SUIT          | D      | 20              | 0.08  | 0.07  | 0.08 | 0.09  | 0     | 0     | 0.02  |
| IGL100W  | CUP2<br>DMD1  | D      | 21              | 0.1   | 0.09  | 0.11 | 0.14  | 0.00  | 0     | 0.05  |
| IGL10/C  |               | D      | 21              | 0.12  | 0.10  | 0.2  | 0.18  | 0.09  | 0     | 0.10  |
| YGL172W  | NUP49         | B      | 21              | 0.07  | 0.1   | 0.07 | 0.09  | 0     | 0     | 0     |
| YGL179U  | KENII<br>MDT5 | B      | 20              | 0.08  | 0.09  | 0.1  | 0.10  | 0     | 0     | 0     |
| YGL1/8W  | MP15          | В      | 21              | 0.07  | 0.07  | 0.07 | 0.12  | 0     | 0     | 0.05  |
| YGL1/9C  | 0701          | В      | 20              | 0.1   | 0.08  | 0.18 | 0.18  | 0     | 0.04  | 0.14  |
| YGLI8IW  | GISI          | В      | 20              | 0.39  | 0.23  | 0.22 | 0.35  | -0.1  | -0.09 | 0.04  |
| YGL184C  |               | В      | 20              | 0.07  | 0.07  | 0.07 | 0.1   | 0     | 0     | 0.16  |
| YGL186C  | activ         | В      | 20              | 0.13  | 0.12  | 0.16 | 0.31  | 0     | 0     | 0.28  |
| YGL18/C  | COX4          | В      | 21              | 0.88  | 0.81  | 1.94 | 1.2   | 0     | 0.37  | 0.02  |
| YGL188C  |               | В      | 20              | 0.08  | 0.07  | 0.1  | 0.06  | 0     | 0     | 0     |
| YGL189C  | RPS26A        | В      | 19              | 14.83 | 22.84 | 1.19 | 14.56 | 0.03  | -0.89 | -0.16 |
| YGL191W  | COX13         | В      | 21              | 0.19  | 0.36  | 1.31 | 0.36  | 0     | 0.27  | -0.04 |

| YGL193C  |        | В | 21              | 0.33 | 0.17 | 0.17 | 0.18 | 0     | -0.03 | 0     |
|----------|--------|---|-----------------|------|------|------|------|-------|-------|-------|
| YGL195W  | GCN1   | В | 21              | 0.09 | 0.07 | 0.1  | 0.12 | 0     | 0     | -0.06 |
| YGL196W  |        | В | 20              | 0.31 | 0.32 | 0.55 | 0.96 | -0.03 | 0.14  | 0.48  |
| YGL197W  | MDS3   | В | 21              | 0.07 | 0.07 | 0.07 | 0.05 | 0     | 0     | -0.17 |
| YGL198W  |        | В | 21              | 0.21 | 0.82 | 0.12 | 0.34 | 0.2   | -0.02 | 0.22  |
| YGL199C  |        | В | 21              | 0.14 | 0.07 | 0.07 | 0.08 | -0.05 | -0.03 | 0     |
| YGL200C  | EMP24  | В | 21              | 1.24 | 1.12 | 2.5  | 2.29 | 0.07  | 0.21  | 0.1   |
| YGL202W  | ARO8   | В | 20              | 1.03 | 1.05 | 1.58 | 1.33 | -0    | 0.12  | -0.06 |
| YGL203C  | KEX1   | В | 21              | 0.07 | 0.07 | 0.07 | 0.1  | 0     | 0     | -0.07 |
| YGL206C  | CHC1   | В | 20              | 0.17 | 0.17 | 0.23 | 0.23 | 0     | 0.05  | 0     |
| YGL207W  | SPT16  | B | 20              | 0.07 | 0.08 | 0.07 | 0.05 | 0     | 0     | 0     |
| YGL208W  | SIP2   | B | 21              | 0.07 | 0.07 | 0.07 | 0.06 | 0     | 0     | 0     |
| YGL209W  | MIG2   | B | 20              | 0.21 | 0.25 | 0.08 | 0.88 | 0     | -03   | -0.05 |
| YGL210W  | YPT32  | B | 20              | 0.07 | 0.07 | 0.07 | 0.07 | 0     | 0     | 0     |
| YGL 213C | SK18   | B | 20              | 0.11 | 0.07 | 0.07 | 0.07 | 0     | 0     | 0     |
| YGL 215W | CL G1  | B | 20              | 0.09 | 0.07 | 0.07 | 0.1  | 0     | 0     | -0.02 |
| YGL 216W | KIP3   | B | 21              | 0.07 | 0.07 | 0.00 | 0.10 | 0     | 0     | 0.02  |
| VGL 2100 | KII J  | B | $\frac{21}{20}$ | 0.07 | 0.07 | 0.07 | 0.05 | 0     | 0     | 0     |
| VGL220W  |        | B | 20              | 1.03 | 0.07 | 1.06 | 1.14 | 0     | 0.16  | 0.03  |
| VCL221C  | NIE2   | D | 20              | 0.4  | 0.85 | 0.4  | 0.61 | 0.01  | 0.10  | 0.05  |
| VCL222C  | INIF 5 | D | 21              | 0.4  | 0.29 | 0.4  | 0.01 | 0.01  | 0.04  | 0.00  |
| YCL223C  |        | D | 20              | 0.07 | 0.07 | 0.07 | 0.08 | 0.05  | 0     | -0    |
| YGL224C  | 0005   | B | 20              | 0.07 | 0.09 | 0.07 | 0.05 | 0.05  | 0 02  | 0     |
| YGL225W  | 6065   | В | 20              | 1.24 | 1.22 | 1.// | 1.21 | 0     | 0.02  | 0     |
| YGL23IC  |        | В | 21              | 0.15 | 0.18 | 0.17 | 0.21 | 0     | 0.16  | 0.11  |
| YGL234W  | ADE5,/ | В | 20              | 0.09 | 0.09 | 0.09 | 0.09 | 0     | 0     | 0     |
| YGL236C  | 0051   | В | 21              | 0.07 | 0.07 | 0.07 | 0.07 | 0     | 0     | 0     |
| YGL238W  | CSEI   | В | 20              | 0.07 | 0.07 | 0.07 | 0.09 | 0     | 0     | 0     |
| YGL242C  |        | В | 20              | 0.08 | 0.07 | 0.09 | 0.16 | 0     | 0     | 0.02  |
| YGL244W  | RTFI   | В | 20              | 0.07 | 0.07 | 0.07 | 0.06 | 0     | 0     | 0     |
| YGL245W  |        | В | 20              | 0.74 | 0.45 | 0.57 | 0.77 | -0.14 | -0.1  | -0.04 |
| YGL247W  |        | В | 21              | 0.07 | 0.07 | 0.08 | 0.09 | 0     | 0     | 0     |
| YGL248W  | PDE1   | В | 20              | 0.17 | 0.14 | 0.19 | 0.36 | -0.06 | 0.06  | 0.21  |
| YGL252C  | RTG2   | В | 20              | 0.07 | 0.07 | 0.1  | 0.08 | 0     | 0     | -0.04 |
| YGL253W  | HXK2   | В | 21              | 1.57 | 2.17 | 0.79 | 2.01 | 0     | -0.02 | -0.18 |
| YGL255W  | ZRT1   | В | 20              | 4.53 | 4.95 | 3.95 | 1.99 | 0.05  | 0.01  | -0.34 |
| YGL256W  | ADH4   | В | 20              | 2.66 | 3.48 | 0.52 | 0.99 | 0.05  | -0.39 | -0.38 |
| YGL261C  |        | В | 20              | 0.22 | 0.1  | 0.19 | 0.3  | -0.1  | 0     | -0.08 |
| YGR001C  |        | В | 40              | 0.07 | 0.07 | 0.07 | 0.07 | 0     | 0     | 0     |
| YGR004W  |        | В | 21              | 0.07 | 0.07 | 0.07 | 0.06 | 0     | 0     | 0     |
| YGR007W  | MUQ1   | В | 20              | 0.15 | 0.15 | 0.11 | 0.24 | 0     | 0     | -0.06 |
| YGR008C  | STF2   | В | 20              | 1.26 | 0.66 | 1.79 | 1.42 | -0.2  | 0.33  | 0.12  |
| YGR009C  | SEC9   | В | 21              | 0.07 | 0.07 | 0.07 | 0.08 | 0     | 0     | 0     |
| YGR010W  |        | В | 20              | 0.07 | 0.07 | 0.09 | 0.05 | 0     | 0     | 0     |
| YGR011W  |        | В | 20              | 0.07 | 0.07 | 0.07 | 0.06 | 0     | 0     | 0     |
| YGR014W  | MSB2   | В | 20              | 0.12 | 0.07 | 0.1  | 0.07 | 0     | 0     | 0     |
| YGR015C  |        | В | 21              | 0.09 | 0.07 | 0.07 | 0.06 | 0     | 0     | 0     |
| YGR017W  |        | В | 20              | 0.07 | 0.07 | 0.07 | 0.05 | 0     | 0     | 0     |
| YGR019W  | UGA1   | В | 20              | 0.33 | 0.33 | 0.49 | 1.37 | -0    | 0     | 0.37  |
| YGR020C  | VMA7   | В | 20              | 0.52 | 0.47 | 0.68 | 0.44 | 0     | 0     | 0     |
| YGR021W  |        | В | 21              | 0.07 | 0.07 | 0.07 | 0.06 | 0     | 0     | 0     |
| YGR023W  |        | В | 20              | 0.07 | 0.07 | 0.07 | 0.08 | 0     | 0     | 0     |
| YGR024C  |        | B | 20              | 0.13 | 0.2  | 0.12 | 0.22 | 0.07  | 0     | 0.09  |
| YGR026W  |        | B | $\frac{1}{20}$  | 0.52 | 0.34 | 0.53 | 0.93 | -0.01 | 0.1   | 0.2   |
| YGR027C  | RPS25A | B | 20              | 0.81 | 0.9  | 0.89 | 0.81 | -0.03 | 0.09  | -0.11 |
| YGR028W  | MSP1   | B | 21              | 0.07 | 0.07 | 0.09 | 0.05 | 0     | 0.03  | 0     |
|          |        | - | . –             |      |      |      |      | -     |       | -     |

| YGR029W     | ERV1     | В | 20              | 0.15 | 0.14         | 0.22 | 0.14         | -0.08 | 0.1   | 0.01       |
|-------------|----------|---|-----------------|------|--------------|------|--------------|-------|-------|------------|
| YGR031W     |          | В | 21              | 0.07 | 0.07         | 0.09 | 0.13         | 0     | 0     | -0.02      |
| YGR032W     | GSC2     | В | 20              | 0.22 | 0.25         | 0.48 | 0.44         | 0     | 0.19  | 0.1        |
| YGR033C     |          | В | 20              | 0.09 | 0.07         | 0.07 | 0.09         | 0     | 0     | 0          |
| YGR034W     | RPL26B   | В | 17              | 3.2  | 3.19         | 3.23 | 2.08         | -0.04 | -0.13 | -0.19      |
| YGR036C     | CWH8     | В | 20              | 0.08 | 0.07         | 0.09 | 0.16         | 0     | 0     | 0.05       |
| YGR037C     | ACB1     | В | 21              | 2.26 | 2.95         | 6.31 | 2.21         | 0.05  | 0.33  | 0.09       |
| YGR038W     | ORM1     | В | 21              | 0.17 | 0.3          | 0.07 | 0.32         | 0.35  | -0.24 | 0.37       |
| YGR041W     | BUD9     | В | 20              | 0.07 | 0.07         | 0.07 | 0.06         | 0     | 0     | 0          |
| YGR043C     |          | В | 20              | 0.07 | 0.07         | 0.07 | 0.37         | 0     | 0     | 0.41       |
| YGR044C     | RME1     | В | 20              | 0.29 | 0.18         | 0.22 | 0.3          | -0.12 | 0.04  | 0.22       |
| YGR049W     | SCM4     | В | 21              | 0.1  | 0.09         | 0.12 | 0.21         | 0     | 0     | 0.17       |
| YGR050C     |          | В | 20              | 0.09 | 0.07         | 0.08 | 0.09         | -0    | 0     | 0          |
| YGR052W     |          | В | 21              | 0.16 | 0.11         | 0.07 | 0.33         | -0.05 | -0.04 | 0.27       |
| YGR054W     |          | В | 20              | 0.08 | 0.08         | 0.07 | 0.11         | 0     | 0     | 0          |
| YGR055W     | MUP1     | В | 20              | 0.43 | 0.49         | 0.65 | 0.57         | 0     | 0.12  | 0.22       |
| YGR060W     | ERG25    | В | 20              | 1.96 | 2.6          | 1.84 | 2.88         | 0.14  | 0.02  | 0.29       |
| YGR061C     | ADE6     | В | 21              | 0.2  | 0.37         | 0.14 | 0.33         | 0.05  | -0.16 | 0.05       |
| YGR062C     | COX18    | В | 21              | 0.18 | 0.08         | 0.18 | 0.2          | -0.1  | 0     | 0          |
| YGR063C     | SPT4     | В | 20              | 0.65 | 0.57         | 0.67 | 0.7          | 0     | 0.01  | -0.02      |
| YGR065C     |          | В | 20              | 0.07 | 0.07         | 0.1  | 0.09         | 0     | 0     | 0          |
| YGR069W     |          | В | 20              | 0.07 | 0.07         | 0.07 | 0.05         | 0     | 0     | 0          |
| YGR073C     |          | В | 20              | 0.11 | 0.07         | 0.07 | 0.09         | 0     | 0     | 0          |
| YGR074W     | SMD1     | В | 20              | 0.1  | 0.08         | 0.15 | 0.09         | 0     | 0     | 0          |
| YGR075C     | PRP38    | В | 21              | 0.07 | 0.07         | 0.07 | 0.07         | 0     | 0     | 0          |
| YGR076C     | MRPL25   | В | 20              | 0.07 | 0.08         | 0.07 | 0.07         | 0     | 0     | 0          |
| YGR077C     | PEX8     | В | 20              | 0.21 | 0.15         | 0.15 | 0.3          | -0.03 | 0     | 0.19       |
| YGR078C     | PAC10    | В | 20              | 0.07 | 0.07         | 0.08 | 0.1          | 0     | 0     | -0.04      |
| YGR079W     |          | В | 20              | 0.07 | 0.07         | 0.07 | 0.06         | 0     | 0     | 0          |
| YGR080W     | TWF1     | В | 20              | 0.07 | 0.07         | 0.08 | 0.08         | 0     | 0     | 0          |
| YGR082W     | TOM20    | В | 21              | 0.3  | 0.54         | 0.47 | 0.69         | 0.06  | -0.01 | 0.16       |
| YGR083C     | GCD2     | В | 20              | 0.07 | 0.07         | 0.07 | 0.09         | 0     | 0     | -0.07      |
| YGR084C     | MRP13    | В | 20              | 0.07 | 0.08         | 0.07 | 0.07         | 0     | 0     | 0          |
| YGR085C     | RPL11B   | В | 32              | 3.17 | 7.72         | 5.4  | 5.16         | 0.17  | 0.2   | 0.05       |
| YGR086C     | 10 2112  | B | 20              | 0.22 | 0.3          | 0.27 | 0.34         | 0     | 0     | 0          |
| YGR088W     | CTT1     | B | 21              | 0.11 | 0.08         | 0.07 | 0.67         | 0     | 0     | 0.44       |
| YGR090W     | 0111     | B | 20              | 0.07 | 0.07         | 0.07 | 0.09         | 0     | 0     | 0          |
| YGR094W     | VAS1     | B | 20              | 0.19 | 0.19         | 0.26 | 0.2          | 0     | 0.05  | -0.04      |
| YGR095C     | 1101     | B | 21              | 0.2  | 0.16         | 0.19 | 0.35         | 0     | 0     | 0.02       |
| YGR097W     | ASK10    | B | 20              | 0.08 | 0.1          | 0.09 | 0.19         | 0     | Ő     | -0.06      |
| YGR101W     | 1101110  | B | 21              | 0.23 | 0.18         | 0.17 | 0.31         | -0.08 | -0.06 | -0.16      |
| YGR102C     |          | B | 20              | 0.09 | 0.09         | 0.1  | 0.12         | 0     | 0     | -0.07      |
| YGR105W     | VMA21    | B | 20              | 0.09 | 0.02         | 0.17 | 0.12         | 0     | 01    | -0.05      |
| YGR106C     | 1017 121 | B | 20              | 0.02 | 0.82         | 1.01 | 0.74         | 0.04  | 0.1   | 0.05       |
| YGR108W     | CLB1     | B | 20              | 0.11 | 0.12         | 0.07 | 0.08         | 0.01  | Ő     | 0.00       |
| YGR110W     | CLDI     | B | 20              | 0.11 | 0.12         | 0.07 | 0.00         | 0     | 0.02  | 0.03       |
| VGR111W     |          | B | 20              | 0.07 | 0.07         | 0.14 | 0.09         | 0     | 0.02  | 0.05       |
| YGR118W     | RPS23A   | B | 80              | 1 /  | 1.92         | 1 71 | 1 33         | 012   | 0.13  | -0.07      |
| YGR121C     | MFP1     | B | 21              | 0.07 | 0.08         | 0.14 | 0.09         | 0.12  | 0.15  | -0.11      |
| YGR124W     | ASN2     | R | 21              | 0.25 | 0.00         | 0.22 | 0.07         | 0.2   | _0.01 | 0.11       |
| YGR125W     | A0112    | R | 21              | 0.23 | 0.25         | 0.22 | 0.42         | 0.2   | -0.01 | -0.19      |
| YGR126W     |          | R | $\frac{21}{20}$ | 0.07 | 0.07         | 0.07 | 0.09         | 0     | 0     | -0.00<br>N |
| VGR127W     |          | R | 20              | 0.07 | 0.07         | 0.07 | 0.00         | 0     | 0     | 014        |
| YGR132C     | PHR 1    | R | 20              | 0.15 | 0.09         | 0.15 | 0.21<br>0.17 | 0     | 0.07  | 0.14       |
| YGR132C     | DEA1     | R | 20              | 0.00 | 0.12<br>0.07 | 0.10 | 0.17         | 0     | 0.07  | 0.01       |
| 1 01(133 1) | 1 L/14   | U | 20              | 0.00 | 0.07         | 0.00 | 0.07         | v     | v     | 0          |

| YGR135W | PRE9    | В      | 20 | 0.4   | 0.56 | 0.28  | 0.94  | 0.1   | -0.1  | 0.27  |
|---------|---------|--------|----|-------|------|-------|-------|-------|-------|-------|
| YGR136W | -       | В      | 20 | 0.12  | 0.07 | 0.08  | 0.46  | 0     | 0     | 0.31  |
| YGR137W |         | В      | 21 | 0.1   | 0.08 | 0.1   | 0.2   | -0    | 0     | 0.25  |
| YGR138C |         | B      | 21 | 0.6   | 0.38 | 0.69  | 1.35  | -0.14 | -0.02 | 0.3   |
| YGR141W |         | B      | 20 | 0.07  | 0.07 | 0.07  | 0.07  | 0     | 0     | 0     |
| YGR143W | SKN1    | B      | 21 | 0.15  | 0.09 | 0.1   | 0.15  | -0.05 | -0.06 | -0.04 |
| YGR144W | THI4    | B      | 21 | 0.15  | 0.16 | 0.17  | 0.15  | -0.06 | -0.03 | -0.07 |
| YGR146C | 11111   | B      | 20 | 0.16  | 0.10 | 0.17  | 0.27  | 0.00  | 0.05  | 0.22  |
| YGR147C | NAT2    | B      | 20 | 0.10  | 0.1  | 0.09  | 0.1   | 0     | 0.00  | 0     |
| YGR148C | RPI 24B | B      | 19 | 1.23  | 1.66 | 0.02  | 1 35  | 0     | -0.09 | 0.12  |
| VGR1/9W | KI L2+D | B      | 21 | 0.46  | 0.24 | 0.55  | 0.77  | -0.16 | 0.02  | 0.12  |
| VGR155W | CVS4    | B      | 21 | 0.40  | 0.24 | 0.51  | 1 15  | 0.10  | 0.11  | 0.17  |
| YGR157W | CHO2    | B      | 20 | 0.00  | 0.57 | 0.00  | 0.97  | 0.00  | 0.1   | 0.01  |
| VGR159C | NSR1    | B      | 20 | 0.45  | 0.05 | 0.7   | 0.77  | 0.00  | 0.1   | 0.01  |
| VGR161C | NSICI   | B      | 20 | 0.21  | 0.40 | 0.3   | 0.44  | 0.51  | 0.04  | 0.23  |
| VGR162W | TIF/631 | B      | 21 | 0.17  | 0.1  | 0.21  | 0.21  | -0.1  | 0.04  | 0.01  |
| VCP163W | 1114031 | D<br>B | 20 | 0.09  | 0.08 | 0.07  | 0.11  | 0     | 0     | 0.07  |
| VCP165W |         | D      | 20 | 0.07  | 0.07 | 0.07  | 0.08  | 0     | 0     | -0.07 |
| VCD167W | CL C1   | D      | 20 | 0.07  | 0.07 | 0.07  | 0.05  | 0     | 0.02  | 0.06  |
| VCD160C | CLCI    | D      | 20 | 0.15  | 0.15 | 0.19  | 0.2   | 0     | 0.05  | 0.00  |
| YCD172C | VID1    | B      | 20 | 0.08  | 0.07 | 0.07  | 0.05  | 0 02  | 0     | 0     |
| YGR172C | Y IP I  | B      | 21 | 0.18  | 0.25 | 0.12  | 0.11  | 0.02  | 0     | 0     |
| YGR1/3W | CDD4    | В      | 21 | 0.07  | 0.07 | 0.07  | 0.08  | 0     | 0     | 0     |
| YGR1/4C | CBP4    | В      | 20 | 0.07  | 0.07 | 0.08  | 0.07  | 0     | 0     | 0     |
| YGR1/5C | EKGI    | В      | 20 | 0.00  | 0.78 | 0.43  | 0.73  | -0.02 | 0.04  | 0.14  |
| YGR1/8C | PBPI    | В      | 21 | 0.24  | 0.16 | 0.13  | 0.24  | -0.12 | -0.13 | -0.02 |
| YGR180C | KNR4    | В      | 20 | 0.9   | 1.29 | 0.98  | 0.96  | 0     | 0.1   | -0.13 |
| YGRI8IW |         | В      | 21 | 0.64  | 0.75 | 1.07  | 0.97  | 0.05  | 0.09  | 0.11  |
| YGR182C | 0.000   | В      | 20 | 0.4   | 0.27 | 0.49  | 0.2   | 0     | 0     | 0     |
| YGR183C | QCR9    | В      | 21 | 1.45  | 1.09 | 3.17  | 0.85  | -0.11 | 0.34  | -0.07 |
| YGR184C | UBRI    | В      | 21 | 0.07  | 0.07 | 0.07  | 0.07  | 0     | 0     | -0.14 |
| YGR185C | TYSI    | В      | 20 | 0.17  | 0.22 | 0.1   | 0.17  | 0.04  | -0.11 | 0.07  |
| YGR189C |         | В      | 21 | 0.62  | 0.47 | 0.87  | 0.8   | 0     | 0.03  | 0.19  |
| YGR191W | HIP1    | В      | 20 | 0.24  | 0.29 | 0.46  | 0.46  | 0     | 0     | 0.22  |
| YGR192C | TDH3    | В      | 20 | 22.18 | 6.67 | 29.62 | 29.71 | -0.05 | 0.19  | 0.1   |
| YGR193C | PDX1    | В      | 20 | 0.09  | 0.07 | 0.07  | 0.07  | 0     | 0     | 0     |
| YGR194C |         | В      | 20 | 0.24  | 0.07 | 0.08  | 0.07  | -0.1  | 0     | 0     |
| YGR195W | SKI6    | В      | 21 | 0.13  | 0.16 | 0.16  | 0.2   | 0     | 0     | 0.02  |
| YGR197C | SNG1    | В      | 20 | 0.1   | 0.07 | 0.07  | 0.06  | 0     | 0     | 0     |
| YGR199W |         | В      | 21 | 0.07  | 0.07 | 0.07  | 0.11  | 0     | 0     | 0.07  |
| YGR200C |         | В      | 21 | 0.07  | 0.07 | 0.07  | 0.05  | 0     | 0     | -0.12 |
| YGR201C |         | В      | 20 | 0.07  | 0.07 | 0.12  | 0.3   | 0     | 0     | 0.21  |
| YGR203W |         | В      | 21 | 0.13  | 0.07 | 0.1   | 0.08  | 0     | 0     | 0     |
| YGR204W | ADE3    | В      | 21 | 0.38  | 0.35 | 0.44  | 0.78  | -0.03 | 0     | 0.17  |
| YGR206W |         | В      | 20 | 0.07  | 0.07 | 0.07  | 0.06  | 0     | 0     | 0     |
| YGR207C |         | В      | 20 | 0.08  | 0.07 | 0.08  | 0.07  | 0     | 0     | 0     |
| YGR209C | TRX2    | В      | 21 | 2.07  | 1.93 | 1.6   | 2.79  | 0     | 0.15  | 0.23  |
| YGR210C |         | В      | 21 | 0.2   | 0.25 | 0.22  | 0.24  | 0.03  | 0     | -0.03 |
| YGR211W |         | В      | 21 | 0.07  | 0.11 | 0.07  | 0.07  | 0.02  | 0     | -0.16 |
| YGR214W | RPS0A   | В      | 41 | 1.38  | 1.64 | 2.3   | 1.27  | 0.09  | 0.14  | -0.04 |
| YGR215W |         | В      | 20 | 0.07  | 0.07 | 0.07  | 0.05  | 0     | 0     | 0     |
| YGR216C | GPI1    | В      | 20 | 0.07  | 0.07 | 0.07  | 0.09  | 0     | 0     | -0.1  |
| YGR217W | CCH1    | В      | 20 | 0.08  | 0.07 | 0.07  | 0.05  | 0     | 0     | 0     |
| YGR218W | CRM1    | В      | 20 | 0.07  | 0.07 | 0.07  | 0.07  | 0     | 0     | -0.13 |
| YGR220C | MRPL9   | В      | 20 | 0.12  | 0.12 | 0.12  | 0.15  | 0     | 0.03  | -0.08 |
| YGR222W | PET54   | В      | 21 | 0.07  | 0.07 | 0.07  | 0.06  | 0     | 0     | 0     |

| YGR224W  |              | В      | 21              | 0.07 | 0.07 | 0.07 | 0.07  | 0     | 0     | 0     |
|----------|--------------|--------|-----------------|------|------|------|-------|-------|-------|-------|
| YGR227W  | DIE2         | В      | 20              | 0.09 | 0.08 | 0.07 | 0.13  | 0     | 0     | -0.03 |
| YGR229C  | SMI1         | В      | 20              | 0.09 | 0.07 | 0.12 | 0.12  | 0     | 0     | -0.08 |
| YGR231C  | PHB2         | В      | 20              | 0.17 | 0.14 | 0.2  | 0.22  | 0     | 0.05  | 0.09  |
| YGR232W  |              | В      | 20              | 0.19 | 0.54 | 0.56 | 0.6   | 0.26  | 0.42  | 0.39  |
| YGR234W  | YHB1         | В      | 20              | 0.37 | 0.59 | 1.38 | 0.11  | 0.05  | 0.41  | -0.6  |
| YGR235C  |              | B      | 21              | 0.07 | 0.16 | 0.22 | 0.13  | 0     | 0.1   | 0.1   |
| YGR240C  | PFK1         | B      | 20              | 0.67 | 0.56 | 0.87 | 1.18  | 0     | 0.06  | 0.28  |
| YGR241C  | YAP1802      | B      | 20              | 0.07 | 0.07 | 0.07 | 0.08  | Ő     | 0.00  | 0     |
| YGR243W  | 1711 1002    | B      | 21              | 0.07 | 0.07 | 0.12 | 0.00  | 0     | 0     | 0     |
| YGR244C  |              | B      | 20              | 0.07 | 0.07 | 0.12 | 0.00  | 0     | 0 48  | 0.02  |
| YGR244C  | BRF1         | B      | 20              | 0.17 | 0.08 | 0.07 | 0.22  | 0     | 0.40  | 0.02  |
| YGR248W  | SOI 4        | B      | 20              | 0.23 | 0.00 | 0.07 | 0.72  | -02   | -0.14 | 0 35  |
| YGR250C  | DOLT         | B      | 20              | 0.23 | 0.14 | 0.17 | 0.72  | -0.2  | 0.14  | 0.55  |
| VGR252W  | GCN5         | B      | 20              | 0.07 | 0.07 | 0.1  | 0.52  | 0     | 0.11  | 0.57  |
| VGR252C  | DUD2         | B      | $\frac{21}{20}$ | 0.07 | 0.07 | 0.07 | 0.05  | 0.06  | 0.21  | 0.28  |
| VGP254W  | FNO1         | B      | 20              | 7.04 | 5.36 | 5.52 | 18.48 | 0.00  | 0.21  | 0.20  |
| VGP255C  | COOG         | D<br>D | 20              | 0.23 | 0.21 | 0.31 | 0.27  | 0     | 0.05  | 0.06  |
| VGP256W  | COQ0<br>GND2 | D<br>D | 20              | 0.23 | 0.21 | 0.31 | 0.27  | 0     | 0.1   | 0.00  |
| IGR250W  | GND2         | D      | 20              | 0.00 | 0.00 | 0.15 | 0.55  | 0     | 0.04  | 0.75  |
| IGR257C  | DADY         | D      | 20              | 0.1  | 0.08 | 0.1  | 0.09  | 0     | 0     | 0     |
| I GR238C | KAD2         | D      | 20              | 0.07 | 0.07 | 0.08 | 0.05  | 0     | 0.05  | 0     |
| YGR260W  |              | В      | 20              | 0.3  | 0.26 | 0.44 | 0.36  | 0     | 0.05  | 0     |
| YGR202C  |              | В      | 20              | 0.17 | 0.23 | 0.2  | 0.10  | 0.11  | 0.05  | -0.04 |
| YGR263C  | MEGI         | В      | 21              | 0.12 | 0.22 | 0.13 | 0.26  | 0     | 0     | 0.09  |
| YGR264C  | MESI         | В      | 20              | 0.07 | 0.08 | 0.09 | 0.14  | 0     | 0     | 0.15  |
| YGR26/C  | FOL2         | В      | 20              | 0.14 | 0.11 | 0.15 | 0.19  | 0     | 0.01  | 0.07  |
| YGR268C  |              | В      | 20              | 0.2  | 0.14 | 0.3  | 0.36  | -0.07 | 0.1   | 0.16  |
| YGR2/0W  | YTA/         | В      | 20              | 0.07 | 0.07 | 0.07 | 0.08  | 0     | 0     | 0     |
| YGR2/5W  |              | В      | 20              | 0.1  | 0.19 | 0.11 | 0.15  | 0.09  | 0     | 0.04  |
| YGR27/C  |              | В      | 20              | 0.09 | 0.08 | 0.1  | 0.11  | 0     | 0     | 0.07  |
| YGR279C  |              | В      | 20              | 3.4  | 2.96 | 4.15 | 2.65  | 0     | 0.13  | -0.04 |
| YGR281W  | YOR1         | В      | 20              | 0.08 | 0.07 | 0.07 | 0.1   | 0     | 0     | 0.06  |
| YGR282C  | BGL2         | В      | 21              | 1.89 | 1.66 | 1.81 | 2.69  | 0.18  | 0.14  | 0.29  |
| YGR284C  |              | В      | 20              | 0.27 | 0.32 | 0.65 | 0.53  | -0.01 | 0.19  | 0.12  |
| YGR285C  | ZUO1         | В      | 21              | 0.88 | 1.37 | 1.32 | 1.06  | 0.12  | 0     | 0.03  |
| YGR286C  | BIO2         | В      | 20              | 0.07 | 0.08 | 0.17 | 0.05  | 0     | 0.3   | 0     |
| YGR294W  |              | В      | 20              | 0.24 | 0.15 | 0.12 | 0.3   | 0     | 0     | 0     |
| YGR295C  | COS6         | В      | 20              | 1.27 | 0.77 | 0.52 | 0.65  | -0.1  | -0.17 | -0.04 |
| YGR296W  |              | В      | 20              | 0.37 | 0.45 | 0.62 | 0.59  | 0.03  | 0.08  | 0.12  |
| YHL001W  | RPL14B       | В      | 63              | 3.27 | 3.71 | 3.21 | 2.67  | 0.1   | 0.09  | 0     |
| YHL002W  |              | В      | 20              | 0.07 | 0.08 | 0.08 | 0.1   | 0     | 0     | 0     |
| YHL003C  | LAG1         | В      | 20              | 0.14 | 0.15 | 0.11 | 0.12  | 0     | 0     | 0.02  |
| YHL004W  | MRP4         | В      | 20              | 0.07 | 0.12 | 0.15 | 0.14  | 0     | 0.1   | 0.05  |
| YHL006C  |              | В      | 21              | 0.07 | 0.07 | 0.07 | 0.07  | 0     | 0     | -0.16 |
| YHL008C  |              | В      | 20              | 0.15 | 0.07 | 0.18 | 0.16  | -0.05 | 0     | -0.09 |
| YHL011C  | PRS3         | В      | 20              | 0.11 | 0.19 | 0.21 | 0.24  | 0.09  | 0.12  | 0.15  |
| YHL015W  | RPS20        | В      | 20              | 3.39 | 5.46 | 3.79 | 3.35  | 0.1   | 0.09  | -0.25 |
| YHL017W  |              | В      | 20              | 0.15 | 0.18 | 0.23 | 0.19  | 0     | 0     | 0     |
| YHL019C  | APM2         | В      | 20              | 0.07 | 0.07 | 0.07 | 0.05  | 0     | 0     | 0     |
| YHL020C  | OPI1         | В      | 21              | 0.2  | 0.26 | 0.32 | 0.38  | 0     | 0     | -0.03 |
| YHL021C  |              | В      | 21              | 0.16 | 0.07 | 0.27 | 0.25  | -0.06 | -0.02 | 0.01  |
| YHL024W  |              | В      | 20              | 0.07 | 0.07 | 0.07 | 0.06  | 0     | 0     | 0     |
| YHL025W  | SNF6         | В      | 20              | 0.19 | 0.15 | 0.17 | 0.17  | -0.1  | -0.04 | 0     |
| YHL026C  |              | В      | 21              | 0.08 | 0.11 | 0.09 | 0.22  | 0     | 0     | 0.15  |
| YHL027W  | RIM101       | В      | 20              | 0.09 | 0.07 | 0.07 | 0.14  | 0     | 0     | -0.14 |

| YHL028W   | WSC4   | В      | 21 | 0.09  | 0.1   | 0.07         | 0.05  | 0     | -0.05         | 0     |
|-----------|--------|--------|----|-------|-------|--------------|-------|-------|---------------|-------|
| YHL029C   |        | В      | 20 | 0.07  | 0.07  | 0.07         | 0.08  | 0     | 0             | 0     |
| YHL031C   | GOS1   | В      | 20 | 0.07  | 0.07  | 0.07         | 0.08  | 0     | 0             | 0     |
| YHL032C   | GUT1   | В      | 20 | 0.07  | 0.07  | 0.29         | 0.16  | 0     | 0.09          | 0.11  |
| YHL033C   | RPL8A  | В      | 20 | 1.4   | 1.72  | 1.64         | 1.49  | 0.06  | 0.09          | 0.03  |
| YHL034C   | SBP1   | В      | 20 | 0.53  | 0.52  | 1.1          | 0.95  | -0.02 | 0.18          | 0.29  |
| YHL035C   |        | В      | 20 | 0.07  | 0.07  | 0.07         | 0.06  | 0     | 0             | 0     |
| YHL039W   |        | В      | 21 | 0.07  | 0.11  | 0.09         | 0.07  | 0     | 0.04          | -0.15 |
| YHL040C   |        | В      | 20 | 0.09  | 0.07  | 0.07         | 0.07  | 0     | 0             | 0     |
| YHL044W   |        | В      | 20 | 0.07  | 0.07  | 0.07         | 0.09  | 0     | 0             | 0     |
| YHL046C   |        | В      | 20 | 0.1   | 0.1   | 0.14         | 0.19  | 0     | 0             | 0     |
| YHL048W   | COS8   | В      | 21 | 0.24  | 0.38  | 0.33         | 0.48  | 0     | -0.01         | 0.03  |
| YHL049C   |        | В      | 10 | 0.16  | 0.21  | 0.13         | 0.07  | 0     | -0.12         | -0.2  |
| YHL050C   |        | B      | 40 | 0.23  | 0.15  | 0.21         | 0.23  | 0     | 0             | -0.04 |
| YHR001W   |        | B      | 20 | 0.08  | 0.08  | 0.07         | 0.1   | Ő     | 0             | 0     |
| YHR001W-A | OCR10  | B      | 21 | 0.81  | 0.73  | 2.1          | 0.56  | 0 09  | 0.35          | -011  |
| YHR003C   | Quinto | B      | 20 | 0.07  | 0.08  | 0.07         | 0.06  | 0.0   | 0             | -0.1  |
| VHR004C   |        | B      | 20 | 0.07  | 0.00  | 0.07         | 0.00  | 0     | 0             | 0.1   |
| VHR005C   | GPA1   | B      | 20 | 0.07  | 0.07  | 0.07         | 0.05  | 0     | 0             | -0    |
| VHP007C   | EPG11  | D<br>B | 20 | 1.02  | 1.2   | 0.07         | 2.6   | 0.02  | 0.03          | 0.47  |
| VUP008C   | SOD2   | D<br>D | 20 | 0.62  | 0.4   | 1.24         | 2.0   | 0.02  | -0.03<br>0 34 | 0.47  |
| I HK006C  | 30D2   | D      | 21 | 0.02  | 0.4   | 0.22         | 1.05  | -0.2  | 0.54          | 0.20  |
| I HK009C  |        | D      | 20 | 0.24  | 0.17  | 0.22<br>5.14 | 0.22  | -0    | 0 1 6         | -0.04 |
| I HKUIUW  | KPL2/A | D      | 20 | 5.38  | 2.94  | J.14         | 2.49  | 0.04  | 0.10          | -0.02 |
| I HK012W  | VP529  | B      | 41 | 0.07  | 0.07  | 0.07         | 0.07  | 0     | 0 11          | -0.12 |
| YHR013C   | ARDI   | В      | 20 | 0.07  | 0.1   | 0.12         | 0.09  | 0.05  | 0.11          | 0     |
| YHR016C   | YSC84  | В      | 38 | 0.07  | 0.07  | 0.07         | 0.06  | 0     | 0             | 0     |
| YHR017W   | YSC83  | В      | 21 | 0.07  | 0.07  | 0.07         | 0.07  | 0     | 0             | 0     |
| YHR018C   | ARG4   | В      | 20 | 1.11  | 0.61  | 2.01         | 1.33  | -0.08 | 0.35          | 0.08  |
| YHR019C   | DED81  | В      | 21 | 0.35  | 0.39  | 0.68         | 0.6   | 0     | 0.14          | 0.11  |
| YHR020W   |        | В      | 21 | 0.24  | 0.19  | 0.22         | 0.38  | 0     | 0             | 0.08  |
| YHR021C   | RPS27B | В      | 20 | 12.82 | 13.16 | 10.02        | 10.05 | 0.03  | -0.05         | -0.12 |
| YHR022C   |        | В      | 20 | 0.07  | 0.07  | 0.07         | 0.12  | 0     | 0             | 0.08  |
| YHR024C   | MAS2   | В      | 20 | 0.08  | 0.11  | 0.14         | 0.16  | 0     | 0             | 0.01  |
| YHR025W   | THR1   | В      | 21 | 1.54  | 2.18  | 2.38         | 1.38  | 0.12  | 0.11          | -0.07 |
| YHR026W   | PPA1   | В      | 20 | 6.83  | 6.49  | 7.25         | 4.63  | 0.17  | 0.05          | -0.09 |
| YHR027C   | RPN1   | В      | 21 | 0.13  | 0.17  | 0.2          | 0.24  | 0.05  | 0.06          | 0.13  |
| YHR028C   | DAP2   | В      | 21 | 0.09  | 0.19  | 0.14         | 0.17  | 0     | 0             | 0.17  |
| YHR030C   | SLT2   | В      | 20 | 0.07  | 0.07  | 0.07         | 0.09  | 0     | 0             | 0.13  |
| YHR032W   |        | В      | 21 | 0.16  | 0.15  | 0.12         | 0.17  | 0     | 0             | 0.12  |
| YHR033W   |        | В      | 20 | 0.21  | 0.07  | 0.65         | 0.05  | -0.2  | 0.5           | -0.22 |
| YHR034C   |        | В      | 20 | 0.07  | 0.07  | 0.09         | 0.05  | 0     | 0             | 0     |
| YHR037W   | PUT2   | В      | 21 | 0.1   | 0.07  | 0.17         | 0.12  | -0.07 | 0.06          | -0.01 |
| YHR039BC  | VMA10  | В      | 21 | 0.71  | 1.09  | 1.17         | 0.98  | 0.02  | 0.22          | 0     |
| YHR039C   |        | В      | 21 | 0.2   | 0.18  | 0.17         | 0.14  | 0     | 0             | -0.13 |
| YHR041C   | SRB2   | В      | 21 | 0.41  | 1.08  | 0.46         | 0.64  | 0.16  | 0             | -0.09 |
| YHR042W   | NCP1   | В      | 20 | 0.33  | 0.5   | 0.34         | 0.7   | 0     | 0             | 0.1   |
| YHR043C   | DOG2   | В      | 20 | 0.11  | 0.07  | 0.2          | 0.07  | -0.1  | 0.22          | 0     |
| YHR045W   |        | В      | 21 | 0.13  | 0.11  | 0.11         | 0.14  | 0     | 0             | -0.13 |
| YHR046C   |        | В      | 21 | 0.07  | 0.07  | 0.07         | 0.11  | 0     | 0             | 0.13  |
| YHR049W   |        | B      | 21 | 0.28  | 0.54  | 0.55         | 0.25  | 0.06  | 0.18          | -0.19 |
| YHR050W   | SMF2   | B      | 20 | 0.18  | 0.19  | 0.18         | 0.14  | 0     | 0             | 0     |
| YHR051W   | COX6   | R      | 20 | 0.10  | 0.66  | 2 02         | 0.85  | 0     | 0 33          | 0.06  |
| YHR052W   | 20110  | B      | 20 | 0.07  | 0.07  | 0.07         | 0.05  | 0     | 0             | 0.00  |
| YHR052C   | CLIP1  | R      | 20 | 5.07  | 17.01 | 5 98         | 16 67 | 04    | 0.02          | 0 34  |
| YHR054C   | 0011   | R      | 20 | 0.07  | 0.07  | 0.07         | 0.06  | 0     | 0.02          | 0.54  |
| THUSTO    |        | 5      |    | 0.07  | 0.07  | 0.07         | 0.00  | 0     | 0             | 0     |

| YHR055C   | CUP1           | В      | 20              | 6.8  | 6.52 | 4.94 | 15.95 | 0.05  | -0.05 | 0.43  |
|-----------|----------------|--------|-----------------|------|------|------|-------|-------|-------|-------|
| YHR056C   |                | В      | 20              | 0.08 | 0.07 | 0.07 | 0.08  | 0     | 0     | -0.13 |
| YHR057C   | CYP2           | В      | 21              | 0.11 | 0.15 | 0.51 | 0.43  | 0.06  | 0.35  | 0.32  |
| YHR062C   | RPP1           | В      | 21              | 0.07 | 0.09 | 0.07 | 0.05  | 0.09  | 0     | 0     |
| YHR063C   |                | В      | 21              | 0.18 | 0.17 | 0.26 | 0.1   | 0     | 0.1   | -0.16 |
| YHR064C   | PDR13          | В      | 20              | 0.94 | 1.16 | 1.05 | 0.87  | 0.06  | 0     | -0.05 |
| YHR065C   | RRP3           | B      | 20              | 0.07 | 0.07 | 0.09 | 0.05  | 0     | 0     | 0     |
| YHR067W   | iuu s          | B      | 20              | 0.07 | 0.07 | 0.08 | 0.05  | 0     | 0.05  | Ő     |
| YHR068W   | DYS1           | B      | 20              | 0.23 | 0.32 | 0.19 | 0.29  | 0     | 0     | -0.03 |
| YHR069C   | RRP4           | B      | $\frac{20}{20}$ | 0.07 | 0.07 | 0.08 | 0.13  | Ő     | Ő     | 0     |
| YHR070W   | iuu i          | B      | 21              | 0.09 | 0.14 | 0.00 | 0.22  | Ő     | Ő     | 0.01  |
| YHR071W   | PCL5           | B      | 20              | 0.07 | 0.07 | 0.18 | 0.08  | 0     | 0.32  | -0    |
| YHR072W   | FRG7           | B      | 20              | 0.07 | 0.09 | 0.10 | 0.00  | 0     | 0     | Ő     |
| YHR074W   | Litter/        | B      | 20              | 0.11 | 0.05 | 0.19 | 0.12  | 0     | 0.06  | 0     |
| YHR076W   |                | B      | 21              | 0.11 | 0.15 | 0.12 | 0.19  | -01   | 0.00  | 0     |
| VHR078W   |                | B      | $\frac{21}{20}$ | 0.12 | 0.00 | 0.14 | 0.07  | 0.1   | 0     | _0.12 |
| VHR082C   | KSP1           | B      | 20              | 0.15 | 0.1  | 0.00 | 0.1   | 0     | 0     | 0.12  |
| VHR082C   | K51 I          | B      | 20              | 0.07 | 0.07 | 0.07 | 0.00  | 0.05  | 0.18  | 0.04  |
| VHP084W   | STE12          | B      | 20              | 0.2  | 0.23 | 0.33 | 0.5   | 0.05  | 0.10  | 0.04  |
| VUD086W   | NAM8           | D<br>D | 20              | 0.07 | 0.07 | 0.07 | 0.00  | 0     | 0     | 0     |
| VUD097W   | INANIO         | D<br>D | 20              | 0.19 | 0.25 | 0.22 | 0.11  | 0.11  | 0.00  | 0     |
| VUD080C   | CAD1           | D      | 20              | 0.62 | 0.7  | 0.00 | 0.52  | -0.11 | -0.09 | 0.21  |
| VHP001C   | MCD1           | D      | 20              | 0.55 | 0.05 | 0.4  | 0.24  | 0.05  | -0.05 | -0.21 |
| VHP002C   |                | D      | 20              | 0.08 | 0.07 | 0.09 | 0.07  | 0.02  | 05    | -0.12 |
| I HK092C  | ПА14<br>UVT1   | D      | 20              | 0.70 | 0.41 | 0.12 | 0.01  | -0.02 | -0.5  | -0.15 |
| I HK094C  | IIVT5          | D      | 20              | 0.84 | 1.54 | 0.07 | 1.37  | 0.00  | -0.0  | 0.14  |
| I HK090C  | пліз           | D      | 20              | 0.07 | 0.07 | 0.07 | 0.10  | 0     | 0     | 0.10  |
| I HK09/C  |                | D      | 40              | 0.12 | 0.07 | 0.08 | 0.07  | -0.1  | 0     | 0     |
| I HRU98C  |                | B      | 21              | 0.1  | 0.11 | 0.11 | 0.09  | 0     | 0     | 0     |
| YHR100C   | CDE2           | B      | 20              | 0.07 | 0.07 | 0.08 | 0.05  | 0 12  | 0 14  | 0     |
| I HK104W  | GRES           | Б      | 20              | 0.45 | 0.19 | 0.78 | 1.03  | -0.12 | 0.14  | 0.57  |
| YHR106W   | TKK2           | В      | 20              | 0.13 | 0.11 | 0.1  | 0.18  | 0     | 0     | -0.02 |
| YHRI0/C   | CDC12          | В      | 20              | 0.12 | 0.11 | 0.09 | 0.09  | 0     | 0     | 0     |
| YHRIU8W   |                | В      | 20              | 0.07 | 0.1  | 0.12 | 0.00  | 0     | 0     | 0     |
| YHRIIOW   |                | В      | 20              | 0.2  | 0.14 | 0.25 | 0.11  | 0     | 0.03  | -0.2  |
| YHRII2C   |                | В      | 20              | 0.14 | 0.1  | 0.15 | 0.2   | 0     | 0     | 0.04  |
| YHRII3W   |                | В      | 20              | 0.27 | 0.19 | 0.21 | 0.22  | -0.02 | 0     | -0.04 |
| YHRII4W   |                | В      | 20              | 0.07 | 0.07 | 0.07 | 0.05  | 0     | 0     | 0     |
| YHRIISC   |                | В      | 21              | 0.1  | 0.11 | 0.16 | 0.14  | 0     | 0     | 0     |
| YHRII6W   |                | В      | 20              | 0.07 | 0.08 | 0.07 | 0.07  | 0     | 0     | 0     |
| YHR123W   | EPII           | В      | 41              | 0.14 | 0.14 | 0.13 | 0.05  | 0     | 0     | -0.22 |
| YHR128W   | FURI           | В      | 21              | 0.44 | 1.09 | 0.48 | 0.69  | 0.38  | 0.14  | 0.15  |
| YHR132C   | ECM14          | В      | 21              | 0.14 | 0.18 | 0.33 | 0.16  | 0.16  | 0.21  | 0     |
| YHRI33C   | NOVA           | В      | 20              | 0.42 | 0.69 | 0.7  | 0.23  | 0.02  | 0.01  | 0     |
| YHR135C   | YCKI           | В      | 20              | 0.11 | 0.09 | 0.07 | 0.11  | 0     | 0     | 0     |
| YHR138C   | <b>GDG</b> 100 | В      | 20              | 0.35 | 0.33 | 0.51 | 0.51  | -0.17 | 0.14  | 0.07  |
| YHR139C   | SPS100         | В      | 20              | 0.07 | 0.07 | 0.08 | 0.07  | 0     | 0     | 0     |
| YHR140W   |                | В      | 20              | 0.07 | 0.07 | 0.08 | 0.05  | 0     | 0     | 0     |
| YHR141C   | RPL42B         | В      | 20              | 1.03 | 1.98 | 2.78 | 1.45  | 0.35  | 0.33  | 0.04  |
| YHR142W   |                | В      | 20              | 0.27 | 0.27 | 0.39 | 0.37  | -0.07 | 0.04  | 0.08  |
| YHR143W   |                | В      | 20              | 0.48 | 0.54 | 0.89 | 0.57  | 0.05  | 0.24  | 0.05  |
| YHR143W-A | RPB12          | В      | 20              | 0.12 | 0.23 | 0.32 | 0.16  | 0.1   | 0.25  | 0     |
| YHR145C   |                | В      | 21              | 0.1  | 0.07 | 0.07 | 0.05  | 0     | 0     | 0     |
| YHR146W   |                | В      | 20              | 0.07 | 0.07 | 0.14 | 0.06  | 0     | 0.15  | 0     |
| YHR147C   | MRPL6          | В      | 20              | 0.11 | 0.14 | 0.08 | 0.12  | 0     | 0     | 0     |
| YHR161C   | YAP1801        | В      | 20              | 0.09 | 0.08 | 0.1  | 0.08  | 0     | 0     | 0     |

| YHR162W   |        | В | 20              | 1.38  | 2.26  | 1.85  | 1.21 | 0.13   | 0.19  | -0.11 |
|-----------|--------|---|-----------------|-------|-------|-------|------|--------|-------|-------|
| YHR163W   | SOL3   | В | 20              | 0.47  | 0.59  | 0.84  | 0.7  | 0      | 0.14  | -0.01 |
| YHR170W   | NMD3   | В | 21              | 0.07  | 0.15  | 0.09  | 0.09 | 0.02   | 0     | 0     |
| YHR171W   |        | В | 20              | 0.09  | 0.07  | 0.07  | 0.05 | 0      | 0     | 0     |
| YHR174W   | ENO2   | В | 20              | 15.27 | 25.96 | 21.33 | 13.1 | 0.04   | -0.07 | -0.13 |
| YHR175W   | CTR2   | В | 20              | 0.4   | 0.55  | 0.7   | 0.24 | 0.11   | 0.26  | -0.2  |
| YHR176W   |        | В | 20              | 0.12  | 0.07  | 0.07  | 0.05 | 0      | -0    | 0     |
| YHR179W   | OYE2   | В | 20              | 0.78  | 0.66  | 1.1   | 1.42 | 0      | 0.35  | 0.33  |
| YHR180W   |        | В | 20              | 0.07  | 0.07  | 0.07  | 0.06 | 0      | 0     | 0     |
| YHR181W   |        | В | 21              | 0.35  | 0.71  | 0.5   | 0.41 | 0.13   | 0.15  | 0.04  |
| YHR183W   | GND1   | В | 20              | 1.99  | 2.73  | 3.45  | 1.46 | 0.07   | 0.31  | -0.09 |
| YHR187W   | IKI1   | B | 21              | 0.09  | 0.07  | 0.11  | 0.08 | 0      | 0     | -0.14 |
| YHR188C   |        | B | 20              | 0.3   | 0.31  | 0.33  | 0.3  | -0.04  | 0.01  | -0.07 |
| YHR190W   | ERG9   | B | 21              | 0.54  | 0.69  | 0.76  | 0.51 | 0.03   | 0.09  | 0.02  |
| YHR191C   | CTF8   | B | 21              | 0.07  | 0.09  | 0.08  | 0.06 | 0      | 0     | 0     |
| YHR192W   | 0110   | B | 20              | 0.07  | 0.07  | 0.08  | 0.11 | 0      | 0     | -0.04 |
| YHR193C   | EGD2   | B | 21              | 1.12  | 2.16  | 2 79  | 2 23 | 0 19   | 0.38  | 0.15  |
| VHR194W   | 1002   | B | 21              | 0.07  | 0.1   | 0.11  | 0.08 | 0.17   | 0     | -0.11 |
| VHR195W   |        | B | 21              | 0.07  | 0.1   | 0.11  | 0.00 | 0      | 0     | 0.11  |
| VHR108C   |        | B | 21              | 0.07  | 0.07  | 0.07  | 0.00 | 0      | 0     | 0     |
| VUP100C   |        | P | 21              | 0.11  | 0.07  | 0.1   | 0.07 | 0.02   | 0     | 0.05  |
| VHD200W   | DDN10  | D | 21              | 0.30  | 0.29  | 0.55  | 0.27 | -0.02  | -0    | -0.05 |
| VHP201C   | DDV1   | D | 21              | 0.51  | 0.44  | 0.5   | 0.42 | 0.00   | 0.07  | 0.17  |
| VUD202W   | PPAI   | D | 21              | 0.07  | 0.07  | 0.08  | 0.00 | 0      | 0     | 0 16  |
| I HK202 W | DDC 4D | D | 20              | 0.07  | 0.07  | 0.09  | 0.00 | 0 12   | 0 10  | -0.10 |
| YHR203C   | KPS4B  | В | 20              | 4.69  | 1.32  | 9.08  | 4.42 | 0.13   | 0.19  | -0.14 |
| YHK205W   | SCH9   | В | 20              | 0.13  | 0.07  | 0.07  | 0.09 | 0      | 0     | -0    |
| YHR206W   | SKN/   | В | 21              | 0.07  | 0.08  | 0.08  | 0.09 | 0      | 0     | 0     |
| YHR208W   | BATT   | В | 20              | 0.47  | 0.89  | 1.18  | 0.57 | 0.04   | 0.11  | 0     |
| YHR214C-B | DUO 10 | В | 40              | 0.23  | 0.19  | 0.28  | 0.63 | 0.08   | 0.09  | 0.21  |
| YHR215W   | PHO12  | В | 20              | 0.07  | 0.07  | 0.07  | 0.07 | 0      | 0     | 0     |
| YHR217C   |        | В | 10              | 0.26  | 0.19  | 0.16  | 0.06 | -0.11  | -0.15 | 0     |
| YHR219W   |        | В | 20              | 0.35  | 0.47  | 0.69  | 0.57 | 0      | 0.18  | 0.01  |
| YIL001W   |        | В | 21              | 0.07  | 0.07  | 0.08  | 0.05 | 0      | 0     | 0     |
| YIL007C   |        | В | 20              | 0.07  | 0.07  | 0.07  | 0.06 | 0      | 0     | -0.15 |
| YIL008W   |        | В | 21              | 0.07  | 0.11  | 0.07  | 0.05 | 0.04   | 0     | 0     |
| YIL009W   | FAA3   | В | 20              | 0.07  | 0.07  | 0.07  | 0.07 | 0      | 0     | 0     |
| YIL010W   | DOT5   | В | 20              | 0.08  | 0.09  | 0.2   | 0.13 | 0      | 0.1   | 0.02  |
| YIL011W   |        | В | 21              | 0.64  | 0.49  | 0.33  | 0.34 | 0      | -0.11 | -0.19 |
| YIL014W   |        | В | 21              | 0.07  | 0.07  | 0.07  | 0.07 | 0      | 0     | -0.14 |
| YIL015C-A |        | В | 20              | 0.07  | 0.08  | 0.08  | 0.07 | 0      | 0     | 0     |
| YIL015W   | BAR1   | В | 20              | 0.45  | 0.07  | 0.42  | 0.64 | -0.7   | -0    | 0.11  |
| YIL018W   | RPL2B  | В | 26              | 8.69  | 15.94 | 13.08 | 7.97 | 0.2    | 0.05  | -0.14 |
| YIL020C   | HIS6   | В | 20              | 0.07  | 0.11  | 0.08  | 0.09 | 0      | 0     | 0.01  |
| YIL021W   | RPB3   | В | 20              | 0.12  | 0.11  | 0.14  | 0.17 | 0      | 0     | 0.01  |
| YIL022W   | TIM44  | В | 20              | 0.07  | 0.09  | 0.08  | 0.12 | 0      | 0     | 0     |
| YIL023C   |        | В | 20              | 0.26  | 0.13  | 0.21  | 0.23 | -0.14  | 0     | -0.1  |
| YIL027C   |        | В | 20              | 0.07  | 0.08  | 0.14  | 0.07 | 0      | 0.12  | 0     |
| YIL030C   | SSM4   | В | 20              | 0.14  | 0.12  | 0.14  | 0.09 | 0      | 0.01  | 0     |
| YIL033C   | SRA1   | В | 21              | 0.38  | 0.36  | 0.52  | 0.59 | -0.02  | 0     | 0.12  |
| YIL034C   | CAP2   | В | 20              | 0.62  | 0.51  | 0.52  | 1.26 | -0.08  | 0     | 0.15  |
| YIL036W   |        | B | 20              | 0.07  | 0.07  | 0.07  | 0.06 | 0      | 0     | 0     |
| YIL038C   | NOT3   | B | $\frac{20}{20}$ | 0.09  | 0.07  | 0.12  | 0.07 | ,<br>0 | 0.02  | Ő     |
| YIL039W   |        | B | 21              | 0.13  | 0.25  | 0.34  | 0.15 | Õ      | 0     | Ő     |
| YIL 040W  |        | B | 20              | 0.31  | 0.38  | 0.61  | 0.15 | 0      | 0 19  | 0     |
| YIL041W   |        | B | 20              | 0.81  | 1.1   | 1.22  | 0.8  | 0.09   | 0.17  | 0.04  |
|           |        | ~ |                 | 0.01  | -·-   |       | 0.0  | 0.07   | ··· / | 0.01  |

| YIL042C  |         | В      | 21              | 0.12 | 0.07 | 0.11 | 0.09 | -0.02 | 0     | 0     |
|----------|---------|--------|-----------------|------|------|------|------|-------|-------|-------|
| YIL043C  | CBR1    | В      | 20              | 2.69 | 2.41 | 2.93 | 1.48 | 0     | 0.04  | 0     |
| YIL044C  |         | В      | 20              | 0.07 | 0.07 | 0.07 | 0.08 | 0     | 0.03  | 0.06  |
| YIL045W  | PIG2    | В      | 20              | 0.09 | 0.07 | 0.07 | 0.05 | 0     | -0.1  | 0     |
| YIL046W  | MET30   | В      | 21              | 0.09 | 0.08 | 0.07 | 0.19 | 0     | 0     | 0     |
| YIL047C  | SYG1    | В      | 20              | 0.14 | 0.19 | 0.13 | 0.22 | 0     | 0     | 0.14  |
| YIL048W  | NEO1    | В      | 21              | 0.17 | 0.15 | 0.19 | 0.16 | 0     | -0.03 | -0.09 |
| YIL049W  | DFG10   | В      | 20              | 0.12 | 0.13 | 0.16 | 0.09 | 0     | 0.06  | 0     |
| YIL050W  | PCL7    | В      | 20              | 0.1  | 0.1  | 0.29 | 0.12 | 0     | 0.34  | 0     |
| YIL051C  | MMD1    | В      | 21              | 2.45 | 3.98 | 4.11 | 3.06 | 0.17  | 0.12  | 0.02  |
| YIL052C  | RPL34B  | В      | 20              | 2.34 | 4.11 | 5.06 | 1.76 | 0.28  | 0.24  | -0.25 |
| YIL053W  | RHR2    | В      | 20              | 2.53 | 3.14 | 4.93 | 3.29 | 0.05  | 0.19  | 0.04  |
| YIL056W  |         | В      | 20              | 0.07 | 0.07 | 0.07 | 0.06 | 0     | 0     | 0     |
| YIL059C  |         | В      | 21              | 0.07 | 0.12 | 0.13 | 0.09 | 0     | 0     | -0.15 |
| YIL062C  | ARC15   | В      | 20              | 0.73 | 1.21 | 1.28 | 1.19 | 0.02  | 0.21  | 0.16  |
| YIL064W  |         | В      | 20              | 0.07 | 0.1  | 0.08 | 0.05 | 0.05  | 0     | 0     |
| YIL065C  |         | В      | 20              | 0.08 | 0.08 | 0.15 | 0.12 | 0     | 0.14  | 0.03  |
| YIL066C  | RNR3    | В      | 21              | 0.07 | 0.14 | 0.1  | 0.06 | 0     | 0     | 0     |
| YIL067C  |         | В      | 21              | 0.07 | 0.07 | 0.09 | 0.08 | 0     | 0     | -0.07 |
| YIL069C  | RPS24B  | B      | 44              | 0.45 | 0.93 | 0.74 | 0.48 | 0.2   | 01    | 0.01  |
| YIL070C  | IC 521D | B      | 20              | 0.13 | 0.23 | 0.31 | 0.29 | 0     | 0     | -0.02 |
| YIL 074C |         | B      | $\frac{20}{20}$ | 0.27 | 0.12 | 0.11 | 0.2  | Ő     | Ő     | 0.02  |
| YIL 075C | RPN2    | B      | 20              | 0.12 | 0.12 | 0.11 | 0.2  | -01   | 0     | -0.12 |
| YIL 076W | SEC28   | B      | $\frac{21}{20}$ | 0.10 | 0.13 | 0.19 | 0.14 | 0.1   | 0.29  | -0.03 |
| YIL 077C | SEC20   | B      | 20              | 0.09 | 0.15 | 0.20 | 0.05 | -0.1  | -0.1  | 0.05  |
| YII 078W | THS1    | B      | 20              | 0.02 | 1 46 | 0.07 | 0.65 | 0.04  | 0.05  | 0     |
| VII 083C | 11101   | B      | 20              | 0.0  | 0.30 | 0.24 | 0.05 | 0.04  | 0.00  | 0.05  |
| VIL 085C | KTP7    | B      | 20              | 0.20 | 0.57 | 0.37 | 0.04 | 0.05  | 0.07  | 0.05  |
| VII 087C | KIK/    | B      | 20              | 0.07 | 0.34 | 0.54 | 0.00 | -0.06 | 0.14  | -0.07 |
| VIL 088C |         | B      | 21              | 0.37 | 0.54 | 0.54 | 0.55 | -0.00 | 0.14  | -0.07 |
| VIL 000W |         | D<br>D | 20              | 0.20 | 0.10 | 0.20 | 0.1  | 0     | 0.05  | -0.14 |
| VIL 003C |         | D<br>D | 20              | 0.11 | 0.1  | 0.12 | 0.08 | 0     | 0.03  | 0     |
| VIL 004C |         | D<br>D | 21              | 0.07 | 0.07 | 1.07 | 0.05 | 0.00  | 0.05  | 0.05  |
| VIL 008C | EMC1    | D      | 21              | 0.05 | 0.98 | 0.09 | 0.80 | -0.09 | 0.2   | -0.05 |
| VIL OOOW | SGA1    | D<br>D | $\frac{21}{20}$ | 0.07 | 0.07 | 0.08 | 0.00 | 0     | 0     | 0     |
| VIL 101C | VDD1    | D      | 20              | 0.09 | 0.07 | 0.07 | 0.05 | 0     | 0     | 0     |
| VIL 104C | ADF 1   | D      | 20              | 0.12 | 0.08 | 0.22 | 0.00 | 0     | 0     | 0.14  |
| VII 106W | MOP1    | D      | 21              | 0.07 | 0.07 | 0.08 | 0.11 | 0     | 0     | -0.14 |
| VII 109W | WIODI   | D      | 20              | 0.11 | 0.13 | 0.12 | 0.07 | 0     | 0     | -0.12 |
| VIL 100C | SEC24   | D      | 20              | 0.1  | 0.12 | 0.11 | 0.15 | 0.02  | 0.12  | 0.02  |
| VIL 111W | COV5P   | D      | 20              | 0.37 | 0.50 | 0.47 | 0.38 | -0.03 | 0.15  | 0.01  |
| VIL 112W | СОЛЈВ   | D      | 20              | 0.25 | 0.15 | 0.2  | 0.55 | -0.2  | 0     | 0.21  |
| VIL 114C | DODO    | D      | 20              | 0.07 | 0.07 | 0.07 | 0.00 | 0     | 0     | 0     |
| VIL 115C | PUK2    | D      | 21              | 0.10 | 0.15 | 0.22 | 0.11 | 0     | 0     | 0     |
| VIL 11CW | NUP139  | D      | 20              | 0.00 | 0.07 | 0.08 | 0.05 | 0     | 0.01  | 0     |
| YIL116W  | HISS    | В      | 21              | 0.08 | 0.07 | 0.1  | 0.08 | 0     | -0.01 | 0     |
| YILII/C  | DUO     | В      | 20              | 0.07 | 0.07 | 0.07 | 0.16 | 0     | 0     | 0.15  |
| YILI18W  | RHO3    | В      | 21              | 0.08 | 0.07 | 0.1  | 0.08 | 0     | 0.03  | -0.15 |
| YILI 19C | RPII    | В      | 20              | 0.07 | 0.08 | 0.07 | 0.1  | 0     | 0     | -0.09 |
| YIL121W  |         | В      | 20              | 0.16 | 0.2  | 0.21 | 0.14 | 0.11  | 0.08  | 0     |
| YIL123W  | SIM1    | В      | 21              | 0.68 | 1.15 | 1.03 | 1.1  | 0.12  | 0.04  | 0.07  |
| YIL124W  | TAP     | В      | 20              | 0.69 | 0.69 | 0.65 | 1.08 | 0     | 0.2   | 0.19  |
| YIL125W  | KGDI    | В      | 20              | 0.15 | 0.1  | 0.27 | 0.08 | -0.03 | 0.24  | 0     |
| YIL129C  |         | В      | 20              | 0.12 | 0.13 | 0.15 | 0.15 | 0     | 0     | -0.04 |
| YILI31C  | FKH1    | В      | 21              | 0.07 | 0.1  | 0.07 | 0.06 | 0     | 0     | 0     |
| YIL133C  | RPL16A  | В      | 20              | 4.77 | 8.84 | 5.2  | 3.77 | 0.26  | 0.11  | -0.09 |

| YIL134W  | FLX1      | В      | 21              | 0.07 | 0.07 | 0.07 | 0.06 | 0      | 0         | -0.14 |
|----------|-----------|--------|-----------------|------|------|------|------|--------|-----------|-------|
| YIL135C  |           | B      | 20              | 0.13 | 0.18 | 0.1  | 0.24 | 0      | 0         | 0.04  |
| YIL136W  | OM45      | B      | 21              | 0.15 | 0.09 | 0.23 | 0.37 | -01    | 0 11      | 0.12  |
| YIL137C  | 010115    | B      | 21              | 0.07 | 0.07 | 0.07 | 0.06 | 0      | 0         | -0.12 |
| YIL 140W | SRO4      | B      | 21              | 0.09 | 0.1  | 0.08 | 0.06 | ů<br>0 | 0         | 0     |
| YIL 142W | CCT2      | B      | 21              | 0.11 | 0.19 | 0.00 | 0.00 | Ő      | 011       | 0.01  |
| YIL 145C | 0012      | B      | 20              | 0.11 | 0.12 | 0.23 | 0.21 | 0      | 0.08      | 0.01  |
| YIL 148W | RPI 40A   | B      | 32              | 3.68 | 4.12 | 3.82 | 2.64 | 0.02   | -0.02     | -0.11 |
| VII 152W | ICI L+0/I | B      | 20              | 0.11 |      | 0.14 | 0.05 | 0.02   | 0.02      | 0.11  |
| YII 154C | IMP2'     | B      | 20              | 0.11 | 0.22 | 0.14 | 0.05 | -0.13  | 0         | 0.03  |
| VIL 155C | GUT2      | B      | 21              | 0.27 | 0.22 | 0.51 | 0.4  | -0.15  | 0.2       | 0.05  |
| VII 156W |           | B      | $\frac{21}{20}$ | 0.07 | 0.07 | 0.15 | 0.08 | 0      | 0.2       | 0     |
| VII 157C | ODI /     | B      | 20              | 0.07 | 0.07 | 0.07 | 0.00 | 0.06   | 0.01      | 0     |
| VII 159W |           | D<br>D | 20              | 0.09 | 0.39 | 0.55 | 0.75 | -0.00  | 0.01      | 0     |
| VIL 160C | DOT1      | D      | 21              | 0.15 | 0.19 | 0.10 | 0.05 | 0.02   | 0         | 0     |
| VIL 162W | FULL      | D      | 20              | 0.08 | 0.07 | 0.07 | 0.05 | 0      | 0         | 0     |
| VIL 164C | SUC2      | D      | 20              | 0.08 | 0.09 | 0.15 | 0.00 | 0      | 0         | 0     |
| YIL164C  | INTI I    | B      | 21              | 0.07 | 0.07 | 0.11 | 0.05 | 0      | 0         | 0 11  |
| YIL165C  |           | В      | 21              | 0.1  | 0.07 | 0.18 | 0.08 | 0      | 0.14      | -0.11 |
| YIL169C  |           | В      | 20              | 0.07 | 0.07 | 0.07 | 0.07 | 0      | 0         | 0     |
| YIL170W  | HX112     | В      | 23              | 0.08 | 0.07 | 0.07 | 0.05 | 0      | 0         | 0     |
| YIL176C  |           | В      | 20              | 0.28 | 0.24 | 0.22 | 0.21 | 0      | 0         | 0     |
| YIL177C  |           | В      | 40              | 0.1  | 0.09 | 0.07 | 0.07 | 0      | 0         | 0     |
| YIR003W  |           | В      | 20              | 0.07 | 0.12 | 0.09 | 0.14 | 0      | 0         | 0     |
| YIR006C  | PAN1      | В      | 20              | 0.14 | 0.17 | 0.34 | 0.33 | 0      | 0.03      | 0.01  |
| YIR007W  |           | В      | 21              | 0.07 | 0.07 | 0.07 | 0.07 | 0      | 0         | -0.1  |
| YIR011C  | STS1      | В      | 21              | 0.18 | 0.2  | 0.18 | 0.28 | 0.01   | 0         | -0.01 |
| YIR012W  | SQT1      | В      | 21              | 0.07 | 0.09 | 0.13 | 0.15 | 0.02   | 0.01      | 0.23  |
| YIR013C  |           | В      | 21              | 0.08 | 0.07 | 0.07 | 0.05 | 0      | 0         | 0     |
| YIR016W  |           | В      | 20              | 0.34 | 0.2  | 0.38 | 0.23 | -0.1   | 0.1       | -0.21 |
| YIR018W  | YAP5      | В      | 21              | 0.09 | 0.07 | 0.07 | 0.05 | 0      | 0         | 0     |
| YIR019C  | MUC1      | В      | 21              | 0.07 | 0.07 | 0.07 | 0.07 | 0      | 0         | -0.16 |
| YIR021W  | MRS1      | В      | 21              | 0.13 | 0.14 | 0.13 | 0.09 | 0      | 0         | 0     |
| YIR022W  | SEC11     | В      | 20              | 0.8  | 1.03 | 1.51 | 0.96 | -0.1   | 0.03      | 0     |
| YIR024C  | GIF1      | В      | 21              | 0.07 | 0.07 | 0.07 | 0.07 | 0      | 0         | 0     |
| YIR026C  | YVH1      | В      | 20              | 0.08 | 0.12 | 0.07 | 0.08 | 0      | 0         | 0     |
| YIR028W  | DAL4      | В      | 20              | 0.07 | 0.07 | 0.07 | 0.07 | 0      | 0         | 0     |
| YIR034C  | LYS1      | В      | 20              | 4.01 | 3.18 | 4.66 | 2.33 | -0.25  | 0.07      | -0.4  |
| YIR035C  |           | В      | 21              | 0.31 | 0.6  | 0.42 | 1.16 | 0.16   | 0.04      | 0.31  |
| YIR036C  |           | В      | 20              | 0.36 | 0.23 | 0.33 | 0.46 | -0.05  | 0         | 0.13  |
| YIR037W  | HYR1      | В      | 20              | 2.43 | 3.06 | 2.8  | 4.8  | -0.05  | -0.01     | 0.21  |
| YIR038C  |           | В      | 20              | 0.66 | 0.38 | 0.93 | 1.67 | -0.14  | 0.13      | 0.41  |
| YIR041W  |           | В      | 20              | 0.11 | 0.13 | 0.17 | 0.16 | 0      | 0         | 0     |
| YIR043C  |           | В      | 26              | 0.09 | 0.07 | 0.07 | 0.08 | 0      | 0         | 0     |
| YIR044C  |           | В      | 20              | 0.25 | 0.41 | 0.41 | 0.34 | 0.1    | 0         | 0     |
| YIL 001W | PRE3      | B      | 29              | 0.39 | 0.61 | 0.66 | 0.98 | 0.12   | 0 14      | 0.27  |
| YIL002C  | OST1      | B      | 20              | 0.57 | 0.01 | 0.00 | 0.50 | 0.09   | 0         | -0.01 |
| YII 004C | SYS1      | B      | 20              | 0.21 | 0.25 | 0.29 | 0.18 | 0.03   | 0.07      | -0.05 |
| VII 008C | CCT8      | B      | 20              | 0.21 | 0.23 | 0.29 | 0.10 | 0.05   | 0.07      | 0.05  |
| VIL011C  | cero      | B      | 20              | 0.09 | 0.12 | 0.17 | 0.1  | 0      | -0.1      | 0     |
| VII 012C |           | ц<br>Д | 21              | 0.09 | 0.07 | 0.07 | 0.05 | 0      | 0.11      | 0.12  |
|          | ССТЗ      | р<br>Д | 20              | 0.14 | 0.2  | 0.12 | 0.13 | 0 00   | -0.11     | 0.13  |
|          | CC15      | ם<br>ם | 20<br>21        | 0.23 | 0.23 | 0.29 | 0.10 | 0.00   | 0.04<br>A | -0.08 |
| VII 012W |           | D<br>D | 21<br>21        | 0.07 | 0.07 | 0.07 | 0.03 | 0      | 0.01      | 0.26  |
| IJLUIOW  |           | D<br>D | 21<br>21        | 0.12 | 0.11 | 0.13 | 0.35 | 0      | -0.01     | 0.05  |
| IJLUI/W  |           | Б<br>П | 21              | 0.09 | 0.07 | 0.1  | 0.17 | 0      | 0         | -0.05 |
| YJLU2UC  |           | в      | 21              | 0.09 | 0.07 | 0.07 | 0.07 | 0      | 0         | 0     |

| YJL021C   |        | В      | 20              | 0.07 | 0.07 | 0.07 | 0.05 | 0     | 0     | 0     |
|-----------|--------|--------|-----------------|------|------|------|------|-------|-------|-------|
| YJL026W   | RNR2   | В      | 20              | 0.39 | 0.88 | 0.72 | 0.25 | 0     | 0.02  | 0     |
| YJL027C   |        | В      | 21              | 0.11 | 0.07 | 0.07 | 0.06 | 0     | 0     | 0     |
| YJL030W   | MAD2   | В      | 20              | 0.07 | 0.07 | 0.07 | 0.09 | 0     | 0     | 0     |
| YJL032W   |        | В      | 20              | 0.07 | 0.07 | 0.07 | 0.06 | 0     | 0     | 0     |
| YJL034W   | KAR2   | В      | 21              | 1.13 | 0.99 | 2.07 | 1.16 | -0.09 | 0.2   | 0.09  |
| YJL041W   | NSP1   | В      | 20              | 0.07 | 0.07 | 0.1  | 0.1  | 0     | 0     | 0     |
| YJL042W   | MHP1   | В      | 20              | 0.09 | 0.14 | 0.2  | 0.17 | 0     | 0     | -0.01 |
| YJL044C   | GYP6   | В      | 20              | 0.09 | 0.07 | 0.09 | 0.06 | 0     | 0     | 0     |
| YJL045W   |        | В      | 21              | 0.07 | 0.07 | 0.07 | 0.1  | 0     | 0     | -0.11 |
| YJL048C   |        | В      | 20              | 0.19 | 0.07 | 0.23 | 0.22 | -0.29 | 0     | 0.05  |
| YJL052W   | TDH1   | В      | 21              | 9.02 | 8.02 | 6.58 | 0.05 | -0.01 | -0.15 | -1.7  |
| YJL053W   | PEP8   | В      | 20              | 0.23 | 0.17 | 0.18 | 0.21 | -0    | 0     | -0.03 |
| YIL055W   | •      | B      | 21              | 0.51 | 0.55 | 0.57 | 0.77 | 0.01  | 0.13  | 0.12  |
| YIL057C   | IKS1   | B      | 20              | 0.12 | 0.07 | 0.07 | 0.05 | -0.2  | 0     | 0     |
| YIL060W   | 11101  | B      | $\frac{20}{20}$ | 0.1  | 0.07 | 0.07 | 0.08 | -0    | Ő     | Ő     |
| YIL061W   | NUP82  | B      | 20              | 0.1  | 0.07 | 0.07 | 0.08 | -01   | -01   | Ő     |
| YIL062W   | 1(0102 | B      | 20              | 0.1  | 0.08 | 0.09 | 0.06 | -0.06 | -0.16 | 0     |
| YIL063C   | MRPL8  | B      | 21              | 0.20 | 0.00 | 0.02 | 0.00 | 0.00  | -0.06 | -0.16 |
| VII 065C  |        | B      | 21              | 0.25 | 0.2  | 0.11 | 0.17 | -0.05 | -0.05 | -0.08 |
| VIL 066C  |        | B      | $\frac{21}{20}$ | 0.19 | 0.10 | 0.15 | 0.21 | -0.05 | -0.05 | -0.08 |
| VIL 068C  |        | D<br>D | 20              | 0.09 | 0.09 | 0.11 | 0.17 | 0.13  | 0.03  | 0.09  |
| 1JL008C   | DDV3   | D<br>D | 21              | 0.5  | 0.30 | 0.07 | 0.01 | -0.15 | -0.03 | 0.14  |
| 1JL078C   |        | D<br>D | 21              | 1.44 | 0.07 | 2.1  | 1.78 | 0.14  | 0.10  | 01    |
| VIL 080C  | SCD160 | D      | 21              | 0.27 | 0.01 | 0.22 | 0.10 | -0.14 | 0.19  | -0.1  |
| IJL080C   | SCP100 | D      | 20              | 0.27 | 0.2  | 0.25 | 0.19 | 0.02  | 0     | -0.17 |
| I JLUOIC  | AKP4   | D      | 21              | 0.09 | 0.07 | 0.07 | 0.05 | -0.02 | 0     | 0 15  |
| IJL082W   |        | D      | 20              | 0.12 | 0.07 | 0.08 | 0.11 | 0     | 0     | -0.13 |
| I JLU85 W |        | Б      | 21              | 0.12 | 0.07 | 0.09 | 0.07 |       | 0     | 0 20  |
| YJL088W   | ARG3   | В      | 20              | 0.28 | 0.14 | 0.23 | 0.1  | -0.20 | 0     | -0.29 |
| YJL09IC   |        | C      | 20              | 0.55 | 0.11 | 0.20 | 0.24 | 0     | 0     | 0     |
| YJL09/W   | COT7   | C      | 20              | 0.5  | 0.54 | 0.39 | 0.89 | -0.05 | 0     | 0     |
| YJLIIIW   |        | C      | 20              | 0.35 | 0.1  | 0.20 | 0.24 | 0     | 0     | 0     |
| IJLIIOC   | NCA5   | C      | 20              | 0.55 | 0.1  | 0.20 | 0.45 | 0     | 0     | 0.1   |
| YJLII/W   | PHO86  | C      | 20              | 0.35 | 0.17 | 0.20 | 0.29 | 0     | 0     | 0     |
| YJL12IC   | RPEI   | C      | 21              | 0.84 | 0.74 | 0.45 | 0.61 | -0.06 | 0     | -0.12 |
| YJL124C   | SPB8   | C      | 21              | 0.35 | 0.12 | 0.26 | 0.24 | 0     | 0     | 0     |
| YJL130C   | URA2   | C      | 21              | 0.35 | 0.55 | 0.4  | 0.56 | 0.01  | 0     | 0.07  |
| YJL133W   | MRS3   | C      | 20              | 0.35 | 0.1  | 0.26 | 0.24 | 0     | 0     | 0     |
| YJL134W   | LCB3   | C      | 20              | 0.35 | 0.21 | 0.26 | 0.3  | 0     | 0     | 0     |
| YJLI36C   | RPS21B | C      | 20              | 5.56 | 7.42 | 1.81 | 7.58 | -0.02 | -0.25 | -0.07 |
| YJL138C   | TIF2   | C      | 20              | 2.78 | 2.74 | 1.89 | 2.45 | -0.09 | 0     | -0.1  |
| YJL143W   | TIM17  | C      | 21              | 0.42 | 0.56 | 0.26 | 0.66 | -0.11 | -0.16 | -0.07 |
| YJL151C   |        | C      | 21              | 2.34 | 2    | 2.44 | 3.2  | -0.05 | 0     | 0.1   |
| YJL152W   |        | С      | 21              | 0.35 | 0.11 | 0.26 | 0.24 | 0     | 0     | 0     |
| YJL153C   | INO1   | С      | 20              | 0.35 | 1.25 | 1.27 | 0.4  | 0.22  | 0.24  | 0     |
| YJL157C   | FAR1   | С      | 20              | 0.36 | 0.16 | 0.26 | 0.24 | 0     | 0     | 0     |
| YJL158C   | CIS3   | С      | 20              | 9.57 | 6.6  | 3.2  | 4.62 | -0.13 | -0.36 | -0.33 |
| YJL159W   |        | С      | 21              | 2.11 | 1.73 | 1.97 | 3.38 | -0.24 | -0.2  | 0.14  |
| YJL164C   | SRA3   | С      | 21              | 0.47 | 0.15 | 0.26 | 0.44 | -0.56 | 0     | 0     |
| YJL166W   | QCR8   | С      | 20              | 0.37 | 0.35 | 0.37 | 0.52 | 0     | 0     | 0.05  |
| YJL167W   | ERG20  | С      | 20              | 0.57 | 0.56 | 0.26 | 0.82 | -0.04 | -0.3  | 0.09  |
| YJL171C   |        | С      | 20              | 0.55 | 0.19 | 0.27 | 0.36 | 0     | -0.2  | 0     |
| YJL173C   | RFA3   | С      | 20              | 0.43 | 0.16 | 0.36 | 0.27 | 0     | 0     | 0     |
| YJL174W   | KRE9   | С      | 20              | 0.5  | 0.42 | 0.41 | 0.6  | 0     | 0     | 0.05  |
| YJL177W   | RPL17B | С      | 38              | 4.7  | 4.6  | 2.6  | 3.03 | 0.01  | -0.17 | -0.1  |

| YJL178C            |        | С | 20              | 0.35  | 0.17  | 0.28 | 0.26  | 0     | 0     | 0     |
|--------------------|--------|---|-----------------|-------|-------|------|-------|-------|-------|-------|
| YJL189W            | RPL39  | С | 20              | 5.75  | 4.06  | 2.91 | 3.81  | -0.06 | -0.18 | -0.14 |
| YJL190C            | RPS22A | С | 20              | 19.08 | 8.49  | 3.19 | 6.52  | -0.13 | -0.44 | -0.29 |
| YJL191W            | RPS14B | С | 20              | 2.33  | 1.56  | 0.94 | 4.33  | -0.04 | -0.39 | 0.2   |
| YJL192C            |        | С | 21              | 0.37  | 0.3   | 0.26 | 0.38  | 0     | 0     | 0     |
| YJL196C            | ELO1   | С | 20              | 1.02  | 0.67  | 0.43 | 0.81  | -0.09 | -0.3  | -0.14 |
| YJL199C            |        | С | 21              | 0.35  | 0.11  | 0.26 | 0.24  | 0     | 0     | 0     |
| YJL206C-A          | NCE101 | С | 20              | 0.35  | 0.39  | 0.26 | 0.48  | 0     | 0     | 0.09  |
| YJL210W            | PEX2   | С | 21              | 0.6   | 0.26  | 0.26 | 0.34  | -0.38 | -0.19 | 0     |
| YJL217W            |        | С | 20              | 0.35  | 0.3   | 0.26 | 0.47  | 0     | 0     | 0     |
| YJR001W            |        | C | 21              | 0.35  | 0.19  | 0.26 | 0.24  | -0.27 | 0     | 0     |
| YJR004C            | SAG1   | Č | 21              | 0.35  | 1.74  | 0.26 | 0.24  | 0.48  | 0     | 0     |
| YJR007W            | SUI2   | С | 20              | 0.35  | 0.17  | 0.26 | 0.37  | 0     | 0     | 0     |
| YJR008W            |        | C | 20              | 0.35  | 0.1   | 0.26 | 0.24  | 0     | 0     | 0     |
| YJR009C            | TDH2   | Č | 20              | 7.93  | 10.33 | 3.96 | 10.44 | -0.03 | -0.35 | 0.03  |
| YJR010C-A          | SPC1   | Č | 21              | 0.35  | 0.21  | 0.26 | 0.24  | 0     | 0     | 0     |
| YIR014W            | 51 01  | C | 21              | 035   | 0.14  | 0.26 | 0.24  | 0     | 0     | 0     |
| YIR015W            |        | C | 21              | 0.35  | 0.11  | 0.26 | 0.54  | -016  | 0     | 0.09  |
| YIR016C            | ILV3   | C | 21              | 0.52  | 0.34  | 0.20 | 0.36  | 0     | Ő     | 0     |
| YIR017C            | FSS1   | C | 21              | 0.52  | 0.28  | 0.12 | 0.50  | 0     | 0     | 0.03  |
| VIR019C            | TFS1   | C | 21              | 0.4   | 0.20  | 0.20 | 0.55  | 0     | 0     | -0.16 |
| VIR024C            | TLST   | C | 21              | 0.35  | 0.21  | 0.20 | 0.5   | 0.17  | 0     | -0.10 |
| VIR024C            | BNA1   | C | $\frac{21}{20}$ | 0.40  | 0.55  | 0.39 | 1.00  | -0.17 | 01    | -0.12 |
| VIR025C            | DINAI  | C | 20              | 0.00  | 0.55  | 0.80 | 0.67  | -0.2  | -0.1  | 0.08  |
| VID027W            |        | C | 20<br>40        | 0.35  | 0.09  | 0.20 | 0.07  | 0     | 0     | 0.20  |
| VID028W            |        | C | 20              | 0.35  | 0.21  | 0.20 | 0.57  | 0     | 0     | 0.10  |
| IJKU20W<br>VIDO20W |        | C | 20              | 0.35  | 0.11  | 0.20 | 0.35  | 0     | 0     | 0.19  |
| VID044C            |        | C | 20              | 0.35  | 0.18  | 0.20 | 0.44  | 0.02  | 0     | 0.00  |
| IJK044C<br>VID045C | SSC1   | C | 20              | 0.49  | 0.7   | 0.44 | 1.1   | -0.05 | 02    | 0.20  |
| IJK04JC<br>VID049W | CVC1   | C | 20              | 0.40  | 0.34  | 0.34 | 1.1   | -0.15 | -0.2  | 0.1   |
| IJK048W            |        | C | 20              | 0.55  | 0.27  | 0.49 | 0.24  | 0     | 0     | 0     |
| IJKUJOC<br>VIDOSOW | AP52   | C | 20              | 0.45  | 0.4   | 0.27 | 0.45  | 0     | 0     | 0     |
| IJK039W            |        | C | 21              | 0.55  | 0.09  | 0.20 | 0.24  | 0     | 0     | 0     |
| IJKU03W            | RPA12  | C | 20              | 0.55  | 0.32  | 0.20 | 0.51  | 0     | 0     | 0     |
| IJK004W            |        | C | 20              | 0.55  | 0.25  | 0.20 | 0.47  | 0 19  | 0     | 0.01  |
| IJR005C            | AKP5   | C | 21              | 0.50  | 0.50  | 0.0  | 1.57  | -0.18 | 0     | 0.24  |
| YJR069C            | HAMI   | C | 20              | 0.35  | 0.21  | 0.20 | 0.24  | 0     | 0     | 0     |
| YJR0/0C            | 0012   | C | 21              | 0.35  | 0.43  | 0.20 | 0.24  | 0.09  | 0     |       |
| YJRU/3C            | OPI3   | C | 20              | 14.51 | 12.48 | 4.73 | 9.55  | -0.07 | -0.47 | -0.26 |
| YJR0/4W            | 110.01 | C | 21              | 0.35  | 0.23  | 0.31 | 0.42  | 0     | 0     | 0.06  |
| YJRU/5W            | HOCI   | C | 21              | 0.35  | 0.14  | 0.26 | 0.24  | 0     | 0     | 0     |
| YJRU/6C            | CDCII  | C | 20              | 0.35  | 0.14  | 0.20 | 0.24  | 0     | 0     | 0     |
| YJR0//C            | MIRI   | C | 20              | 2.68  | 2.67  | 3.01 | 3.73  | -0.04 | -0.02 | 0.09  |
| YJR080C            |        | C | 21              | 0.35  | 0.1   | 0.26 | 0.24  | 0     | 0     | 0     |
| YJR084W            |        | C | 20              | 0.35  | 0.11  | 0.20 | 0.24  | 0     | 0     | 0     |
| YJR085C            |        | C | 20              | 1.62  | 1.82  | 1.05 | 2.57  | -0.01 | -0.2  | 0.08  |
| YJR086W            | STE18  | C | 21              | 0.35  | 0.11  | 0.26 | 0.24  | -0.51 | 0     | 0     |
| YJR094W-A          | RPL43B | C | 20              | 3.91  | 5.68  | 1.9  | 5.1   | 0.14  | -0.33 | 0.04  |
| YJR096W            |        | C | 21              | 0.35  | 0.09  | 0.26 | 0.52  | 0     | 0     | 0.17  |
| YJR101W            |        | С | 21              | 0.35  | 0.31  | 0.26 | 0.31  | 0     | 0     | 0     |
| YJR103W            | URA8   | C | 21              | 0.35  | 0.17  | 0.26 | 0.39  | -0.36 | 0     | 0     |
| YJR104C            | SOD1   | C | 21              | 5.06  | 3.61  | 4.83 | 6.49  | -0.21 | -0.19 | 0.01  |
| YJR105W            |        | С | 20              | 1.17  | 0.98  | 0.61 | 1.32  | 0     | -0.24 | -0    |
| YJR113C            |        | С | 20              | 0.35  | 0.27  | 0.37 | 0.68  | 0     | 0     | -0.06 |
| YJR115W            |        | С | 21              | 0.35  | 0.28  | 0.26 | 0.47  | -0.22 | 0     | 0     |
| YJR116W            |        | С | 20              | 0.35  | 0.28  | 0.26 | 0.44  | 0     | 0     | 0     |

| YJR117W      | STE24    | С | 20       | 0.35          | 0.1          | 0.26  | 0.37           | 0     | 0     | -0.13 |
|--------------|----------|---|----------|---------------|--------------|-------|----------------|-------|-------|-------|
| YJR118C      |          | С | 20       | 0.35          | 0.17         | 0.26  | 0.24           | 0     | 0     | 0     |
| YJR121W      | ATP2     | С | 21       | 0.8           | 1.3          | 0.7   | 1.16           | 0.05  | 0     | -0.06 |
| YJR123W      | RPS5     | С | 20       | 5.23          | 7.14         | 1.26  | 3.89           | 0.07  | -0.3  | 0     |
| YJR125C      |          | С | 20       | 0.35          | 0.12         | 0.26  | 0.24           | 0     | 0     | 0     |
| YJR126C      |          | С | 20       | 0.35          | 0.15         | 0.26  | 0.24           | 0     | 0     | 0     |
| YJR127C      | ZMS1     | С | 20       | 0.35          | 0.14         | 0.26  | 0.44           | 0     | 0     | 0.07  |
| YJR133W      |          | С | 21       | 0.46          | 0.63         | 0.63  | 0.83           | 0.03  | 0     | -0.01 |
| YJR139C      | HOM6     | C | 21       | 1.05          | 1.09         | 1     | 1.55           | 0.03  | -0.1  | 0.05  |
| YJR143C      | PMT4     | Č | 20       | 0.49          | 0.35         | 0.26  | 0.4            | 0     | -0.3  | 0     |
| YJR145C      | RPS4A    | Ċ | 20       | 2.08          | 3.91         | 1.25  | 2.76           | 0.26  | -0.19 | 0.07  |
| YIR148W      | BAT2     | Č | 20       | 035           | 0.09         | 0.26  | 0.25           | 0     | 0     | 0     |
| YIR161C      | COS5     | Č | 20       | 0.35          | 0.23         | 0.26  | 03             | 0     | 0     | 0     |
| YKL001C      | MFT14    | C | 20       | 0.35          | 0.11         | 0.26  | 0.29           | Ő     | 0     | Ő     |
| YKL002W      | MIL114   | C | 20       | 0.35          | 0.11         | 0.20  | $0.2^{\prime}$ | 0     | 0     | 0     |
| YKL 003C     | MRP17    | C | 20       | 0.35          | 0.17         | 0.20  | 0.27<br>0.32   | 0     | 0     | 0     |
| VKL 004W     | AUR1     | C | 20       | 0.33          | 0.17         | 0.20  | 0.32           | 0     | 0     | 0 08  |
| YKL006W      | RPI 1/A  | C | 20<br>59 | 5.69          | 3.42         | 2.67  | 3 55           | -0.26 | -0.21 | 0.00  |
| VKI 007W     |          | C | 21       | 0.35          | 0.13         | 2.07  | 0.26           | -0.20 | -0.21 | 0     |
| VKL008C      | CAFI     | C | 21       | 0.35          | 0.13         | 0.20  | 0.20           | 0     | 0     | 0     |
| I KLUUOC     |          | C | 20       | 0.35          | 0.51         | 0.20  | 0.57           | 0     | 0     | 0     |
| I KL009W     | MIK14    | C | 20       | 0.55          | 0.17         | 0.20  | 0.24           | 0     | 0     | 0     |
| YKL012C      | UFD4     | C | 21       | 0.55          | 0.09         | 0.20  | 0.25           |       | 0     | 0 02  |
| YKL016C      | ARC19    | C | 21       | 0.55          | 0.4          | 0.20  | 0.48           | -0.06 | 0     | -0.03 |
| YKL016C      | AIP/     | C | 21       | 0.4           | 0.51         | 0.55  | 0.85           | -0.02 | 0.10  | 0.03  |
| YKL018W      | D 4 1 42 | C | 21       | 0.35          | 0.14         | 0.26  | 0.24           | 0     | 0     | 0     |
| YKL019W      | RAM2     | C | 20       | 0.35          | 0.1          | 0.26  | 0.26           | 0     | 0     | 0     |
| YKL024C      | URA6     | C | 21       | 0.35          | 0.29         | 0.26  | 0.43           | -0.08 | 0     | 0.08  |
| YKL028W      | TFA1     | С | 20       | 0.35          | 0.11         | 0.26  | 0.28           | 0     | 0     | 0     |
| YKL029C      |          | С | 21       | 0.35          | 0.12         | 0.26  | 0.4            | 0     | 0     | -0.06 |
| YKL034W      |          | С | 21       | 0.35          | 0.14         | 0.26  | 0.24           | 0     | 0     | 0     |
| YKL035W      |          | С | 20       | 2.32          | 2.48         | 0.81  | 3.08           | -0.09 | -0.42 | 0.14  |
| YKL039W      | PTM1     | С | 21       | 0.35          | 0.35         | 0.26  | 0.69           | -0.17 | 0     | 0.17  |
| YKL043W      | PHD1     | С | 20       | 0.53          | 0.09         | 0.26  | 0.24           | 0     | 0     | 0     |
| YKL046C      |          | С | 21       | 0.35          | 0.32         | 0.26  | 0.52           | 0     | 0     | 0.02  |
| YKL051W      |          | С | 21       | 0.35          | 0.11         | 0.26  | 0.24           | 0     | 0     | 0     |
| YKL053W      |          | С | 21       | 0.35          | 0.09         | 0.26  | 0.24           | 0     | 0     | 0     |
| YKL054C      |          | С | 20       | 0.35          | 0.21         | 0.26  | 0.36           | 0     | 0     | 0     |
| YKL056C      |          | С | 20       | 10.71         | 10.33        | 5.08  | 8.56           | 0.03  | -0.17 | -0.06 |
| YKL058W      | TOA2     | С | 20       | 0.35          | 0.29         | 0.26  | 0.45           | 0     | 0     | 0     |
| YKL060C      | FBA1     | С | 20       | 11.55         | 22.12        | 8.98  | 25.53          | 0.02  | -0.17 | 0.05  |
| YKL062W      | MSN4     | С | 20       | 0.35          | 0.19         | 0.26  | 0.51           | 0     | 0     | 0.01  |
| YKL065C      | YET1     | С | 20       | 0.53          | 0.68         | 0.46  | 1.2            | -0.11 | 0     | 0.2   |
| YKL066W      |          | С | 21       | 0.35          | 0.13         | 0.26  | 0.24           | -0.43 | 0     | 0     |
| YKL067W      | YNK1     | С | 20       | 0.78          | 0.78         | 0.9   | 1.91           | -0.11 | 0     | 0.24  |
| YKL077W      |          | С | 20       | 0.35          | 0.32         | 0.26  | 0.48           | -0.08 | 0     | 0.04  |
| YKL080W      | VMA5     | С | 20       | 1.29          | 0.8          | 1.11  | 1.24           | -0.32 | -0.22 | -0.02 |
| YKL081W      | TEF4     | Ċ | 40       | 0.51          | 0.84         | 0.34  | 0.37           | 0.05  | -0.18 | 0     |
| YKL084W      |          | Č | 20       | 0.35          | 0.19         | 0.26  | 0.24           | 0     | 0     | 0     |
| YKL085W      | MDH1     | Č | 21       | 1 47          | 0.86         | 1.04  | 1 45           | -0.21 | 0     | Ő     |
| YKL086W      |          | č | 21       | 035           | 0.12         | 0.26  | 0.26           | 0     | 0     | 0     |
| YKL087C      | CYT2     | c | 20       | 0.35          | 0.12         | 0.20  | 0.20<br>0.47   | 0     | 0     | 0     |
| YKL091C      | C112     | Ċ | 20       | 0.35          | 0.2          | 0.20  | 0.77           | 0     | 0     | 0     |
| VKI 00/W     | VIII3    | Ċ | 20       | 0.35          | 0.1          | 0.20  | 0.46           | 0     | 0     | 0.07  |
| VKI 006W     |          | C | 20       | 1 28          | 5.54         | 1.20  | 0.40           | 0.01  | _0 47 | 0.07  |
| VKI 007W/ A  | CWP2     | C | 21<br>20 | 4.30<br>10.96 | 2.34<br>25 7 | 15.05 | 33 07          | 0.01  | -0.47 | 0.12  |
| 1 KL07 / W-A | C W F Z  | C | 20       | 40.00         | 23.1         | 15.05 | 55.07          | -0.10 | -0.29 | -0.12 |

| YKL100C   |        | С | 21 | 0.35  | 0.12  | 0.26 | 0.24 | 0                 | 0     | 0     |
|-----------|--------|---|----|-------|-------|------|------|-------------------|-------|-------|
| YKL103C   | LAP4   | С | 21 | 0.35  | 0.25  | 0.26 | 1    | -0.29             | 0     | 0.17  |
| YKL104C   | GFA1   | С | 20 | 0.35  | 0.36  | 0.28 | 0.46 | -0.05             | 0     | 0     |
| YKL117W   | SBA1   | С | 20 | 0.42  | 0.33  | 0.45 | 1.51 | -0.26             | 0     | 0.28  |
| YKL120W   |        | С | 20 | 0.35  | 0.14  | 0.26 | 0.25 | 0                 | 0     | 0     |
| YKL122C   | SRP21  | С | 20 | 0.35  | 0.11  | 0.26 | 0.25 | 0                 | 0     | 0     |
| YKL126W   | YPK1   | Č | 20 | 0.45  | 0.24  | 0.27 | 0.28 | 0                 | 0     | 0     |
| YKL127W   | PGM1   | Č | 21 | 0.35  | 0.21  | 0.26 | 0.24 | -0.28             | 0     | 0     |
| YKL128C   | PMU1   | Ċ | 21 | 0.35  | 0.15  | 0.26 | 0.24 | -0.44             | 0     | 0     |
| YKL140W   | TGL1   | Č | 20 | 035   | 0.16  | 0.26 | 0.39 | 0                 | Ő     | Ő     |
| YKI 141W  | SDH3   | Ċ | 20 | 0.6   | 0.42  | 0.82 | 0.59 | -0.12             | 0.02  | -0.07 |
| YKL142W   | MRP8   | C | 20 | 0.0   | 0.12  | 0.37 | 0.59 | 0.12              | 0.02  | 0.13  |
| YKL144C   | RPC25  | C | 20 | 0.35  | 0.09  | 0.26 | 0.01 | 0                 | 0     | 0.15  |
| YKI 145W  | RPT1   | C | 20 | 0.55  | 0.53  | 0.44 | 0.82 | -0.03             | 0     | 0 11  |
| VKI 146W  | KI I I | C | 20 | 0.30  | 0.35  | 0.44 | 0.02 | -0.17             | 0     | 0.11  |
| YKI 1/18C | SDH1   | C | 20 | 0.50  | 0.55  | 0.27 | 0.24 | 0.17              | 0     | 0     |
| VKI 150W  | MCR1   | C | 20 | 0.51  | 0.13  | 0.00 | 1.02 | 0                 | 0.14  | 0.27  |
| VKL 151C  | MCKI   | C | 20 | 0.02  | 0.45  | 0.92 | 0.0  | 0                 | 0.14  | 0.27  |
| VKL 152C  | CDM1   | C | 20 | 0.55  | 7.60  | 4.01 | 0.9  | 0                 | 0.14  | 0.55  |
| I KLIJZC  | DDC27A | C | 20 | 0.30  | 1.09  | 4.91 | 9.57 | 0 17              | -0.14 | 0.1   |
| I KLIJOW  | ADE2   | C | 20 | 2.50  | 1.3   | 2.5  | 5.51 | -0.17             | 0.07  | 0.15  |
| YKL15/W   | APE2   | C | 20 | 0.35  | 0.24  | 0.20 | 0.43 | -0.3              | 0     | 0     |
| YKL160W   | DID 2  | C | 20 | 0.35  | 0.17  | 0.29 | 0.24 | 0                 | 0     | 0     |
| YKL163W   | PIR3   | C | 20 | 1.28  | 0.88  | 1.3  | 9.38 | 0                 | 0.01  | 0.49  |
| YKL164C   | PIRI   | C | 21 | 5.07  | 5.54  | 2.62 | 7.47 | 0.03              | -0.28 | 0.21  |
| YKL165C   | MCD4   | C | 20 | 0.35  | 0.17  | 0.47 | 0.24 | 0                 | 0     | 0     |
| YKL167C   | MRP49  | С | 20 | 0.35  | 0.14  | 0.26 | 0.29 | 0                 | 0     | 0     |
| YKL170W   | MRPL38 | С | 21 | 0.35  | 0.12  | 0.26 | 0.24 | -0.47             | 0     | 0     |
| YKL172W   |        | С | 20 | 0.35  | 0.11  | 0.26 | 0.24 | 0                 | 0     | 0     |
| YKL174C   |        | С | 20 | 0.35  | 0.16  | 0.26 | 0.41 | 0                 | 0     | 0.05  |
| YKL175W   |        | С | 21 | 0.65  | 1.27  | 0.32 | 0.53 | 0                 | 0     | 0     |
| YKL178C   | STE3   | С | 20 | 0.35  | 0.43  | 0.26 | 0.24 | 0.09              | 0     | 0     |
| YKL180W   | RPL17A | С | 43 | 11.66 | 11.93 | 8.58 | 9.2  | -0.02             | -0.11 | -0.1  |
| YKL181W   | PRS1   | С | 21 | 0.44  | 0.37  | 0.45 | 0.65 | -0.26             | 0     | -0.02 |
| YKL182W   | FAS1   | С | 20 | 0.77  | 1.43  | 0.59 | 1.36 | 0.12              | 0     | 0.15  |
| YKL184W   | SPE1   | С | 21 | 0.35  | 0.52  | 0.26 | 0.34 | 0.05              | 0     | 0     |
| YKL185W   | ASH1   | С | 20 | 0.35  | 0.3   | 0.28 | 0.3  | 0                 | 0     | 0     |
| YKL186C   | MTR2   | С | 20 | 0.35  | 0.16  | 0.26 | 0.24 | 0                 | 0     | 0     |
| YKL190W   | CNB1   | С | 41 | 0.35  | 0.25  | 0.3  | 0.52 | 0                 | 0     | -0.07 |
| YKL191W   | DPH2   | С | 20 | 0.35  | 0.34  | 0.31 | 0.44 | 0                 | 0     | 0.01  |
| YKL192C   |        | С | 20 | 2.87  | 3.42  | 2.83 | 5.54 | -0.07             | 0     | 0.23  |
| YKL196C   | YKT6   | С | 21 | 0.35  | 0.16  | 0.26 | 0.24 | -0.34             | 0     | 0     |
| YKL199C   | YKT9   | С | 21 | 0.35  | 0.21  | 0.26 | 0.24 | -0.31             | 0     | 0     |
| YKL207W   |        | С | 21 | 0.35  | 0.56  | 0.26 | 0.52 | 0                 | 0     | -0.01 |
| YKL210W   | UBA1   | С | 21 | 0.35  | 0.22  | 0.26 | 0.26 | 0                 | 0     | 0     |
| YKL211C   | TRP3   | С | 20 | 0.35  | 0.35  | 0.37 | 0.46 | 0                 | 0     | 0     |
| YKL212W   | SAC1   | С | 20 | 0.35  | 0.2   | 0.26 | 0.42 | 0                 | 0     | -0.03 |
| YKL213C   | DOA1   | С | 21 | 0.35  | 0.12  | 0.26 | 0.3  | 0                 | 0     | 0     |
| YKL214C   |        | C | 21 | 0.35  | 0.14  | 0.26 | 0.24 | -0.48             | 0     | 0     |
| YKL216W   | URA1   | Č | 20 | 0.35  | 0.21  | 0.3  | 0.24 | 0                 | 0     | 0     |
| YKR004C   | ECM9   | Ċ | 20 | 0.35  | 0.13  | 0.26 | 0.24 | 0                 | 0     | 0     |
| YKR006C   | MRPL13 | č | 20 | 0.35  | 0.16  | 0.26 | 0.26 | Ő                 | Ő     | õ     |
| YKR013W   | PRY2   | č | 21 | 1 31  | 1 85  | 1.08 | 2.67 | 012               | -0.06 | 0.2   |
| YKR018C   | 11112  | č | 21 | 035   | 0.19  | 0.26 | 04   | -0 49             | 0     | _0 11 |
| YKR025W   |        | Ċ | 20 | 0.35  | 0.13  | 0.20 | 0.7  | - <b></b> -<br>() | 0     | 0.11  |
| YKR025W   | GCN3   | Ċ | 20 | 0.35  | 0.15  | 0.20 | 0.24 | 0                 | 0     | 0     |
| 11110200  | JUNJ   | C | 20 | 0.55  | 0.15  | 0.20 | 0.24 | U                 | U     | U     |

| YKR030W            |        | С | 20              | 0.35 | 0.19 | 0.26 | 0.34 | 0     | 0     | 0     |
|--------------------|--------|---|-----------------|------|------|------|------|-------|-------|-------|
| YKR038C            |        | С | 21              | 0.35 | 0.1  | 0.26 | 0.24 | 0     | 0     | 0     |
| YKR039W            | GAP1   | С | 20              | 0.49 | 0.2  | 0.26 | 0.44 | 0     | 0     | 0     |
| YKR042W            | UTH1   | С | 21              | 4.61 | 6.54 | 2.7  | 7.27 | 0.1   | -0.23 | 0.08  |
| YKR043C            |        | С | 21              | 0.36 | 0.65 | 0.57 | 0.8  | 0     | 0     | -0.01 |
| YKR046C            |        | С | 21              | 0.35 | 0.16 | 0.29 | 1.21 | 0     | 0     | 0.32  |
| YKR048C            | NAP1   | C | 21              | 0.38 | 0.29 | 0.26 | 0.4  | -0.12 | 0     | 0.05  |
| YKR049C            |        | Č | 21              | 0.35 | 0.2  | 0.26 | 0.53 | 0     | 0     | 0.18  |
| YKR056W            | RNC1   | Č | 20              | 0.35 | 0.09 | 0.26 | 0.24 | 0     | 0     | 0     |
| YKR057W            | RPS21A | Č | 29              | 2.86 | 8.27 | 4.07 | 5.08 | 0.17  | -0.12 | -0.09 |
| YKR059W            | TIF1   | Č | 20              | 1.57 | 4 14 | 1 34 | 2 32 | 0.14  | 0     | 0.02  |
| YKR062W            | TFA2   | Ċ | 20              | 0.35 | 0.1  | 0.26 | 0.24 | 0.17  | 0     | 0     |
| YKR065C            | 11712  | Ċ | 20              | 0.92 | 0.88 | 0.20 | 1.22 | -0.08 | 0     | 01    |
| VKR066C            | CCP1   | C | 20              | 1.09 | 1 22 | 0.63 | 3.07 | -0.13 | 0     | 0.1   |
| YKR067W            | CCLL   | C | 20              | 0.35 | 0.1  | 0.05 | 0.28 | -0.15 | 0     | 0.22  |
| VKR068C            | BET3   | C | 20              | 0.33 | 0.1  | 0.20 | 0.20 | 0.03  | 0     | 011   |
| VKD070W            | DL15   | C | 20              | 0.47 | 0.57 | 0.25 | 0.24 | -0.05 | 0     | 0.11  |
| VKP071C            |        | C | 20              | 0.35 | 0.15 | 0.20 | 0.29 | 0.53  | 0     | 0     |
| IKKU/IC<br>VKD074W |        | C | 21              | 0.35 | 0.11 | 0.20 | 0.24 | -0.55 | 0     | 0.01  |
| I KKU/4W           | ECMA   | C | 20              | 0.55 | 0.50 | 0.20 | 0.58 | 0     | 0     | -0.01 |
| IKRU/OW            | ECM4   | C | 21              | 0.55 | 0.11 | 0.20 | 0.27 | 0     | 0     | 0     |
| YKRU80W            | MIDI   | C | 20              | 0.35 | 0.15 | 0.20 | 0.3  | 0     | 0     | 0     |
| YKR088C            |        | C | 20              | 0.35 | 0.15 | 0.20 | 0.25 | 0     | 0     | 0     |
| YKR093W            | PIR2   | C | 20              | 0.35 | 0.33 | 0.26 | 0.43 | 0     | 0     | -0.13 |
| YKR094C            | RPL40B | C | 29              | 1.16 | 1.48 | 1.19 | 0.98 | 0.14  | -0.08 | -0.05 |
| YKR100C            | ~~~~   | C | 20              | 0.35 | 0.1  | 0.26 | 0.24 | 0     | 0     | 0     |
| YLL009C            | COX17  | С | 21              | 0.35 | 0.12 | 0.26 | 0.26 | 0     | 0     | 0     |
| YLL010C            |        | С | 20              | 0.35 | 0.1  | 0.26 | 0.24 | 0     | 0     | 0     |
| YLL014W            |        | С | 21              | 0.77 | 1.1  | 0.49 | 0.86 | 0.05  | 0     | -0.09 |
| YLL018C            | DPS1   | С | 20              | 0.36 | 0.81 | 0.3  | 0.76 | 0     | 0     | 0.09  |
| YLL020C            |        | С | 24              | 0.35 | 0.34 | 0.26 | 0.63 | 0     | 0     | 0.22  |
| YLL022C            | HIF1   | С | 20              | 0.35 | 0.1  | 0.26 | 0.24 | 0     | 0     | 0     |
| YLL023C            |        | С | 21              | 1.04 | 0.93 | 0.28 | 1.53 | 0     | 0     | 0.01  |
| YLL024C            | SSA2   | С | 20              | 2.07 | 3.05 | 0.76 | 4.73 | 0.17  | -0.46 | 0.26  |
| YLL025W            |        | С | 22              | 0.35 | 0.27 | 0.36 | 0.42 | 0     | 0     | 0     |
| YLL026W            | HSP104 | С | 20              | 0.47 | 0.25 | 0.4  | 1.25 | 0     | 0     | 0.27  |
| YLL027W            |        | С | 21              | 0.35 | 0.24 | 0.26 | 0.24 | -0.23 | 0     | 0     |
| YLL028W            |        | С | 21              | 0.35 | 0.26 | 0.26 | 0.37 | -0.21 | 0     | 0     |
| YLL031C            |        | С | 20              | 0.35 | 0.17 | 0.26 | 0.24 | -0.49 | 0     | 0     |
| YLL039C            | UBI4   | С | 20              | 0.35 | 0.43 | 0.71 | 2.2  | -0.19 | 0     | 0.57  |
| YLL040C            | VPS13  | С | 20              | 0.35 | 0.11 | 0.26 | 0.24 | -0.55 | 0     | 0     |
| YLL041C            | SDH2   | С | 21              | 1.13 | 0.79 | 1.73 | 1.32 | -0.26 | 0.05  | -0.04 |
| YLL043W            | FPS1   | С | 20              | 0.35 | 0.19 | 0.26 | 0.24 | 0     | 0     | 0     |
| YLL044W            |        | С | 20              | 0.35 | 0.12 | 0.26 | 0.24 | 0     | 0     | 0     |
| YLL045C            | RPL8B  | С | 20              | 1.68 | 3.2  | 0.74 | 2.01 | 0.12  | -0.34 | 0     |
| YLL048C            | YBT1   | С | 20              | 0.35 | 0.16 | 0.26 | 0.24 | 0     | 0     | 0     |
| YLL049W            |        | Ċ | 20              | 0.35 | 0.1  | 0.26 | 0.24 | 0     | 0     | 0     |
| YLL050C            | COF1   | Ċ | 21              | 1 14 | 2.89 | 1 57 | 3.83 | 0 18  | -0.03 | 0.3   |
| YLL051C            | FRF6   | C | 20              | 0.35 | 0.09 | 0.26 | 0.24 | 0.10  | 0.03  | 0     |
| YLL053C            | T RED  | Č | $\frac{20}{20}$ | 0.35 | 0.25 | 0.26 | 0.31 | 0     | Ő     | Ő     |
| VLL056C            |        | C | 20              | 0.35 | 0.25 | 0.20 | 0.51 | 0     | 0     | 0     |
| VII 058W           |        | C | $\frac{21}{21}$ | 0.35 | 0.09 | 0.20 | 0.20 | 0     | 0     | 0     |
|                    |        | C | 21              | 0.35 | 0.15 | 0.20 | 0.24 | 0     | 0     | 0     |
|                    |        | C | 20<br>40        | 0.37 | 0.33 | 0.52 | 0.42 | 0     | 0     | 0     |
| VII 067C           |        | C | 40              | 0.33 | 0.10 | 0.20 | 0.52 | 0     | 0     | 0.16  |
|                    |        | C | 43              | 0.33 | 0.19 | 0.20 | 0.43 | 0     | 0     | -0.10 |
| ILKUUIU            |        | C | 21              | 0.55 | 0.09 | 0.20 | 0.55 | 0     | U     | -0.05 |

| YLR005W            | SSL1          | C | 20 | 0.35  | 0.14          | 0.26  | 0.24  | 0     | 0     | 0     |
|--------------------|---------------|---|----|-------|---------------|-------|-------|-------|-------|-------|
| YLR008C            |               | С | 20 | 0.35  | 0.2           | 0.26  | 0.36  | 0     | 0     | 0     |
| YLR017W            | MEU1          | С | 20 | 0.35  | 0.63          | 0.36  | 0.82  | 0.09  | 0     | 0.14  |
| YLR018C            |               | С | 20 | 0.35  | 0.15          | 0.26  | 0.24  | 0     | 0     | 0     |
| YLR019W            |               | С | 21 | 0.35  | 0.14          | 0.26  | 0.24  | 0     | 0     | 0     |
| YLR023C            |               | С | 20 | 0.35  | 0.13          | 0.27  | 0.35  | 0     | 0     | 0     |
| YLR025W            | SNF7          | С | 21 | 0.35  | 0.09          | 0.26  | 0.24  | 0     | 0     | 0     |
| YLR027C            | AAT2          | Ċ | 21 | 0.84  | 0.97          | 0.99  | 1.5   | -0.13 | -0.06 | 0.05  |
| YLR028C            | ADE16         | Ċ | 21 | 035   | 0.23          | 0.26  | 0.36  | -0.34 | 0     | -0.07 |
| YLR029C            | RPL15A        | Ċ | 21 | 0.97  | 2.84          | 0.88  | 1 24  | 0.32  | -014  | -0.1  |
| VLR03/C            | IG LIGHT      | C | 20 | 0.53  | 0.6           | 0.00  | 1.21  | 0.52  | 0.11  | 0.1   |
| VI P037C           |               | C | 20 | 0.33  | 0.0           | 0.20  | 0.46  | 0.15  | 0     | 0.20  |
| VI PO38C           | COV12         | C | 20 | 0.44  | 0.54          | 1.16  | 0.70  | -0.15 | 0.05  | -0.14 |
| ILK036C            | COAIZ         | C | 20 | 0.0   | 1             | 0.26  | 0.72  | -0.1  | 0.05  | -0.05 |
| YLR040C            |               | C | 20 | 0.55  |               | 0.20  | 0.24  | 0.42  | 0     | 0     |
| YLR042C            |               | C | 20 | 0.35  | 0.1           | 0.20  | 0.24  | 0     | 0     | 0     |
| YLR043C            | IRXI          | C | 21 | 2.64  | 5.22          | 2.07  | 5.41  | 0.1   | -0.3  | 0.07  |
| YLR044C            | PDCI          | C | 20 | 11.63 | 13.96         | 6.64  | 15.05 | 0.09  | -0.26 | 0.03  |
| YLR048W            | RPS0B         | С | 41 | 2.25  | 3.36          | 1.27  | 2.04  | 0.15  | -0.19 | -0.05 |
| YLR050C            |               | С | 20 | 0.4   | 0.32          | 0.28  | 0.57  | 0     | 0     | 0.05  |
| YLR056W            | ERG3          | С | 20 | 0.65  | 1.53          | 0.63  | 1.57  | 0.28  | 0     | 0.23  |
| YLR058C            | SHM2          | С | 21 | 1.52  | 3.52          | 1.05  | 6.78  | 0.08  | 0     | 0.59  |
| YLR059C            | YNT20         | С | 20 | 0.35  | 0.19          | 0.26  | 0.24  | 0     | 0     | 0     |
| YLR060W            | FRS1          | С | 20 | 0.4   | 0.55          | 0.31  | 0.62  | -0.09 | 0     | 0     |
| YLR061W            | RPL22A        | С | 20 | 7.13  | 9.29          | 3.06  | 6.95  | 0.02  | -0.3  | -0.02 |
| YLR064W            |               | С | 20 | 0.35  | 0.21          | 0.26  | 0.46  | 0     | 0     | 0     |
| YLR065C            |               | С | 20 | 0.35  | 0.48          | 0.28  | 0.25  | 0.05  | 0     | 0     |
| YLR066W            | SPC3          | Ċ | 20 | 0.35  | 0.13          | 0.26  | 0.24  | 0     | 0     | 0     |
| YLR069C            | MEF1          | Ċ | 20 | 035   | 0.12          | 0.26  | 0.24  | 0     | 0     | Ő     |
| YI R073C           |               | c | 20 | 0.35  | 0.12          | 0.26  | 0.41  | 0     | 0     | 0.01  |
| VI R074C           |               | C | 21 | 0.35  | 0.22          | 0.20  | 0.41  | 0     | 0     | 0.01  |
| VI D075W           | <b>DDI</b> 10 | C | 21 | 5.4   | 0.10<br>8 5 5 | 3.06  | 6.55  | 0.02  | 0.10  | 0.01  |
| VL DO76C           | Kr L10        | C | 21 | 0.5   | 0.55          | 0.20  | 0.33  | 0.02  | -0.19 | 0     |
| ILK070C            | DOS1          | C | 20 | 0.5   | 0.19          | 0.29  | 0.57  | 0     | 0     | 0     |
| ILKU/8C            | DUS1          | C | 20 | 0.55  | 0.11          | 0.20  | 0.24  | 0     | 0     | 0     |
| ILKU/9W            | SICI          | C | 21 | 0.55  | 0.21          | 0.20  | 0.5   | 0     | 0     | 0     |
| YLR081W            | GAL2          | C | 21 | 0.35  | 0.09          | 2.84  | 0.24  | 0     | 0.91  | 0     |
| YLR083C            | EMP/0         | C | 21 | 0.35  | 0.18          | 0.26  | 0.24  | -0.31 | 0     | 0     |
| YLR088W            | GAAI          | C | 20 | 0.35  | 0.12          | 0.26  | 0.24  | 0     | 0     | 0     |
| YLR089C            |               | C | 20 | 0.35  | 0.15          | 0.26  | 0.24  | 0     | 0     | 0     |
| YLR093C            |               | С | 20 | 0.35  | 0.11          | 0.26  | 0.24  | 0     | 0     | 0     |
| YLR095C            |               | С | 20 | 0.35  | 0.16          | 0.26  | 0.24  | 0     | 0     | 0     |
| YLR099C            |               | С | 20 | 0.35  | 0.27          | 0.43  | 0.3   | -0.28 | 0     | 0     |
| YLR100W            |               | С | 20 | 0.35  | 0.27          | 0.26  | 0.44  | 0     | 0     | 0     |
| YLR104W            |               | С | 20 | 0.35  | 0.18          | 0.26  | 0.38  | 0     | 0     | -0.09 |
| YLR109W            |               | С | 21 | 3.58  | 9.66          | 1.96  | 8.52  | 0.1   | -0.31 | 0.34  |
| YLR110C            |               | С | 20 | 13.2  | 35.7          | 17.05 | 34.4  | 0.08  | -0.07 | 0.09  |
| YLR112W            |               | С | 21 | 0.35  | 0.11          | 0.26  | 0.24  | 0     | 0     | 0     |
| YLR113W            | HOG1          | С | 21 | 0.41  | 0.57          | 0.26  | 0.71  | 0.06  | 0     | 0.22  |
| YLR118C            |               | С | 20 | 0.35  | 0.26          | 0.28  | 0.68  | -0.22 | 0     | 0.26  |
| YLR120C            | YPS1          | Ċ | 20 | 0.57  | 0.53          | 0.57  | 1.34  | -0.13 | 0     | 0.17  |
| YLR121C            | YPS3          | č | 20 | 035   | 01            | 0.26  | 0.42  | 0     | Ő     | 0.08  |
| YLR129W            | DIP2          | č | 20 | 0.35  | 0.13          | 0.26  | 0.12  | 0     | 0     | 0.00  |
| YI R130C           | 7RT7          | c | 20 | 0.35  | 0.13          | 0.20  | 0.27  | -0.08 | 0     | 01    |
| VI R130C           |               | Ċ | 20 | 0.35  | 0.55          | 0.20  | 0.0   | -0.00 | 0     | 0.1   |
| VI D122W           | CVII          | C | 20 | 0.35  | 0.10          | 0.20  | 0.24  | 0     | 0     | 0     |
| ILKIJJW<br>VLD124W | UNII<br>DDC5  | C | 20 | 0.33  | 0.12          | 0.20  | 0.24  | 0     | 0     | 0     |
| 1 LN 134 W         | PDC3          | U | 20 | 0.55  | 0.14          | 0.20  | 0.24  | U     | U     | U     |
| YLR146C               | SPE4             | С | 20 | 035          | 0.22 | 0.26 | 0.24         | 0     | 0     | 0     |
|-----------------------|------------------|---|----|--------------|------|------|--------------|-------|-------|-------|
| YLR150W               | MPT4             | C | 21 | 0.77         | 1 74 | 1.09 | 1 29         | 0.25  | 0 14  | 0.06  |
| YLR153C               | ACS2             | C | 20 | 0.47         | 0.8  | 0.28 | 0.55         | 0.07  | 0     | -0.03 |
| YLR154C               | 11652            | C | 20 | 0.35         | 0.14 | 0.20 | 0.33         | 0.07  | 0     | 0.03  |
| YLR155C               | ASP3             | C | 20 | 0.35         | 0.09 | 0.26 | 0.38         | 0     | 0     | 0     |
| VLR157C               | A SP3            | C | 20 | 0.35         | 0.07 | 0.20 | 0.36         | 0     | 0     | 0     |
| VLR160C               | ASP3             | C | 20 | 0.35         | 0.05 | 0.20 | 0.20         | 0     | 0     | 0     |
| VI R167W              | PPS31            | C | 20 | 4.08         | 7.04 | 3.51 | 3.04         | 0.18  | 0.24  | 0.1   |
| VL R172C              |                  | C | 20 | 4.00<br>0.36 | 0.44 | 0.32 | 0.42         | 0.10  | -0.24 | -0.1  |
| VI P175W              | CRE5             | C | 21 | 0.30         | 0.44 | 0.32 | 0.42         | 0.02  | 0     | 0.02  |
| 1 LK173 W<br>VI D177W | CDFJ             | C | 20 | 0.35         | 0.54 | 0.50 | 0.44         | 0     | 0     | 0.1   |
| 1LK1//W               | TEC 1            | C | 20 | 0.35         | 0.15 | 0.20 | 0.24         | 0     | 0     | 0 65  |
| ILKI/OC               | 1151             | C | 21 | 0.39         | 0.47 | 0.51 | 5.51<br>1.29 | 0 14  | 0 14  | 0.05  |
| ILKI/9C               | CAM1             | C | 21 | 0.85         | 1.38 | 0.05 | 1.30         | 0.14  | -0.14 | 0.07  |
| ILKI80W               | SAMI<br>DDI 27 A | C | 20 | 0.0          | 1.41 | 0.33 | 1.28         | 0.1   | 0     | 0.23  |
| YLR185W               | RPL3/A           | C | 21 | 4.65         | 5.62 | 2.88 | 5.18         | 0.08  | -0.22 | -0.08 |
| YLR186W               |                  | C | 20 | 0.35         | 0.24 | 0.28 | 0.33         | 0     | 0     | 0     |
| YLR192C               |                  | C | 21 | 0.35         | 0.32 | 0.20 | 0.27         | -0.11 | 0     | 0     |
| YLR194C               |                  | C | 20 | 0.35         | 0.49 | 0.78 | 1.01         | 0     | 0.04  | 0.15  |
| YLR195C               | NMTT             | C | 21 | 0.35         | 0.11 | 0.26 | 0.24         | 0     | 0     | 0     |
| YLR197W               | SIK1             | С | 20 | 0.35         | 0.22 | 0.26 | 0.25         | 0     | 0     | 0     |
| YLR199C               |                  | С | 20 | 0.35         | 0.26 | 0.27 | 0.59         | 0     | 0     | 0.08  |
| YLR201C               |                  | С | 20 | 0.35         | 0.38 | 0.46 | 0.65         | 0     | 0     | 0.09  |
| YLR202C               |                  | С | 18 | 0.35         | 0.15 | 0.26 | 0.3          | 0     | 0     | 0     |
| YLR203C               | MSS51            | С | 21 | 0.45         | 0.67 | 0.26 | 0.6          | 0     | -0.14 | 0.1   |
| YLR204W               | QRI5             | С | 20 | 0.35         | 0.18 | 0.26 | 0.24         | 0     | 0     | 0     |
| YLR206W               |                  | С | 20 | 0.35         | 0.26 | 0.28 | 0.3          | 0     | 0     | 0     |
| YLR208W               | SEC13            | С | 21 | 0.94         | 0.91 | 0.7  | 1.46         | -0.1  | 0     | 0.03  |
| YLR209C               |                  | С | 21 | 0.35         | 0.4  | 0.26 | 0.41         | 0     | 0     | 0     |
| YLR212C               | TUB4             | С | 20 | 0.35         | 0.09 | 0.26 | 0.24         | 0     | 0     | 0     |
| YLR216C               | CPR6             | С | 21 | 0.35         | 0.43 | 0.26 | 1.4          | 0     | 0     | 0.53  |
| YLR220W               | CCC1             | С | 20 | 0.35         | 0.41 | 0.26 | 0.55         | 0     | 0     | 0     |
| YLR222C               |                  | С | 20 | 0.35         | 0.12 | 0.26 | 0.24         | 0     | 0     | 0     |
| YLR224W               |                  | С | 21 | 0.35         | 0.16 | 0.26 | 0.33         | 0     | 0     | 0     |
| YLR229C               | CDC42            | С | 20 | 0.72         | 1.6  | 0.41 | 1.89         | 0.26  | 0     | 0.22  |
| YLR231C               |                  | С | 20 | 0.35         | 0.3  | 0.26 | 0.39         | 0     | 0     | 0     |
| YLR237W               | THI7             | C | 21 | 0.35         | 0.12 | 0.26 | 0.24         | 0     | 0     | 0     |
| YLR241W               |                  | Č | 21 | 0.35         | 0.16 | 0.26 | 0.3          | 0     | 0     | -0.11 |
| YLR244C               | MAP1             | Č | 20 | 035          | 0.44 | 0.26 | 0.57         | -0.12 | 0     | -0.11 |
| YLR248W               | RCK2             | C | 20 | 0.43         | 0.31 | 0.28 | 0.33         | -0.22 | 0     | 0     |
| YLR249W               | YEE3             | Ċ | 20 | 1 04         | 1.8  | 0.83 | 1.68         | 0.19  | -0.18 | 0 14  |
| YLR250W               | SSP120           | Ċ | 20 | 0.35         | 0.16 | 0.05 | 0.27         | 0     | 0     | 0     |
| YLR251W               | 551120           | C | 20 | 0.35         | 0.10 | 0.20 | 0.59         | -0 29 | 0     | 0 18  |
| VI R252W              |                  | C | 20 | 0.35         | 0.22 | 0.54 | 0.37         | -0.22 | 0     | 0.10  |
| VI R252W              |                  | C | 20 | 0.35         | 0.22 | 0.20 | 0.77         | 0     | 0     | 0.11  |
| VI P256W              |                  | C | 21 | 0.35         | 0.09 | 0.20 | 0.24         | 0     | 0     | 0     |
| VLD257W               | IIAF I           | C | 20 | 0.35         | 0.09 | 0.20 | 0.29         | 0     | 0     | 0     |
| ILK25/W               | COVO             | C | 21 | 0.55         | 0.11 | 0.20 | 0.24         | 0 10  | 0 11  | 0.04  |
| 1 LR258W              |                  | C | 21 | 0.35         | 0.48 | 0.42 | 0.58         | -0.19 | -0.11 | 0.04  |
| YLR259C               | HSP60            | C | 21 | 0.98         | 1.19 | 0.81 | 3.38         | 0.03  | 0     | 0.32  |
| YLR264W               | KPS28B           | C | 20 | 2.10         | 3.08 | 0.52 | 2.38         | 0.07  | -0.29 | -0.06 |
| YLK268W               | SEC22            | C | 21 | 0.35         | 0.21 | 0.26 | 0.34         | 0     | 0     | U     |
| YLK2/0W               |                  | C | 20 | 0.35         | 0.15 | 0.26 | 0.3          | 0     | 0     | 0     |
| YLR285W               |                  | C | 21 | 0.35         | 0.15 | 0.26 | 0.24         | 0     | 0     | 0     |
| YLR286C               | CTS1             | C | 20 | 1.1          | 1.61 | 0.79 | 1.21         | 0.19  | 0     | 0.14  |
| YLR287C-A             | RPS30A           | С | 40 | 3.45         | 4.59 | 2.83 | 3.33         | -0.01 | 0     | 0     |
| YLR290C               |                  | С | 20 | 0.35         | 0.09 | 0.26 | 0.25         | 0     | 0     | 0     |

| YLR291C   | GCD7            | С | 20              | 0.35 | 0.21  | 0.26 | 0.44         | 0     | 0     | 0.06  |
|-----------|-----------------|---|-----------------|------|-------|------|--------------|-------|-------|-------|
| YLR292C   | SEC72           | С | 21              | 0.35 | 0.12  | 0.26 | 0.24         | 0     | 0     | 0     |
| YLR293C   | GSP1            | С | 20              | 1.16 | 2.37  | 0.72 | 2.02         | 0.24  | -0.23 | 0.17  |
| YLR294C   |                 | С | 20              | 0.45 | 1.1   | 1.05 | 1.06         | 0.12  | 0.2   | 0.27  |
| YLR295C   | ATP14           | С | 20              | 0.35 | 0.53  | 0.62 | 0.33         | 0     | 0.09  | 0     |
| YLR297W   |                 | С | 21              | 0.5  | 0.57  | 0.4  | 1.2          | 0.05  | 0     | 0.19  |
| YLR300W   | EXG1            | Ċ | 21              | 6.8  | 4.85  | 2.29 | 8.56         | 0.03  | -0.21 | 0.08  |
| YLR301W   |                 | Č | 20              | 0.35 | 0.29  | 0.26 | 0.31         | 0     | 0     | 0     |
| YLR303W   | MET17           | Č | 21              | 0.39 | 0.51  | 0.81 | 3.15         | 0.01  | 0.12  | 0.77  |
| YLR304C   | ACO1            | Č | 20              | 0.54 | 0.44  | 0.52 | 0.98         | -0.05 | 0     | 0.09  |
| YLR317W   |                 | Ċ | 20              | 0.35 | 0.16  | 0.26 | 0.25         | 0     | 0     | 0     |
| YLR325C   | RPL38           | C | $\frac{20}{20}$ | 1 24 | 2.24  | 1 16 | 2.24         | 012   | -019  | 0.01  |
| YLR327C   | 14 200          | Č | 21              | 035  | 0.18  | 0.42 | 0.6          | -0.31 | -0.02 | 0.03  |
| YLR328W   |                 | C | 20              | 0.35 | 0.10  | 0.12 | 0.26         | 0     | 0     | 0.02  |
| YLR330W   |                 | Ċ | 20              | 0.35 | 0.11  | 0.26 | 0.20         | 0     | 0     | 0     |
| YLR333C   | RPS25B          | C | 20              | 1.58 | 2 59  | 0.20 | 1 71         | 0.21  | -0.19 | 0 09  |
| VI R335W  | NUP2            | C | 20              | 0.35 | 0.13  | 0.72 | 0.24         | 0.21  | 0.17  | 0.07  |
| VI R340W  | RPP0            | C | 20              | 8.13 | 9.15  | 3.54 | 1 96         | 0.04  | -0.25 | _0.19 |
| VI R340W  | FKS1            | C | 20              | 0.15 | 0.47  | 0.26 | 4.90<br>0.64 | 0.04  | -0.25 | 0.12  |
| VI D24AW  |                 | C | 20              | 0.4  | 0.47  | 0.20 | 0.04         | 0.02  | 0     | 0.12  |
| 1 LK344 W | KIL20A<br>KAD05 | C | 20              | 0.36 | 0.45  | 0.20 | 0.4          | -0.15 | 0     | 0     |
| VLD249C   | DIC1            | C | 20              | 0.35 | 0.17  | 0.20 | 0.24         | 0     | 0     | 0.00  |
| ILK340C   | DICI            | C | 20              | 1.50 | 1.04  | 1.20 | 2.00         | 0.05  | 0.02  | -0.09 |
| VLP251C   | NIT2            | C | 21              | 0.45 | 0.4   | 0.20 | 2.09         | 0.05  | -0.02 | 0.10  |
| ILK55IC   |                 | C | 21              | 0.45 | 0.4   | 0.29 | 1.9          | -0.24 | 0 00  | 02    |
| YLR354C   | IALI<br>UV5     | C | 20              | 1.04 | 1.55  | 0.85 | 1.8          | 0.05  | -0.08 | 0.2   |
| YLR355C   | ILV5            | C | 20              | 1.09 | 2.59  | 1.31 | 2.74         | 0.55  | -0.05 | 0.29  |
| ILK350W   | 4 DE12          | C | 20              | 0.48 | 0.29  | 0.39 | 1.13         | -0.20 | 0     | 0.32  |
| YLR359W   | ADE13           | C | 20              | 0.51 | 0.44  | 0.33 | 0.53         | -0.02 | 0     | 0.1   |
| YLR364W   | DDGOOD          | C | 21              | 0.35 | 0.1   | 0.20 | 0.24         | 0     | 0     | 0     |
| YLR36/W   | RPS22B          | C | 90              | 0.67 | 0.97  | 0.73 | 0.79         | 0.07  | -0.04 | -0.03 |
| YLR3/0C   | ARCI8           | C | 20              | 0.58 | 0.83  | 0.42 | 0.87         | 0.04  | 0     | 0.11  |
| YLR3/2W   | SUR4            | C | 20              | 1.33 | 2.24  | 0.68 | 1.53         | 0.12  | -0.23 | 0.02  |
| YLR3/5W   | STP3            | C | 20              | 0.76 | 0.93  | 0.57 | 2.35         | 0.05  | 0     | 0.39  |
| YLR378C   | SEC61           | C | 21              | 0.85 | 1.03  | 0.59 | 1.14         | -0.05 | 0     | 0.06  |
| YLR380W   |                 | C | 20              | 0.35 | 0.24  | 0.26 | 0.26         | 0     | 0     | 0     |
| YLR384C   | IKI3            | C | 20              | 0.35 | 0.11  | 0.26 | 0.24         | 0     | 0     | 0     |
| YLR388W   | RPS29A          | C | 21              | 5.94 | 10.34 | 2.44 | 6.05         | 0.14  | -0.26 | -0.08 |
| YLR390W   | ECM19           | C | 20              | 0.35 | 0.2   | 0.26 | 0.36         | 0     | 0     | 0     |
| YLR391W   |                 | C | 21              | 2.73 | 4.58  | 2.53 | 6.49         | -0.05 | -0.17 | 0.16  |
| YLR395C   | COX8            | C | 20              | 1.2  | 1.6   | 0.95 | 1.23         | -0.01 | 0     | -0.11 |
| YLR404W   |                 | С | 20              | 0.35 | 0.1   | 0.26 | 0.24         | 0     | 0     | 0     |
| YLR405W   |                 | С | 20              | 0.35 | 0.12  | 0.26 | 0.24         | 0     | 0     | 0     |
| YLR406C   | RPL31B          | С | 55              | 1.33 | 2.85  | 1.27 | 2.5          | 0.08  | 0     | 0.1   |
| YLR412W   |                 | С | 21              | 0.35 | 0.1   | 0.26 | 0.24         | 0     | 0     | 0     |
| YLR413W   |                 | С | 20              | 0.35 | 0.15  | 0.26 | 0.37         | 0     | 0     | 0.02  |
| YLR414C   |                 | С | 20              | 0.67 | 0.61  | 0.53 | 1.1          | 0     | 0     | 0.15  |
| YLR420W   | URA4            | С | 20              | 0.35 | 0.15  | 0.26 | 0.24         | 0     | 0     | 0     |
| YLR421C   |                 | С | 20              | 0.35 | 0.49  | 0.26 | 0.52         | 0     | 0     | 0.01  |
| YLR426W   |                 | С | 41              | 0.35 | 0.12  | 0.26 | 0.24         | 0     | 0     | 0     |
| YLR429W   | CRN1            | С | 20              | 0.35 | 0.15  | 0.26 | 0.24         | 0     | 0     | 0     |
| YLR432W   |                 | С | 20              | 0.35 | 0.59  | 0.26 | 0.42         | 0.09  | 0     | 0     |
| YLR437C   |                 | С | 20              | 0.35 | 0.21  | 0.26 | 0.24         | 0     | 0     | 0     |
| YLR438W   | CAR2            | С | 21              | 0.35 | 0.22  | 0.26 | 0.68         | -0.32 | 0     | 0.29  |
| YLR439W   | MRPL4           | С | 21              | 0.35 | 0.14  | 0.26 | 0.24         | 0     | 0     | 0     |
| YLR441C   | RPS1A           | С | 29              | 2.69 | 3.96  | 1.15 | 2.87         | 0.02  | 0     | -0.01 |

| YLR447C    | VMA6          | С | 20              | 0.58 | 1.07 | 0.43 | 0.85 | 0.1   | 0     | 0.09  |
|------------|---------------|---|-----------------|------|------|------|------|-------|-------|-------|
| YLR448W    | RPL6B         | С | 20              | 4.37 | 6.39 | 3.19 | 3.25 | 0.15  | -0.26 | -0.1  |
| YLR449W    | FPR4          | С | 21              | 0.35 | 0.13 | 0.26 | 0.24 | 0     | 0     | 0     |
| YLR459W    | CDC91         | С | 20              | 0.35 | 0.15 | 0.26 | 0.26 | 0     | 0     | 0     |
| YLR461W    | PAU4          | С | 20              | 0.35 | 0.16 | 0.28 | 0.24 | 0     | 0     | 0     |
| YLR466W    |               | С | 20              | 0.75 | 0.55 | 0.57 | 1.03 | -0.24 | -0.05 | 0.17  |
| YLR467W    |               | С | 20              | 0.6  | 0.58 | 0.54 | 1.18 | 0     | 0     | 0.2   |
| YML001W    | YPT7          | С | 20              | 0.36 | 0.32 | 0.34 | 0.53 | 0     | 0     | 0.03  |
| YML004C    | GLO1          | С | 21              | 0.35 | 0.33 | 0.26 | 0.64 | 0     | 0     | 0.13  |
| YML008C    | ERG6          | С | 20              | 0.4  | 0.42 | 0.26 | 0.39 | -0.05 | 0     | 0     |
| YML009C    | MRPL39        | С | 21              | 0.35 | 0.34 | 0.31 | 0.54 | 0     | -0.11 | 0     |
| YML010W    |               | С | 20              | 0.35 | 0.11 | 0.26 | 0.24 | 0     | 0     | 0     |
| YML010W-A  | SPT5          | С | 20              | 0.37 | 0.26 | 0.26 | 0.52 | 0     | 0     | 0     |
| YML010W-B  |               | С | 41              | 0.35 | 0.09 | 0.26 | 0.24 | 0     | 0     | 0     |
| YML012W    | ERV25         | С | 20              | 1.59 | 2.25 | 1.25 | 2.25 | 0.08  | 0     | 0.07  |
| YML014W    |               | Č | 20              | 0.35 | 0.1  | 0.26 | 0.24 | 0     | 0     | 0     |
| YML018C    |               | Ċ | 21              | 0.35 | 0.1  | 0.26 | 0.24 | 0     | 0     | 0     |
| YML019W    | OST6          | Č | 20              | 0.35 | 0.15 | 0.27 | 0.34 | 0     | 0     | 0     |
| YML022W    | APT1          | Č | 20              | 0.76 | 0.81 | 0.39 | 0.82 | -0.11 | -0.1  | 0.03  |
| YML024W    | RPS17A        | C | 20              | 3.63 | 4 98 | 1 43 | 3.27 | 0.14  | -0.2  | -0.09 |
| YML025C    | iti bi //i    | C | 20              | 035  | 0.15 | 0.26 | 0.24 | 0     | 0     | 0.07  |
| YML 026C   | RPS18B        | C | 19              | 0.84 | 2.28 | 0.20 | 1 38 | 0 14  | -0.06 | -0.02 |
| YML027W    | YOX1          | C | 21              | 0.04 | 0.15 | 0.26 | 0.24 | -0.5  | 0.00  | 0.02  |
| YML028W    | TSA1          | C | 21              | 4 04 | 7 95 | 635  | 6 44 | -0.5  | 0.08  | 0 14  |
| VML 029W   | 10/11         | C | 21              | 035  | 0.1  | 0.35 | 0.74 | 0.1   | 0.00  | 0.14  |
| VML 030W   |               | C | $\frac{21}{20}$ | 0.35 | 0.1  | 0.20 | 0.24 | 0     | 0     | 0     |
| VML031W    | NDC1          | C | 20              | 0.35 | 0.25 | 0.20 | 0.3  | 0     | 0     | 0.13  |
| VML 020W   | NDCI          | C | 40              | 0.35 | 0.15 | 0.20 | 0.29 | 0     | 0     | -0.13 |
| VML 040W   |               | C | 20              | 0.35 | 0.19 | 0.20 | 0.55 | 0     | 0     | 0.04  |
| VML 045W   |               | C | 20<br>40        | 0.35 | 0.15 | 0.20 | 0.55 | 0     | 0     | 0.2   |
| VML 049W   | CSE2          | C | 20              | 0.35 | 0.15 | 0.20 | 0.55 | 0     | 0     | 0.11  |
| I ML040W   | CAL 20        | C | 20              | 0.35 | 0.5  | 0.20 | 0.45 | 0     | 017   | 0.05  |
| I ML051W   | GALOU         | C | 21              | 0.55 | 0.19 | 0.01 | 0.55 | 0     | 0.17  | 0     |
| I MILUJZ W | SUK/          | C | 21              | 0.00 | 0.21 | 0.29 | 0.09 | 0     | -0.5  | 0     |
| I ML055W   | SPC2          | C | 20              | 0.55 | 0.21 | 0.20 | 0.24 | 0.06  | 0     | 0 02  |
| I ML050C   | CMD2          | C | 41              | 0.41 | 0.38 | 0.50 | 0.0  | 0.00  | 0     | 0.02  |
| YML059W    | CMP2          | C | 20              | 0.55 | 0.11 | 0.20 | 0.74 | 0 17  | 0 22  | 0.12  |
| YML058W    |               | C | 20              | 1.15 | 2.37 | 0.85 | 2.24 | 0.17  | -0.23 | 0.10  |
| YML064C    | KPS1B<br>TEM1 | C | 20              | 0.39 | 0.45 | 0.20 | 0.24 | 0     | 0     | 0     |
| YML064C    | IEMI          | C | 21              | 0.35 | 0.13 | 0.20 | 0.24 | 0     | 0     | 0     |
| YML06/C    | DAV1          | C | 20              | 0.46 | 0.33 | 0.20 | 0.75 | -0.2  | 0     | 0.07  |
| YML070W    | DAKI          | C | 20              | 0.42 | 0.26 | 0.20 | 0.94 | 0     | -0.2  | 0.57  |
| YML0/2C    |               | C | 21              | 0.35 | 0.41 | 0.20 | 0.35 | -0.02 | 0     | -0.16 |
| YML073C    | RPL6A         | C | 20              | 3.12 | 4.4  | 1.66 | 1.81 | 0.11  | -0.35 | -0.25 |
| YML0/4C    | NPI46         | C | 20              | 0.35 | 0.37 | 0.29 | 0.36 | 0     | 0     | 0     |
| YML075C    | HMGI          | C | 21              | 0.35 | 0.17 | 0.26 | 0.24 | -0.38 | 0     | 0     |
| YML0/8W    | CPR3          | C | 21              | 1.42 | 1.64 | 0.83 | 2.07 | 0     | -0.19 | 0.07  |
| YML079W    |               | C | 21              | 0.35 | 0.1  | 0.26 | 0.24 | 0     | 0     | 0     |
| YML085C    | TUB1          | C | 20              | 0.44 | 0.7  | 0.26 | 0.26 | 0.04  | 0     | 0     |
| YML086C    | ALO1          | C | 21              | 0.39 | 0.69 | 0.4  | 0.54 | 0.08  | 0     | 0     |
| YML092C    | PRE8          | С | 20              | 0.56 | 0.95 | 0.48 | 2.15 | 0.09  | -0.2  | 0.39  |
| YML100W    | TSL1          | С | 21              | 1.12 | 0.67 | 0.51 | 1.58 | -0.25 | -0.2  | 0.2   |
| YML101C    |               | С | 21              | 0.35 | 0.58 | 0.33 | 0.32 | 0.1   | 0     | 0     |
| YML105C    | SEC65         | С | 20              | 0.35 | 0.28 | 0.26 | 0.33 | 0     | 0     | 0     |
| YML106W    | URA5          | С | 20              | 2.55 | 4.41 | 1.56 | 3.48 | 0.15  | -0.29 | 0.08  |
| YML110C    | DBI56         | С | 20              | 0.62 | 0.49 | 0.31 | 1.05 | -0.09 | -0.2  | 0.19  |

| YML112W              | CTK3         | С | 21 | 0.35 | 0.09 | 0.26 | 0.24  | 0     | 0     | 0     |
|----------------------|--------------|---|----|------|------|------|-------|-------|-------|-------|
| YML113W              | DAT1         | С | 20 | 0.35 | 0.16 | 0.26 | 0.35  | 0     | 0     | 0     |
| YML114C              |              | С | 21 | 0.35 | 0.09 | 0.26 | 0.29  | 0     | 0     | 0     |
| YML116W              | ATR1         | С | 21 | 0.35 | 0.17 | 0.26 | 0.27  | 0     | 0     | 0     |
| YML117W-A            |              | С | 20 | 0.35 | 0.27 | 0.26 | 0.85  | -0.26 | 0     | 0.3   |
| YML121W              | GTR1         | С | 20 | 0.35 | 0.1  | 0.26 | 0.25  | 0     | 0     | 0     |
| YML123C              | PHO84        | C | 21 | 0.35 | 0.56 | 0.26 | 0.68  | 0.14  | 0     | -0.06 |
| YML124C              | TUB3         | Ċ | 21 | 0.37 | 0.53 | 0.42 | 0.5   | -0.1  | 0     | -0.09 |
| YML125C              |              | C | 20 | 0.46 | 0.41 | 0.26 | 0.52  | 0     | 0     | 0.06  |
| YML126C              | HMGS         | Č | 20 | 1.23 | 1.35 | 0.99 | 1.63  | 0.03  | 0     | 0.08  |
| YML127W              |              | Ċ | 20 | 0.53 | 0.4  | 0.26 | 0.67  | 0     | -0.14 | -0.09 |
| YML128C              |              | Č | 20 | 0.35 | 0.21 | 0.26 | 1.06  | 0     | 0     | 0.47  |
| YML129C              | COX14        | Č | 20 | 0.35 | 0.15 | 0.26 | 0.43  | 0     | 0     | 0     |
| YML130C              | ERO1         | Ĉ | 21 | 035  | 0.09 | 0.26 | 0.31  | 0     | 0     | 0     |
| YML131W              | Littor       | Č | 20 | 035  | 0.18 | 0.26 | 0.24  | 0     | Ő     | Ő     |
| YML132W              | COS3         | Č | 20 | 0.82 | 0.88 | 0.51 | 0.96  | -0.11 | Ő     | 0.01  |
| YML133C              | 0000         | C | 40 | 0.35 | 0.24 | 0.26 | 0.27  | -0.32 | Ő     | 0.01  |
| YMR002W              |              | C | 21 | 1 24 | 1.96 | 1 43 | 2.027 | 0.02  | -0.03 | 0.03  |
| YMR002W              |              | C | 21 | 0.35 | 0.13 | 0.26 | 0.24  | -0.02 | 0.05  | 0.05  |
| VMR005W              | MPT1         | C | 21 | 0.35 | 0.15 | 0.20 | 0.24  | -0.44 | 0     | -0.09 |
| VMR006C              |              | C | 21 | 0.35 | 0.10 | 0.20 | 0.31  | 0     | 0     | -0.09 |
| VMP008C              | DI D1        | C | 21 | 0.33 | 0.11 | 0.20 | 1.73  | 0.22  | 0     | 0.14  |
| I MIKOUOC<br>VMD000W | FLDI         | C | 21 | 0.92 | 0.05 | 0.70 | 1.75  | -0.22 | 0     | 0.14  |
| VMD010W              |              | C | 21 | 0.35 | 0.12 | 0.20 | 0.42  | 0     | 0     | 0.08  |
| VMD011W              | UVTO         | C | 21 | 0.35 | 0.11 | 0.20 | 0.24  | 0     | 0     | 0     |
| I MRUITW             | HA12<br>CLU1 | C | 20 | 0.33 | 0.17 | 0.20 | 0.24  | 0     | 0     | 0     |
| YMR012W              | CLUI<br>EDC5 | C | 20 | 0.33 | 0.20 | 0.20 | 0.20  | 0     | 0     | 0     |
| YMR015C              | EKGS         | C | 20 | 0.55 | 0.17 | 0.20 | 0.24  | 0 12  | 0     | 0     |
| YMR022W              | QRI8         | C | 20 | 0.5  | 0.43 | 0.20 | 0.94  | -0.13 | 0     | 0.22  |
| YMR024W              | UDTO         | C | 21 | 0.35 | 0.14 | 0.20 | 0.24  | 0     | 0     | 0     |
| YMR027W              | HK12         | C | 21 | 0.35 | 0.11 | 0.20 | 0.25  | 0     | 0     | 0     |
| YMR035W              | IMP2         | C | 20 | 0.35 | 0.22 | 0.26 | 0.31  | 0     | 0     | 0     |
| YMR038C              | LYS/         | C | 21 | 0.35 | 0.22 | 0.20 | 0.24  | -0.34 | 0     | 0     |
| YMR042W              | ARG80        | C | 21 | 0.35 | 0.14 | 0.20 | 0.24  | -0.5  | 0     | 0     |
| YMR043W              | MCMI         | C | 20 | 0.52 | 0.41 | 0.54 | 0.97  | -0.28 | 0     | 0     |
| YMR047C              | NUP116       | C | 21 | 0.35 | 0.15 | 0.26 | 0.24  | -0.5  | 0     | 0     |
| YMR049C              |              | C | 21 | 0.35 | 0.25 | 0.26 | 0.3   | -0.19 | 0     | 0     |
| YMR050C              |              | C | 40 | 0.35 | 0.21 | 0.26 | 0.43  | 0     | 0     | 0.05  |
| YMR051C              |              | C | 20 | 0.35 | 0.15 | 0.26 | 0.59  | 0     | 0     | 0.23  |
| YMR054W              | STVI         | C | 21 | 0.35 | 0.15 | 0.26 | 0.24  | 0     | 0     | 0     |
| YMR055C              | BUB2         | C | 20 | 0.35 | 0.12 | 0.26 | 0.24  | 0     | 0     | 0     |
| YMR056C              | AACI         | C | 20 | 0.35 | 0.17 | 0.29 | 0.58  | 0     | 0     | 0     |
| YMR058W              | FET3         | С | 20 | 0.36 | 0.2  | 0.26 | 0.43  | 0     | 0     | -0    |
| YMR062C              | ECM40        | C | 20 | 0.35 | 0.22 | 0.26 | 0.24  | 0     | 0     | 0     |
| YMR067C              |              | С | 20 | 0.35 | 0.13 | 0.26 | 0.24  | 0     | 0     | 0     |
| YMR071C              |              | С | 20 | 0.41 | 0.4  | 0.27 | 0.79  | -0.12 | 0     | 0.31  |
| YMR072W              | ABF2         | С | 20 | 0.35 | 0.26 | 0.26 | 0.29  | 0     | 0     | 0     |
| YMR073C              |              | С | 21 | 0.35 | 0.13 | 0.26 | 0.29  | 0     | 0     | -0.12 |
| YMR074C              |              | С | 21 | 0.35 | 0.3  | 0.26 | 0.35  | -0.23 | 0     | 0     |
| YMR079W              | SEC14        | С | 21 | 0.35 | 0.44 | 0.27 | 0.24  | -0.13 | 0     | 0     |
| YMR081C              | ISF1         | С | 21 | 0.35 | 0.09 | 0.6  | 0.24  | 0     | 0.05  | 0     |
| YMR083W              | ADH3         | С | 20 | 2.24 | 1.96 | 1.42 | 4.37  | -0.09 | -0.1  | 0.27  |
| YMR087W              |              | С | 20 | 0.35 | 0.12 | 0.26 | 0.24  | 0     | 0     | 0     |
| YMR088C              |              | С | 20 | 0.35 | 0.11 | 0.26 | 0.24  | 0     | 0     | 0     |
| YMR089C              | YTA12        | С | 21 | 0.35 | 0.27 | 0.26 | 0.26  | 0     | 0     | 0     |
| YMR090W              |              | С | 20 | 0.35 | 0.21 | 0.3  | 0.83  | -0.39 | 0     | 0.35  |

| YMR091C       | NPL6    | С | 20 | 0.35  | 0.1  | 0.26 | 0.24         | 0     | 0     | 0     |
|---------------|---------|---|----|-------|------|------|--------------|-------|-------|-------|
| YMR092C       | AIP1    | С | 21 | 0.35  | 0.18 | 0.26 | 0.67         | 0     | 0     | 0.02  |
| YMR099C       |         | С | 20 | 0.35  | 0.26 | 0.26 | 0.33         | 0     | 0     | 0     |
| YMR105C       | PGM2    | С | 20 | 0.35  | 0.17 | 0.38 | 0.58         | 0     | 0     | 0.1   |
| YMR108W       | ILV2    | С | 21 | 0.35  | 0.37 | 0.47 | 0.91         | -0.13 | -0.1  | 0.09  |
| YMR110C       |         | C | 21 | 0.35  | 0.17 | 0.26 | 0.32         | 0     | 0     | 0     |
| YMR113W       |         | Č | 21 | 0.35  | 0.11 | 0.26 | 0.24         | 0     | 0     | 0     |
| YMR116C       | BEL1    | Č | 40 | 9.06  | 8.98 | 3.58 | 7.36         | 0.03  | -0.29 | -0.1  |
| YMR119W       | 2221    | Ċ | 20 | 035   | 0.14 | 0.26 | 0.35         | -0.47 | 0     | 0     |
| YMR119W-A     |         | Č | 20 | 0.35  | 0.1  | 0.26 | 0.24         | 0     | 0     | 0     |
| YMR120C       | ADE17   | Ċ | 20 | 035   | 0.18 | 0.26 | 0.71         | 0     | 0     | Ő     |
| YMR121C       | RPL15B  | C | 20 | 0.35  | 0.10 | 0.26 | 0.52         | 0     | 0     | -0.07 |
| YMR123W       | IC LIGD | C | 20 | 0.85  | 1.03 | 0.20 | 0.52         | 0     | 0     | -0.13 |
| YMR128W       | FCM16   | C | 20 | 0.35  | 0.1  | 0.26 | 0.24         | 0     | 0     | 0.15  |
| VMR131C       | LCIMIO  | C | 20 | 0.35  | 0.1  | 0.20 | 0.24         | 0     | 0     | 0     |
| VMR135C       |         | C | 20 | 0.35  | 0.10 | 0.20 | 0.24         | 0     | 0     | 0     |
| VMP136W       |         | C | 20 | 0.35  | 0.12 | 0.20 | 0.37         | -03   | 0     | 0     |
| VMP142C       | DDI 13D | C | 20 | 1.05  | 2.06 | 1.08 | 1.60         | -0.5  | 0.23  | 0.07  |
| VMD142W       | DDC16A  | C | 20 | 2.01  | 2.90 | 0.86 | 1.09         | 0.11  | -0.25 | -0.07 |
| I MIN 145 W   | KF510A  | C | 20 | 2.01  | 2.10 | 0.00 | 1.55         | -0.01 | -0.25 | -0.12 |
| YMR145C       | TIE24   | C | 20 | 0.09  | 0.91 | 0.94 | 0.98         | 0     | 0.1   | 0.12  |
| YMR140C       | 11F34   | C | 21 | 0.30  | 0.88 | 0.42 | 0.87         | 0.10  | 0     | 0.12  |
| YMR148W       |         | C | 20 | 0.4   | 0.5  | 0.36 | 0.71         | 0     | 0     | -0.13 |
| YMR149W       | SWPI    | C | 20 | 0.71  | 0.69 | 0.44 | 0.86         | 0.05  | 0     | 0.01  |
| YMR150C       | IMPI    | C | 21 | 0.35  | 0.17 | 0.26 | 0.24         | 0     | 0     | 0     |
| YMR152W       |         | C | 20 | 0.35  | 0.14 | 0.26 | 0.29         | 0     | 0     | 0     |
| YMR157C       |         | C | 20 | 0.35  | 0.1  | 0.26 | 0.25         | 0     | 0     | 0     |
| YMR161W       | HLJ1    | C | 20 | 0.35  | 0.16 | 0.26 | 0.27         | 0     | 0     | 0     |
| YMR169C       | ALD3    | С | 21 | 0.35  | 0.09 | 0.26 | 0.6          | 0     | 0     | 0.24  |
| YMR171C       |         | С | 20 | 0.35  | 0.09 | 0.26 | 0.24         | 0     | 0     | 0     |
| YMR173W       | DDR48   | С | 20 | 0.35  | 0.13 | 0.26 | 0.25         | 0     | 0     | 0     |
| YMR173W-A     |         | С | 21 | 11.18 | 7.89 | 5.6  | 14.76        | -0.08 | 0     | 0.18  |
| YMR174C       | PAI3    | С | 20 | 0.35  | 0.09 | 0.28 | 1.45         | 0     | 0     | 0.51  |
| YMR175W       | SIP18   | С | 20 | 0.35  | 0.09 | 0.26 | 1.33         | 0     | 0     | 0.5   |
| YMR177W       | MMT1    | С | 21 | 0.35  | 0.11 | 0.26 | 0.24         | 0     | 0     | 0     |
| YMR181C       |         | С | 21 | 0.35  | 0.25 | 0.26 | 0.57         | -0.23 | 0     | 0.16  |
| YMR184W       |         | С | 21 | 0.35  | 0.2  | 0.55 | 0.47         | -0.34 | -0.06 | -0.09 |
| YMR186W       | HSC82   | С | 20 | 0.48  | 0.41 | 0.51 | 0.86         | -0.22 | 0     | 0.03  |
| YMR189W       | GCV2    | С | 20 | 0.35  | 0.21 | 0.26 | 0.72         | 0     | 0     | 0.24  |
| YMR191W       |         | С | 21 | 0.35  | 0.11 | 0.26 | 0.24         | 0     | 0     | 0     |
| YMR194W       | RPL36A  | С | 19 | 5.47  | 4.55 | 4.29 | 4.64         | 0.06  | 0     | 0     |
| YMR195W       |         | С | 21 | 0.98  | 0.97 | 0.64 | 2.27         | 0.03  | -0.13 | 0.2   |
| YMR200W       | ROT1    | С | 20 | 0.35  | 0.21 | 0.26 | 0.37         | 0     | 0     | 0     |
| YMR202W       | ERG2    | С | 20 | 1.87  | 2.57 | 1.39 | 2.24         | 0.07  | 0     | 0     |
| YMR203W       | TOM40   | С | 21 | 0.4   | 0.39 | 0.26 | 0.58         | 0.01  | 0     | 0.01  |
| YMR205C       | PFK2    | С | 20 | 0.8   | 0.75 | 0.43 | 1.33         | -0.06 | -0.14 | 0.13  |
| YMR208W       | ERG12   | С | 21 | 0.35  | 0.12 | 0.26 | 0.24         | 0     | 0     | 0     |
| YMR211W       |         | С | 21 | 0.35  | 0.09 | 0.26 | 0.24         | 0     | 0     | 0     |
| YMR215W       |         | Ċ | 21 | 0.92  | 1.29 | 0.68 | 0.44         | 0.16  | 0     | 0     |
| YMR216C       | SKY1    | Č | 21 | 0.35  | 0.09 | 0.26 | 0.24         | 0     | 0     | 0     |
| YMR217W       | GUA1    | Č | 21 | 0.35  | 0.61 | 0.27 | 0.3          | 0.18  | 0     | Ő     |
| YMR221C       |         | č | 21 | 0.35  | 0.18 | 0.26 | 0.24         | 0     | Ő     | Ő     |
| YMR222C       |         | č | 21 | 0.42  | 0.23 | 0.26 | 0.36         | Ő     | 0     | -01   |
| YMR224C       | MRF11   | č | 20 | 0.35  | 0.23 | 0.20 | 0.28         | 0     | 0     | 0.1   |
| YMR224C       | WINL/11 | c | 20 | 1.5   | 1 42 | 1.04 | 2.20<br>2.48 | -0.17 | 0     | 017   |
| YMR230W       | RPS10R  | č | 23 | 0.61  | 0.76 | 0.56 | 0.45         | -0.02 | 0     | -0.15 |
| 1 11112230 11 | IN DIOD | C | 25 | 0.01  | 0.70 | 0.50 | 0.75         | 0.02  | 0     | 0.15  |

| YMR234W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RNH1           | D      | 20       | 0.11  | 0.08  | 0.06  | 0.04 | 0     | 0     | 0     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|----------|-------|-------|-------|------|-------|-------|-------|
| YMR235C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RNA1           | D      | 20       | 0.19  | 0.16  | 0.25  | 0.28 | 0     | 0.13  | 0.08  |
| YMR236W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TAF17          | D      | 21       | 0.23  | 0.47  | 0.43  | 0.75 | 0.17  | 0.12  | 0.29  |
| YMR237W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | D      | 21       | 0.11  | 0.08  | 0.2   | 0.16 | 0     | -0.07 | 0.03  |
| YMR238W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DFG5           | D      | 21       | 0.25  | 0.33  | 0.26  | 0.46 | 0.07  | -0.02 | 0.22  |
| YMR239C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RNT1           | D      | 20       | 0.11  | 0.08  | 0.04  | 0.06 | 0     | 0     | 0     |
| YMR240C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CUS1           | D      | 21       | 0.11  | 0.08  | 0.04  | 0.06 | 0     | 0     | -0.29 |
| YMR241W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | D      | 21       | 0.94  | 1.18  | 1.16  | 0.86 | 0.02  | 0     | -0.12 |
| YMR242C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RPL20A         | D      | 17       | 0.58  | 1.15  | 0.85  | 0.7  | 0.12  | 0.06  | -0.08 |
| YMR243C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ZRC1           | D      | 21       | 0.75  | 0.75  | 0.69  | 0.81 | 0.13  | -0.06 | 0.16  |
| YMR244C-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | D      | 20       | 0.11  | 0.16  | 0.22  | 0.27 | 0     | 0.14  | 0.26  |
| YMR244W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | D      | 21       | 0.11  | 0.08  | 0.04  | 0.06 | 0     | 0     | 0     |
| YMR245W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | D      | 20       | 0.11  | 0.08  | 0.04  | 0.06 | 0     | 0     | 0     |
| YMR246W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FAA4           | D      | 20       | 0.2   | 0.28  | 03    | 0.65 | 0.08  | 0.09  | 0.47  |
| YMR247C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | D      | 20       | 0.11  | 0.08  | 0.05  | 0.06 | 0.00  | 0     | 0     |
| YMR250W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | D      | 20       | 0.65  | 0.00  | 0.67  | 13   | Ő     | -0.03 | 0 29  |
| YMR251W-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HOR7           | D      | 20       | 10.08 | 12.08 | 12.88 | 7 72 | -0.02 | -0.05 | -0.01 |
| YMR252C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mon/           | D      | 20       | 0.2   | 0.22  | 0.32  | 0.34 | 0.02  | 0.03  | 0.01  |
| YMR252C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | D      | 20       | 0.11  | 0.22  | 0.52  | 0.34 | 0     | 0.05  | 0.11  |
| VMD255W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | D<br>D | 20       | 0.11  | 0.00  | 0.00  | 0.14 | 0     | 0     | 0.00  |
| VMP256C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | COX7           | D<br>D | 21       | 0.11  | 0.09  | 2.43  | 0.08 | 0 08  | 0.45  | 0.07  |
| I MIK250C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DET111         | D      | 21       | 0.54  | 0.58  | 2.45  | 0.07 | 0.08  | 0.45  | 0.07  |
| IMR257C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PEIIII         | D      | 20       | 0.11  | 0.08  | 0.08  | 0.07 | 0     | 0.26  | 0     |
| IMR238C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | D<br>D | 21       | 0.11  | 0.08  | 0.00  | 0.08 | 0     | -0.20 | 0     |
| YMR259C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>TTT</b> 1 1 | D      | 20       | 0.11  | 0.08  | 0.06  | 0.06 | 0 12  | 0 01  | 0     |
| YMR260C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | D      | 20       | 0.27  | 0.38  | 0.46  | 0.28 | 0.12  | 0.21  | -0.04 |
| YMR261C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TPS3           | D      | 21       | 0.13  | 0.21  | 0.17  | 0.21 | -0.02 | -0.1  | 0     |
| YMR262W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | D      | 20       | 0.11  | 0.08  | 0.04  | 0.06 | 0     | 0     | 0     |
| YMR263W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | D      | 20       | 0.11  | 0.08  | 0.11  | 0.11 | 0     | -0.14 | -0.16 |
| YMR264W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CUE1           | D      | 21       | 0.42  | 0.43  | 0.49  | 0.7  | 0.15  | 0.17  | 0.37  |
| YMR266W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | D      | 21       | 0.11  | 0.08  | 0.13  | 0.2  | 0     | -0.04 | 0.19  |
| YMR267W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PPA2           | D      | 20       | 0.11  | 0.1   | 0.09  | 0.07 | 0     | 0     | 0     |
| YMR269W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | D      | 20       | 0.11  | 0.08  | 0.05  | 0.05 | 0     | 0     | 0     |
| YMR271C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | URA10          | D      | 21       | 0.11  | 0.08  | 0.04  | 0.11 | 0     | 0     | 0.01  |
| YMR272C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SCS7           | D      | 20       | 0.72  | 0.84  | 0.84  | 0.76 | -0.11 | 0     | 0.03  |
| YMR274C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RCE1           | D      | 20       | 0.11  | 0.2   | 0.19  | 0.14 | 0     | -0.04 | -0.09 |
| YMR275C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BUL1           | D      | 21       | 0.11  | 0.08  | 0.05  | 0.04 | 0     | 0     | 0     |
| YMR276W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DSK2           | D      | 21       | 0.54  | 0.64  | 0.51  | 1.2  | 0.21  | 0.01  | 0.43  |
| YMR278W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | D      | 20       | 0.11  | 0.08  | 0.09  | 0.09 | 0     | 0     | 0     |
| YMR281W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | D      | 20       | 0.11  | 0.11  | 0.16  | 0.24 | 0     | 0.02  | 0.14  |
| YMR283C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RIT1           | D      | 21       | 0.11  | 0.09  | 0.08  | 0.06 | 0     | -0.17 | -0.34 |
| YMR286W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MRPL33         | D      | 20       | 0.29  | 0.42  | 0.29  | 0.43 | 0.11  | 0.02  | 0.16  |
| YMR289W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | D      | 20       | 0.11  | 0.08  | 0.05  | 0.13 | 0     | 0     | 0.05  |
| YMR290C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HAS1           | D      | 20       | 0.11  | 0.11  | 0.04  | 0.06 | 0     | 0     | 0     |
| YMR290W-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | D      | 20       | 0.11  | 0.08  | 0.04  | 0.07 | 0     | 0     | 0     |
| YMR291W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | D      | 20       | 0.18  | 0.16  | 0.34  | 0.39 | 0     | 0.15  | 0.13  |
| YMR292W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | D      | 20       | 0.48  | 0.86  | 0.68  | 0.6  | 0.23  | 0.14  | -0.04 |
| YMR293C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | D      | 21       | 0.11  | 0.1   | 0.14  | 0.08 | 0     | 0.02  | 0     |
| YMR294W-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | D      | 21       | 0.13  | 0.09  | 0.12  | 0.07 | 0     | -0.17 | 0     |
| YMR295C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | D      | 20       | 1.83  | 17    | 1 94  | 2.39 | 0.09  | 0.09  | 0.07  |
| YMR296C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LCB1           | D      | 20       | 0.41  | 0.53  | 0.3/  | 0.61 | 0.02  | -0.09 | 0.07  |
| YMR207W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PRC1           | л<br>П | 20       | 1.65  | 26    | 2 50  | 2 87 | 0.14  | 0.00  | 0.1   |
| $\frac{1}{2} \frac{1}{2} \frac{1}$ | INCI           | Л      | 20       | 0.5   | 2.0   | 2.59  | 0.01 | 0.14  | 0.15  | 0.14  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | ע<br>ח | ∠1<br>20 | 0.5   | 0.05  | 0.05  | 0.91 | 0.15  | 0.02  | 0.14  |
| VMD200C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | ע<br>ח | 20<br>20 | 0.11  | 0.00  | 0.04  | 0.03 | 0.06  | 0     | 0     |
| I WIKSUUU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ADE4           | U<br>D | 20       | 0.11  | 0.12  | 0.1   | 0.11 | 0.00  | 0     | 0     |
| IMKSUIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AIMI           | υ      | 20       | 0.11  | 0.08  | 0.08  | 0.07 | U     | 0     | U     |

| YMR302C             | PRP12   | D      | 20              | 0.11 | 0.1   | 0.11  | 0.17 | 0     | -0.09 | 0.1   |
|---------------------|---------|--------|-----------------|------|-------|-------|------|-------|-------|-------|
| YMR303C             | ADH2    | D      | 20              | 0.15 | 0.27  | 0.34  | 0.36 | 0.02  | 0.18  | 0.12  |
| YMR304C-A           |         | D      | 20              | 0.11 | 0.08  | 0.15  | 0.07 | 0     | 0     | 0     |
| YMR304W             |         | D      | 21              | 0.11 | 0.08  | 0.06  | 0.04 | 0     | 0     | 0     |
| YMR305C             |         | D      | 20              | 0.75 | 1.37  | 1.02  | 0.95 | 0.1   | 0.05  | 0.05  |
| YMR308C             | PSE1    | D      | 20              | 0.29 | 0.24  | 0.35  | 0.6  | 0.08  | 0.09  | 0.27  |
| YMR309C             | NIP1    | D      | 21              | 0.11 | 0.08  | 0.07  | 0.08 | 0     | 0     | 0     |
| YMR310C             |         | D      | 20              | 0.12 | 0.21  | 0.3   | 0.29 | 0.13  | 0.14  | 0.24  |
| YMR311C             | GLC8    | D      | 20              | 0.11 | 0.09  | 0.11  | 0.15 | 0     | 0     | 0.16  |
| YMR312W             |         | D      | 20              | 0.13 | 0.16  | 0.08  | 0.09 | 0     | 0     | 0     |
| YMR314W             | PRE5    | D      | 20              | 0.31 | 0.31  | 0.43  | 0.6  | 0.02  | 0.1   | 0.18  |
| YMR315W             |         | D      | 20              | 0.82 | 0.57  | 1.35  | 1.33 | 0     | 0.28  | 0.26  |
| YMR316C-A           |         | D      | 20              | 0.11 | 0.08  | 0.05  | 0.06 | 0     | 0     | 0     |
| YMR316W             |         | D      | 21              | 0.11 | 0.08  | 0.16  | 0.15 | 0     | 0     | 0.04  |
| YMR318C             |         | D      | 20              | 0.37 | 0.56  | 1.89  | 0.93 | 0.11  | 0.6   | 0.2   |
| YMR319C             | FET4    | D      | 20              | 0.15 | 0.14  | 0.05  | 0.09 | 0     | 0     | -0.18 |
| YMR321C             |         | D      | 21              | 0.46 | 0.63  | 0.7   | 0.33 | 0.2   | 0.2   | -0.13 |
| YMR322C             |         | D      | 20              | 0.11 | 0.08  | 0.05  | 0.07 | 0     | 0     | 0     |
| YMR323W             |         | D      | 20              | 0.11 | 0.08  | 0.04  | 0.06 | 0     | 0     | 0     |
| YMR325W             |         | D      | 20              | 0.11 | 0.12  | 0.04  | 0.09 | 0     | 0     | 0     |
| YNL001W             | DOM34   | D      | 20              | 0.11 | 0.08  | 0.04  | 0.05 | 0     | 0     | 0     |
| YNL002C             | RLP7    | D      | 20              | 0.11 | 0.12  | 0.1   | 0.09 | 0.05  | 0     | 0     |
| YNL003C             | PET8    | D      | 20              | 0.22 | 0.18  | 0.32  | 0.35 | 0.03  | -0.02 | 0.06  |
| YNL004W             | HRB1    | D      | 21              | 0.11 | 0.09  | 0.05  | 0.06 | 0     | 0     | 0     |
| YNL005C             | MRP7    | D      | 21              | 0.11 | 0.09  | 0.11  | 0.1  | 0     | 0     | 0     |
| YNL006W             | LST8    | D      | 21              | 0.22 | 0.02  | 0.11  | 0.14 | 0     | 0.01  | 0.04  |
| YNL007C             | SIS1    | D      | $\frac{21}{20}$ | 1.29 | 1.28  | 1.37  | 1.83 | -0.06 | -0.05 | 0.09  |
| YNL008C             | 5151    | D      | 20              | 0.11 | 0.18  | 0.16  | 0.18 | 0.03  | 0.03  | 0.02  |
| YNL009W             | IDP3    | D      | 20              | 0.11 | 0.10  | 0.10  | 0.09 | 0.05  | 0.05  | 0.12  |
| YNL010W             | 1015    | D      | 20              | 0.23 | 0.00  | 0.56  | 0.09 | 0.12  | 0 26  | 0.12  |
| VNL011C             |         | D      | 20              | 0.23 | 0.08  | 0.07  | 0.45 | 0.12  | 0.20  | 0.12  |
| VNL013C             |         | D      | 20              | 0.11 | 0.00  | 0.07  | 0.00 | 0     | 0     | 0     |
| YNL015W             | PRI2    | D      | 20              | 0.11 | 0.00  | 3.03  | 2.58 | -0.09 | 0 59  | 0 38  |
| VNI 016W            |         | D      | 20              | 0.75 | 0.47  | 0.22  | 0.25 | -0.07 | 0.39  | 0.05  |
| VNI 021W            |         | D      | 20              | 0.14 | 0.17  | 0.22  | 0.25 | 0     | 0.10  | 0.05  |
| VNL 022C            | IIDAI   | D<br>D | 20              | 0.11 | 0.08  | 0.05  | 0.00 | 0     | 0     | 0 00  |
| VNL 023C            |         | D      | $\frac{21}{20}$ | 0.11 | 0.08  | 0.00  | 0.15 | 0     | 0     | 0.09  |
| VNL 025C            | SSN8    | D      | 20              | 0.11 | 0.08  | 0.07  | 0.00 | 0     | 0     | 0     |
| VNL 026W            | 01100   | D<br>D | 20              | 0.11 | 0.00  | 0.04  | 0.04 | 0     | 0     | 0     |
| VNL 020C            | KTD2    | D<br>D | 20              | 0.11 | 0.08  | 0.07  | 0.07 | 0     | 0     | 0 02  |
| VNI 030W            | HHE2    | D<br>D | $\frac{21}{20}$ | 2.55 | 1.00  | 3 38  | 1.03 | 0.04  | 0.1   | 0.02  |
| VNL 031C            |         | D<br>D | 20              | 5.50 | 7 1 1 | 11.01 | 5 71 | 0.04  | 0.1   | -0.39 |
| VNI 032W            | SIW14   | D<br>D | 20              | 0.11 | 0.08  | 0.11  | 0.07 | 0.01  | 0.15  | 0     |
| VNL 035C            | 51 W 14 | D<br>D | $\frac{21}{20}$ | 0.11 | 0.08  | 0.11  | 0.07 | 0     | -0.04 | 0     |
| VNL 026W            | NCE102  | D      | 20              | 0.11 | 0.08  | 0.05  | 0.04 | 0     | 0.02  | 0     |
| VNL 027C            | IDH1    | D      | 20              | 0.11 | 0.08  | 0.12  | 0.05 | 0.00  | 0.02  | 0.17  |
| INLUS/C<br>VNL 029W | IDHI    |        | 21              | 0.50 | 0.21  | 0.78  | 0.65 | -0.09 | 0.10  | 0.17  |
| INLUSOW<br>VNL 020W | TECS    | D      | 21              | 0.11 | 0.08  | 0.07  | 0.00 | 0     | 0     | 0     |
| INLUS9W             | IFCS    | D      | 20              | 0.11 | 0.08  | 0.04  | 0.08 | 0     | 0     | 0.05  |
| INLU4UW             |         | D<br>D | 21              | 0.11 | 0.1   | 0.04  | 0.12 | 0     | 0     | 0.05  |
| INLU42W             |         | D<br>D | 20              | 0.11 | 0.08  | 0.04  | 0.11 | 0     | 0     | 0.01  |
| I INLU43U           |         | D<br>D | 20<br>20        | 0.12 | 0.15  | 0.09  | 0.11 | 0 02  | 0     | -U.21 |
| I INLU44 W          |         | D<br>D | 20              | 2.07 | 1.02  | 2.68  | 1.55 | -0.03 | 0.1   | -0.09 |
| INLU45W             |         | D<br>D | 20              | 0.11 | 0.16  | 0.29  | 0.41 | U     | -0.11 | 0.13  |
| INLU46W             | AT C11  | D<br>D | 21              | 0.51 | 0.56  | 0.65  | 0.37 | 0.08  | 0.02  | -0.13 |
| 1 INLU48 W          | ALGII   | υ      | 20              | 0.11 | 0.08  | 0.11  | 0.11 | 0     | 0     | 0     |

| YNL050C             |               | D      | 20       | 0.11 | 0.1  | 0.08         | 0.05 | -0.1  | -0.19 | 0     |
|---------------------|---------------|--------|----------|------|------|--------------|------|-------|-------|-------|
| YNL051W             |               | D      | 21       | 0.11 | 0.08 | 0.05         | 0.05 | 0     | 0     | 0     |
| YNL052W             | COX5A         | D      | 20       | 1.09 | 0.9  | 2.69         | 1.08 | 0.04  | 0.47  | -0.03 |
| YNL053W             | MSG5          | D      | 20       | 0.11 | 0.08 | 0.15         | 0.17 | 0     | 0.05  | 0.16  |
| YNL054W             | VAC7          | D      | 21       | 0.11 | 0.08 | 0.05         | 0.04 | 0     | -0.37 | 0     |
| YNL055C             | POR1          | D      | 21       | 6.5  | 5.85 | 8.2          | 8.19 | 0.02  | 0.24  | 0.18  |
| YNL056W             |               | D      | 21       | 0.14 | 0.21 | 0.15         | 0.14 | -0.03 | -0.05 | 0     |
| YNL058C             |               | D      | 20       | 0.11 | 0.2  | 0.12         | 0.17 | 0.03  | 0     | 0.1   |
| YNL061W             | NOP2          | D      | 20       | 0.11 | 0.1  | 0.05         | 0.06 | 0     | 0     | 0     |
| YNL062C             | GCD10         | D      | 20       | 0.11 | 0.11 | 0.03         | 0.00 | 0.01  | -0    | 0     |
| VNL 063W            | GCD10         | D      | 20       | 0.11 | 0.08 | 0.07         | 0.05 | 0.01  | Ő     | 0.06  |
| VNL 064C            | VDI1          | D      | 20       | 0.11 | 0.00 | 0.07         | 1.54 | 016   | 0.17  | 0.00  |
| VNI 065W            | 1031          | D      | 20       | 0.4) | 0.72 | 0.00         | 0.00 | 0.10  | 0.17  | 0.54  |
| VNI 066W            | SI INI/       | D      | 20       | 0.32 | 0.00 | 0.04         | 0.07 | 0.11  | 0.07  | 0.26  |
| VNL 067W            |               | ם<br>ח | 20       | 1.48 | 0.42 | 0.55         | 1.03 | 0.11  | 0.07  | 0.20  |
| VNL 060C            | DDI 16D       | D<br>D | 20       | 1.40 | 7.52 | 2.52         | 1.95 | 0.10  | 0.27  | 0.22  |
| VNL 070W            | TOM7          | D      | 20       | 0.25 | 1.52 | 5.40<br>0.56 | 4.00 | 0.07  | -0.11 | -0.12 |
| INLU/UW             |               | D<br>D | 20       | 0.55 | 0.34 | 0.30         | 0.94 | 0.08  | 0.05  | 0.15  |
| YNL071W             | LAII<br>DNU25 | D      | 21       | 0.8  | 0.81 | 0.71         | 1.04 | 0     | -0.07 | 0.05  |
| YNL072W             | KNH35         | D      | 20       | 0.11 | 0.08 | 0.06         | 0.04 | 0     | 0     | 0     |
| YNL073W             | MSKI          | D      | 20       | 0.11 | 0.08 | 0.15         | 0.08 | 0     | 0.15  | 0     |
| YNL074C             | YMKI          | D      | 20       | 0.11 | 0.08 | 0.15         | 0.12 | 0     | 0.1   | -0.04 |
| YNL075W             |               | D      | 20       | 0.11 | 0.16 | 0.1          | 0.08 | 0.13  | 0     | 0     |
| YNL076W             | MKS1          | D      | 20       | 0.11 | 0.08 | 0.06         | 0.04 | 0     | 0     | 0     |
| YNL078W             |               | D      | 20       | 0.2  | 0.29 | 0.15         | 0.29 | 0.08  | 0     | 0.14  |
| YNL079C             | TPM1          | D      | 21       | 0.19 | 0.29 | 0.45         | 0.44 | 0.03  | 0.2   | 0.18  |
| YNL080C             |               | D      | 20       | 0.13 | 0.22 | 0.24         | 0.33 | 0     | 0.02  | 0.23  |
| YNL081C             |               | D      | 21       | 0.13 | 0.11 | 0.21         | 0.19 | -0.09 | 0.07  | 0.14  |
| YNL084C             | END3          | D      | 21       | 0.11 | 0.09 | 0.07         | 0.08 | 0     | -0.31 | 0     |
| YNL085W             | MKT1          | D      | 21       | 0.11 | 0.08 | 0.09         | 0.11 | 0     | 0     | 0     |
| YNL086W             |               | D      | 21       | 0.13 | 0.18 | 0.21         | 0.22 | 0.05  | 0.11  | 0.07  |
| YNL087W             |               | D      | 20       | 0.11 | 0.08 | 0.06         | 0.08 | 0     | -0.27 | -0.23 |
| YNL088W             | TOP2          | D      | 21       | 0.11 | 0.08 | 0.05         | 0.04 | 0     | 0     | 0     |
| YNL090W             | RHO2          | D      | 20       | 0.11 | 0.16 | 0.17         | 0.14 | 0     | 0.1   | 0     |
| YNL091W             |               | D      | 20       | 0.11 | 0.08 | 0.07         | 0.1  | 0     | 0     | 0     |
| YNL092W             |               | D      | 20       | 0.11 | 0.08 | 0.04         | 0.14 | 0     | 0     | 0     |
| YNL093W             | YPT53         | D      | 20       | 0.11 | 0.08 | 0.04         | 0.05 | 0     | 0     | 0     |
| YNL094W             |               | D      | 20       | 0.11 | 0.09 | 0.09         | 0.16 | 0     | 0     | 0.12  |
| YNL096C             | RPS7B         | D      | 42       | 0.82 | 1.58 | 1.07         | 1.4  | 0.16  | 0.02  | 0.14  |
| YNL097C             | PHO23         | D      | 20       | 0.11 | 0.12 | 0.06         | 0.09 | 0     | 0     | 0     |
| YNL098C             | RAS2          | D      | 20       | 0.16 | 0.15 | 0.16         | 0.21 | -0.07 | -0.04 | 0.14  |
| YNL099C             |               | D      | 21       | 0.11 | 0.24 | 0.17         | 0.22 | 0.13  | -0.03 | 0.09  |
| YNL100W             |               | D      | 20       | 0.19 | 0.16 | 0.35         | 0.24 | 0.02  | 0.22  | 0.02  |
| YNL101W             |               | D      | 21       | 0.11 | 0.17 | 0.13         | 0.19 | 0.09  | 0.1   | 0.22  |
| YNL103W             | MET4          | D      | 20       | 0.11 | 0.08 | 0.06         | 0.12 | 0     | 0     | 0     |
| YNL 104C            | I FU4         | D      | 20       | 12   | 0.85 | 1.98         | 1.85 | 0.02  | 0 35  | 0 22  |
| YNI 107W            | LL04          | D      | 20       | 0.11 | 0.05 | 0.07         | 0.05 | 0.02  | 0.55  | 0.22  |
| VNI 108C            |               | D      | 20       | 0.11 | 0.00 | 0.07         | 0.03 | 0.02  | 0.11  | 0.05  |
| VNL 110C            |               | ם<br>ח | 20       | 0.10 | 0.10 | 0.14         | 0.23 | 0.02  | -0.11 | 0.05  |
| VNL 111C            | CVP5          | D<br>D | 20       | 0.11 | 0.09 | 0.17         | 0.08 | 0     | 01    | 0.12  |
| VNI 112W            |               | ע<br>ח | 20<br>42 | 0.11 | 0.19 | 0.17         | 0.20 | 0 27  | 0.1   | 0.12  |
| INLIIZW<br>VNI 112W |               | ע<br>ת | 42       | 0.10 | 0.33 | 0.44         | 0.15 | 0.27  | 0.33  | -0.15 |
| INLIISW             | KPU19         | U<br>D | 20       | 0.13 | 0.15 | 0.2          | 0.10 | 0     | 0.00  | 0.09  |
| INLII4C             |               | D<br>D | 21       | 0.11 | 0.08 | 0.06         | 0.05 | 0     | 0     | U     |
| INLII5C             |               | D      | 20       | 0.11 | 0.08 | 0.05         | 0.1  | 0     | 0     | 0     |
| YNLII6W             | NG G1         | D      | 20       | 0.11 | 0.09 | 0.08         | 0.07 | 0     | 0     | U     |
| YNLII/W             | MLSI          | D      | 21       | 0.11 | 0.08 | 0.04         | 0.05 | 0     | 0     | -0.36 |

| YNL118C             | PSU1         | D      | 21              | 0.11 | 0.08 | 0.06 | 0.07  | 0     | 0            | -0.21 |
|---------------------|--------------|--------|-----------------|------|------|------|-------|-------|--------------|-------|
| YNL121C             | <b>TOM70</b> | D      | 20              | 0.11 | 0.1  | 0.07 | 0.09  | 0     | 0            | 0     |
| YNL122C             |              | D      | 20              | 0.11 | 0.08 | 0.05 | 0.06  | 0     | 0            | 0     |
| YNL123W             |              | D      | 21              | 0.11 | 0.08 | 0.08 | 0.1   | 0     | 0            | 0     |
| YNL124W             |              | D      | 21              | 0.11 | 0.13 | 0.18 | 0.19  | 0     | -0.07        | 0.01  |
| YNL125C             | ESBP6        | D      | 21              | 0.14 | 0.23 | 0.3  | 0.35  | 0     | 0.17         | 0.29  |
| YNL129W             |              | D      | 21              | 0.11 | 0.08 | 0.07 | 0.07  | 0     | -0.21        | 0     |
| YNL130C             | CPT1         | D      | 20              | 0.82 | 0.79 | 1.04 | 1.03  | 0.03  | 0.13         | 0.11  |
| YNL131W             | TOM22        | D      | 21              | 0.46 | 0.59 | 0.71 | 0.75  | 0.08  | 0.08         | 0.12  |
| YNL132W             |              | D      | 20              | 0.11 | 0.11 | 0.08 | 0.08  | 0     | 0            | 0     |
| YNL133C             |              | D      | 20              | 0.11 | 0.08 | 0.05 | 0.05  | 0     | 0            | 0     |
| YNL134C             |              | D      | 20              | 2.28 | 2.07 | 3.28 | 2.58  | 0     | 0.17         | 0.12  |
| YNL135C             | FPR1         | D      | 20              | 4.35 | 9.95 | 7.86 | 6.05  | 0.13  | 0.07         | 0     |
| YNL136W             |              | D      | 20              | 0.11 | 0.08 | 0.04 | 0.06  | 0     | 0            | Ő     |
| YNL137C             | NAM9         | D      | 20              | 0.11 | 0.08 | 0.07 | 0.00  | 0     | 0.03         | 0     |
| YNL138W             | SRV2         | D      | 21              | 0.39 | 0.61 | 0.51 | 0.45  | 015   | 0.03         | 016   |
| YNI 141W            | AAH1         | D      | 21              | 0.11 | 0.01 | 0.14 | 0.09  | 0.15  | 0.03         | -0.22 |
| YNI 142W            | MFP2         | D      | 21              | 0.13 | 0.10 | 0.14 | 0.02  | 0.10  | -0.17        | -0.1  |
| YNL144C             | MILI 2       | D      | 20              | 0.13 | 0.12 | 0.12 | 0.13  | 0.05  | 0.17<br>0.04 | 0.1   |
| VNI 145W            | MEA2         | D      | 20              | 7 14 | 0.00 | 635  | 10.07 | -16   | 0.04         | 0.14  |
| VNI 147W            | WII A2       | D<br>D | $\frac{21}{20}$ | 0.11 | 0.07 | 0.55 | 0.12  | -1.0  | 0.04         | 0.14  |
| VNI 140C            |              | D      | 20              | 0.11 | 0.13 | 0.10 | 0.12  | 01    | 0.08         | 0     |
| VNI 150W            |              | D<br>D | 20              | 0.11 | 0.14 | 0.18 | 0.12  | 0.1   | 0.08         | _0 22 |
| VNL 151C            | RPC31        | D<br>D | 20              | 0.11 | 0.00 | 0.05 | 0.08  | 0.03  | 0            | -0.22 |
| VNL 152C            | DED4         | D<br>D | 21              | 0.11 | 0.11 | 0.00 | 0.11  | -0.03 | 0.07         | 0.07  |
| VNL 154C            | VCK2         | ם<br>ח | 21              | 0.11 | 0.10 | 0.14 | 0.15  | -0.03 | 0.07         | -0.07 |
| VNI 155W            | ICK2         | ם<br>ח | 20              | 0.15 | 0.5  | 0.10 | 0.10  | 0.02  | 0            | 0.00  |
| VNL 156C            |              | D<br>D | 20              | 0.11 | 0.00 | 0.00 | 0.15  | 0.04  | 02           | 0.00  |
| VNI 157W            |              | D<br>D | 20              | 0.44 | 0.45 | 0.55 | 0.09  | 0.04  | 0.2          | 0.32  |
| VNI 159W            |              | ם<br>ח | 21              | 0.57 | 0.45 | 0.48 | 0.78  | 0.01  | 0.2          | 0.27  |
| VNL 150C            |              | D      | 21              | 0.11 | 0.11 | 0.09 | 0.11  | 0     | 0.22         | 0     |
| INLIS9C             | VCD1         | D      | 21              | 0.11 | 0.09 | 0.1  | 0.19  | 0.05  | -0.22        | 0 27  |
| VNL 162W            |              | D      | 21<br>44        | 2.37 | 3.77 | 4.97 | 1.09  | 0.05  | 0.09         | 0.27  |
| INLIUZW<br>VNL 162C | KFL42A       | D      | 44<br>20        | 1.22 | 2.11 | 1.22 | 1.51  | 0.09  | -0.11        | -0.07 |
| INLIGSU<br>VNL 165W |              | D      | 20              | 0.11 | 0.00 | 0.04 | 0.07  | 0     | 0            | 0     |
| VNL 1660            |              | D<br>D | 21              | 0.11 | 0.09 | 0.08 | 0.08  | 0     | 0            | 0     |
| INLIGOC             | SVO1         | D      | 20              | 0.11 | 0.08 | 0.06 | 0.05  | 0     | 0            | 0     |
| INLIO/C             | SKUI         | D      | 20              | 0.11 | 0.08 | 0.05 | 0.05  | 0.06  | 0.00         | 0 19  |
| INLIGOC             |              | D<br>D | 20              | 0.21 | 0.23 | 0.4  | 0.51  | 0.00  | 0.09         | 0.18  |
| INLIO9C             | PSDI         | D      | 20              | 0.41 | 0.45 | 0.57 | 0.40  | -0    | 0.15         | -0.07 |
| YNL170W             | MDC1         | D      | 21              | 0.11 | 0.08 | 0.00 | 0.00  | 0     | 0            | 0     |
| INL175C             | MDGI         | D<br>D | 20              | 0.11 | 0.08 | 0.12 | 0.09  | 0     | 0            | 0     |
| YNL174W             |              | D      | 20              | 0.11 | 0.08 | 0.00 | 0.04  | 0     | 0            | 0     |
| YNL175C             |              | D      | 20              | 0.11 | 0.1  | 0.04 | 0.04  | 0     | 0            | 0     |
| YNL176C             |              | D      | 20              | 0.11 | 0.08 | 0.06 | 0.04  | 0     | 0            | 0     |
| YNLI//C             | DDC2         | D      | 21              | 0.11 | 0.08 | 0.07 | 0.04  | 0     | 0            | 0     |
| YNL1/8W             | RPS3         | D      | 20              | 7.05 | /.6/ | 6.58 | 6.59  | 0.07  | 0.05         | -0.12 |
| YNL180C             |              | D      | 20              | 0.19 | 0.25 | 0.25 | 0.23  | 0.01  | 0.01         | 0     |
| YNLI8IW             | NIDD 1       | D      | 20              | 0.11 | 0.08 | 0.09 | 0.11  | 0     | 0            | 0     |
| YNL183C             | NPRI         | D      | 20              | 0.11 | 0.09 | 0.07 | 0.05  | 0     | 0            | 0     |
| YNLI84C             |              | D      | 20              | 0.12 | 0.14 | 0.09 | 0.11  | -0.03 | 0            | -0.1  |
| YNL185C             | Domi         | D      | 20              | 0.18 | 0.17 | 0.17 | 0.33  | 0.02  | 0            | 0.05  |
| YNLI86W             | DOT4         | D      | 20              | 0.11 | 0.08 | 0.06 | 0.13  | 0     | 0            | 0     |
| YNL189W             | SRP1         | D      | 20              | 0.14 | 0.23 | 0.23 | 0.28  | -0.01 | 0.13         | 0.11  |
| YNL190W             |              | D      | 20              | 1.14 | 1.61 | 1.95 | 2.99  | 0.13  | 0.24         | 0.31  |
| YNL191W             |              | D      | 21              | 0.11 | 0.08 | 0.04 | 0.15  | 0     | 0            | 0.12  |

| YNL192W  | CHS1           | D      | 20 | 0.13 | 0.14  | 0.25 | 0.31 | 0     | 0.18  | 0.27  |
|----------|----------------|--------|----|------|-------|------|------|-------|-------|-------|
| YNL193W  |                | D      | 20 | 0.11 | 0.13  | 0.04 | 0.06 | 0     | 0     | 0     |
| YNL194C  |                | D      | 21 | 0.11 | 0.08  | 0.04 | 0.12 | 0     | 0     | -0.02 |
| YNL195C  |                | D      | 20 | 0.11 | 0.08  | 0.05 | 0.16 | 0     | 0     | 0.08  |
| YNL199C  | GCR2           | D      | 20 | 0.11 | 0.11  | 0.04 | 0.08 | 0     | 0     | -0.35 |
| YNL200C  |                | D      | 20 | 0.31 | 0.29  | 0.36 | 0.48 | 0     | -0.13 | 0.22  |
| YNL201C  |                | D      | 20 | 0.11 | 0.08  | 0.04 | 0.07 | 0     | 0     | -0.18 |
| YNL202W  | SPS19          | D      | 20 | 0.11 | 0.08  | 0.26 | 0.14 | 0     | 0.17  | 0     |
| YNL206C  |                | D      | 20 | 0.11 | 0.08  | 0.05 | 0.09 | 0     | 0     | 0     |
| YNL208W  |                | D      | 20 | 2.81 | 2.76  | 5.52 | 7    | 0.09  | 0.26  | 0.3   |
| YNL209W  | SSB2           | D      | 20 | 2.31 | 3 1 3 | 2.16 | 2.51 | 0.17  | 0     | -0.11 |
| YNL211C  | 5552           | D      | 20 | 011  | 0.08  | 0.09 | 0.09 | 0     | 0     | 0     |
| YNL213C  |                | D      | 21 | 011  | 0.08  | 0.05 | 0.06 | 0     | Ő     | Ő     |
| YNL216W  | RAP1           | D      | 20 | 0.11 | 0.09  | 0.06 | 0.11 | 0     | 0     | Ő     |
| YNL217W  |                | D      | 20 | 0.11 | 0.09  | 0.00 | 0.11 | 0     | 0 09  | Ő     |
| YNL219C  | ALG9           | D      | 20 | 0.13 | 0.07  | 0.15 | 0.15 | -0.01 | -0.07 | Ő     |
| YNL 220W | ADE12          | D      | 20 | 0.13 | 0.22  | 0.15 | 0.13 | 0.07  | 0.03  | 0 14  |
| YNL 221C | POP1           | D      | 20 | 0.22 | 0.22  | 0.2  | 0.08 | 0.07  | 0.05  | 0.14  |
| YNI 222W | SSU72          | D      | 20 | 0.11 | 0.00  | 0.04 | 0.00 | 0     | 0     | 0     |
| VNI 222W | 55072          | Л      | 20 | 0.11 | 0.00  | 0.00 | 0.00 | 0     | 0     | 0     |
| VNI 229C | LIRE?          | D<br>D | 20 | 0.11 | 0.00  | 0.00 | 0.04 | 0.03  | 0.01  | 0.02  |
| VNL 230C | UKL2           | D<br>D | 21 | 0.11 | 0.11  | 0.15 | 0.11 | 0.05  | 0.01  | 0.02  |
| VNL 231C |                | D<br>D | 20 | 0.11 | 0.00  | 0.04 | 0.07 | 0.06  | 0.13  | 0.03  |
| VNI 232W |                | D<br>D | 20 | 0.12 | 0.16  | 0.28 | 0.10 | 0.00  | 0.15  | 0.05  |
| VNL 224W |                | D      | 20 | 0.11 | 0.10  | 0.1  | 0.15 | 0.15  | 0     | -0.05 |
| INL254W  | CIN14          | D      | 20 | 0.11 | 0.08  | 0.04 | 0.07 | 0     | 0     | 0     |
| INL250W  | SIIN4<br>VTD1  | D      | 21 | 0.11 | 0.08  | 0.00 | 0.09 | 0     | 0.27  | 0     |
| INL25/W  |                |        | 20 | 0.11 | 0.08  | 0.09 | 0.14 | 0     | -0.27 | 0 07  |
| INL238W  | KEAZ           | D      | 21 | 0.11 | 0.11  | 0.00 | 0.15 | 0     | 0 11  | 0.07  |
| YNL239W  | LAP3           | D      | 20 | 0.20 | 0.25  | 0.88 | 0.41 | 0.00  | 0.41  | 0.19  |
| YNL240C  |                | D      | 21 | 0.12 | 0.13  | 0.15 | 0.22 | 0.01  | 0.11  | 0.21  |
| YNL24IC  | ZWFI           | D      | 20 | 0.27 | 0.30  | 0.34 | 0.62 | 0.15  | 0.15  | 0.33  |
| YNL243W  | SLA2           | D      | 21 | 0.13 | 0.10  | 0.18 | 0.15 | 0.04  | -0.01 | 0.07  |
| YNL244C  | SUIT           | D      | 20 | 0.88 | 0.81  | 1.14 | 1.12 | 0.11  | 0.21  | 0.18  |
| YNL245C  |                | D      | 20 | 0.11 | 0.08  | 0.1  | 0.12 | 0     | 0     | 0     |
| YNL246W  |                | D      | 20 | 0.18 | 0.17  | 0.13 | 0.15 | 0     | -0.18 | -0.04 |
| YNL247W  | <b>DD</b> 4 40 | D      | 20 | 0.11 | 0.17  | 0.17 | 0.15 | 0.07  | 0.08  | 0.02  |
| YNL248C  | RPA49          | D      | 20 | 0.11 | 0.17  | 0.1  | 0.09 | 0.12  | 0     | 0     |
| YNL249C  | MPA43          | D      | 20 | 0.11 | 0.08  | 0.1  | 0.11 | 0     | 0     | -0.1  |
| YNL251C  | NRDI           | D      | 20 | 0.11 | 0.19  | 0.07 | 0.08 | 0.05  | 0     | 0     |
| YNL252C  |                | D      | 20 | 0.11 | 0.12  | 0.11 | 0.11 | 0     | 0     | 0     |
| YNL255C  |                | D      | 21 | 0.25 | 0.51  | 0.4  | 0.37 | 0.22  | 0.17  | 0.24  |
| YNL256W  |                | D      | 20 | 0.11 | 0.08  | 0.05 | 0.05 | 0     | 0     | 0     |
| YNL259C  | ATXI           | D      | 21 | 0.22 | 0.2   | 0.35 | 0.31 | 0     | 0.32  | 0.17  |
| YNL261W  | ORC5           | D      | 21 | 0.11 | 0.1   | 0.06 | 0.1  | 0     | 0     | 0     |
| YNL262W  | POL2           | D      | 21 | 0.11 | 0.08  | 0.05 | 0.05 | 0     | 0     | 0     |
| YNL263C  | YIF1           | D      | 21 | 0.49 | 0.75  | 0.44 | 0.67 | 0.07  | -0.23 | -0.01 |
| YNL264C  |                | D      | 21 | 0.11 | 0.09  | 0.09 | 0.17 | 0     | -0.18 | 0.07  |
| YNL265C  |                | D      | 20 | 0.11 | 0.09  | 0.04 | 0.07 | 0     | 0     | 0     |
| YNL268W  | LYP1           | D      | 21 | 0.96 | 1.53  | 0.89 | 0.89 | -0.02 | -0.05 | -0.13 |
| YNL271C  | BNI1           | D      | 20 | 0.11 | 0.08  | 0.05 | 0.14 | 0     | 0     | -0.04 |
| YNL274C  |                | D      | 21 | 0.19 | 0.32  | 0.64 | 0.75 | 0     | 0.07  | 0.39  |
| YNL277W  | MET2           | D      | 20 | 0.11 | 0.08  | 0.04 | 0.06 | 0     | 0     | 0     |
| YNL278W  |                | D      | 21 | 0.11 | 0.08  | 0.1  | 0.11 | 0     | 0     | 0     |
| YNL280C  | ERG24          | D      | 21 | 0.26 | 0.26  | 0.29 | 0.34 | -0.05 | -0.04 | 0.12  |
| YNL281W  |                | D      | 21 | 0.16 | 0.24  | 0.35 | 0.69 | 0.17  | 0.19  | 0.51  |

| YNL283C             | WSC2    | D      | 21 | 0.23 | 0.35 | 0.29 | 0.29 | 0.1   | -0.02 | 0.06  |
|---------------------|---------|--------|----|------|------|------|------|-------|-------|-------|
| YNL284C             | MRPL10  | D      | 21 | 0.18 | 0.18 | 0.25 | 0.38 | 0     | 0.1   | 0.03  |
| YNL287W             | SEC21   | D      | 20 | 0.17 | 0.19 | 0.2  | 0.21 | -0.08 | -0.02 | 0.02  |
| YNL288W             |         | D      | 20 | 0.23 | 0.3  | 0.22 | 0.32 | 0.05  | 0     | 0.09  |
| YNL289W             | PCL1    | D      | 21 | 0.11 | 0.08 | 0.1  | 0.04 | 0     | 0     | 0     |
| YNL290W             | RFC3    | D      | 20 | 0.11 | 0.08 | 0.04 | 0.11 | 0     | 0     | 0     |
| YNL291C             | MID1    | D      | 21 | 0.11 | 0.18 | 0.13 | 0.11 | 0.02  | 0     | 0.02  |
| YNL292W             | PUS4    | D      | 20 | 0.11 | 0.08 | 0.09 | 0.07 | 0     | 0     | 0     |
| YNL293W             | MSB3    | D      | 20 | 0.11 | 0.08 | 0.05 | 0.05 | 0     | 0     | 0     |
| YNL294C             | 11620   | D      | 21 | 0.11 | 0.08 | 0.09 | 0.2  | 0     | 0     | 0.01  |
| YNL300W             |         | D      | 21 | 33   | 1 49 | 1.98 | 1 34 | 0.06  | 0.08  | -0.17 |
| YNL301C             | RPL18B  | D      | 56 | 1.8  | 1.12 | 1.70 | 1.51 | 0.00  | 0.00  | -0.01 |
| YNL302C             | RPS19B  | D      | 40 | 2.55 | 2.95 | 2.83 | 2.03 | 0.04  | 0.03  | -0.11 |
| YNL303W             | iu si)b | D      | 20 | 0.11 | 0.1  | 0.06 | 0.06 | 0.01  | 0.00  | 0     |
| YNI 304W            |         | D      | 20 | 0.11 | 0.08 | 0.00 | 0.00 | 0     | 0     | 0     |
| YNL305C             |         | D      | 20 | 1 14 | 0.57 | 0.01 | 1 72 | -0.2  | -0.17 | 0 14  |
| VNL 306W            |         | D      | 20 | 0.21 | 0.25 | 0.0  | 0.29 | -0.05 | 0.17  | 0.03  |
| VNL 307C            | MCK1    | D<br>D | 20 | 0.21 | 0.25 | 0.30 | 0.29 | -0.05 | 0.04  | -0.02 |
| VNL 308C            | MCKI    | D<br>D | 20 | 0.14 | 0.28 | 0.20 | 0.15 | 0.05  | 0.04  | -0.02 |
| VNL 310C            |         | D<br>D | 20 | 0.11 | 0.08 | 0.09 | 0.1  | 0     | 0.10  | 0     |
| VNI 212W            | DEA2    | ם<br>ח | 20 | 0.11 | 0.08 | 0.07 | 0.00 | 0.15  | -0.19 | 0.03  |
| VNL 212C            | KI'A2   | D<br>D | 20 | 0.28 | 0.05 | 0.51 | 0.41 | 0.15  | 0.1   | 0.05  |
| VNI 214W            | DAT 92  | D<br>D | 20 | 0.11 | 0.08 | 0.05 | 0.07 | 0     | 0     | 0     |
| INL314W             | DAL62   | D      | 20 | 0.11 | 0.08 | 0.05 | 0.05 | 0     | 0     | 0 08  |
| INLSISC<br>VNL 216C |         | D      | 21 | 0.11 | 0.08 | 0.1  | 0.17 | 0     | 0     | 0.08  |
| INLSIOC<br>VNL 217W | PHA2    | D      | 20 | 0.11 | 0.1  | 0.05 | 0.14 | 0     | 0     | 0.12  |
| YNL31/W             |         | D      | 21 | 0.11 | 0.08 | 0.07 | 0.04 | 0     | 0     | 0 12  |
| YNL320W             |         | D      | 20 | 0.23 | 0.25 | 0.29 | 0.5  | 0     | 0.14  | 0.13  |
| YNL321W             | VDE1    | D      | 21 | 0.14 | 0.22 | 0.2  | 0.22 | -0.1  | -0.02 | 0.05  |
| YNL322C             | KREI    | D      | 20 | 1.45 | 1.29 | 1.97 | 1.41 | 0.1   | 0.01  | 0.09  |
| YNL323W             |         | D      | 21 | 0.11 | 0.17 | 0.08 | 0.11 | 0     | 0     | 0     |
| YNL326C             | ECTO    | D      | 20 | 0.11 | 0.09 | 0.08 | 0.09 | 0     | 0     | -0.18 |
| YNL32/W             | EG12    | D      | 21 | 1.57 | 2.13 | 2.34 | 2.31 | 0.17  | 0.15  | 0.19  |
| YNL328C             | MDJ2    | D      | 20 | 0.11 | 0.08 | 0.09 | 0.07 | 0     | 0     | 0     |
| YNL329C             | PEX6    | D      | 20 | 0.11 | 0.08 | 0.13 | 0.13 | 0     | 0     | 0     |
| YNL330C             | RPD3    | D      | 20 | 0.16 | 0.15 | 0.16 | 0.25 | 0     | -0.05 | 0.11  |
| YNL331C             |         | D      | 21 | 0.11 | 0.08 | 0.04 | 0.1  | 0     | 0     | -0.07 |
| YNL332W             | ~~~~    | D      | 20 | 0.11 | 0.08 | 0.1  | 0.04 | 0     | 0     | 0     |
| YNL333W             | SNZ2    | D      | 20 | 0.11 | 0.08 | 0.16 | 0.06 | 0     | 0.11  | 0     |
| YNL334C             | SNO2    | D      | 20 | 0.11 | 0.08 | 0.11 | 0.06 | 0     | 0     | 0     |
| YNL336W             | COSI    | D      | 30 | 0.31 | 0.22 | 0.5  | 0.37 | 0     | 0.11  | 0.04  |
| YNL337W             |         | D      | 20 | 0.11 | 0.08 | 0.06 | 0.04 | 0     | 0     | 0     |
| YNL339C             |         | D      | 20 | 0.42 | 0.43 | 0.57 | 0.65 | -0.06 | 0.12  | 0.09  |
| YNR001C             | CIT1    | D      | 20 | 1.13 | 0.82 | 1.91 | 1.63 | 0     | 0.2   | 0.08  |
| YNR002C             | FUN34   | D      | 20 | 0.12 | 0.12 | 0.24 | 0.14 | 0     | 0.24  | 0     |
| YNR006W             | VPS27   | D      | 20 | 0.11 | 0.08 | 0.04 | 0.06 | 0     | 0     | 0     |
| YNR007C             | AUT1    | D      | 21 | 0.11 | 0.08 | 0.09 | 0.09 | 0     | -0.25 | -0.22 |
| YNR009W             |         | D      | 21 | 0.11 | 0.11 | 0.07 | 0.04 | -0.08 | 0     | 0     |
| YNR010W             | CSE2    | D      | 21 | 0.11 | 0.08 | 0.04 | 0.06 | 0     | 0     | 0     |
| YNR011C             | PRP2    | D      | 20 | 0.11 | 0.08 | 0.05 | 0.05 | 0     | 0     | 0     |
| YNR012W             | URK1    | D      | 21 | 0.11 | 0.08 | 0.07 | 0.08 | 0     | 0     | -0.18 |
| YNR013C             |         | D      | 20 | 0.11 | 0.13 | 0.09 | 0.17 | 0     | 0     | 0.04  |
| YNR014W             |         | D      | 20 | 0.49 | 0.19 | 0.1  | 0.33 | 0     | 0     | 0     |
| YNR015W             | SMM1    | D      | 20 | 0.11 | 0.09 | 0.1  | 0.08 | 0     | 0     | 0     |
| YNR016C             | ACC1    | D      | 20 | 0.41 | 0.5  | 0.6  | 0.64 | 0.12  | 0.13  | 0.16  |
| YNR017W             | MAS6    | D      | 20 | 0.36 | 0.58 | 0.87 | 0.92 | 0.06  | 0.21  | 0.19  |

| YNR018W |        | D      | 20 | 1.45 | 1.95 | 2.94 | 2.36 | 0.06  | 0.28  | 0.14  |
|---------|--------|--------|----|------|------|------|------|-------|-------|-------|
| YNR019W | ARE2   | D      | 21 | 0.11 | 0.08 | 0.04 | 0.11 | 0     | 0     | 0.01  |
| YNR020C |        | D      | 20 | 0.11 | 0.08 | 0.06 | 0.07 | 0     | 0     | 0     |
| YNR021W |        | D      | 20 | 0.59 | 0.61 | 0.59 | 0.72 | 0.03  | 0     | 0.05  |
| YNR022C |        | D      | 21 | 0.11 | 0.08 | 0.09 | 0.07 | 0     | -0.08 | 0     |
| YNR025C |        | D      | 21 | 0.11 | 0.08 | 0.05 | 0.04 | 0     | 0     | 0     |
| YNR026C | SEC12  | D      | 20 | 0.11 | 0.08 | 0.05 | 0.05 | 0     | 0     | 0     |
| YNR027W |        | D      | 20 | 0.11 | 0.08 | 0.07 | 0.13 | 0     | 0     | 0.02  |
| YNR028W | CPR8   | D      | 20 | 0.11 | 0.09 | 0.08 | 0.08 | 0     | 0     | 0     |
| YNR029C |        | D      | 20 | 0.11 | 0.08 | 0.06 | 0.05 | 0     | 0     | 0     |
| YNR030W | ECM39  | D      | 20 | 0.14 | 0.16 | 0.2  | 0.18 | 0.03  | 0.03  | 0.07  |
| YNR031C | SSK2   | D      | 20 | 0.11 | 0.08 | 0.04 | 0.06 | 0     | 0     | 0.07  |
| YNR032W | PPG1   | D      | 20 | 0.11 | 0.11 | 0.1  | 0.1  | 0.02  | 0     | 0     |
| YNR033W | ABZ1   | D      | 20 | 0.11 | 0.08 | 0.11 | 0.07 | 0     | Ő     | Ő     |
| YNR034W | SOL1   | D      | 20 | 0.13 | 0.00 | 0.09 | 0.07 | 0     | 0     | 0 09  |
| YNR035C | ARC35  | D      | 20 | 0.15 | 0.05 | 0.09 | 0.21 | 0 08  | 0 01  | 0.02  |
| YNR036C | incess | D      | 20 | 0.10 | 0.20 | 1.07 | 0.50 | 0.03  | 0.01  | 0.14  |
| YNR037C |        | D      | 20 | 0.18 | 0.18 | 0.18 | 0.07 | 0.05  | 0.00  | 0.14  |
| YNR038W | DRP6   | D      | 20 | 0.10 | 0.10 | 0.10 | 0.13 | 0     | -0.2  | 0.07  |
| VNR030C | DDIO   | D      | 20 | 0.11 | 0.14 | 0.1  | 0.19 | 0     | 0.14  | 0.07  |
| VNR040W |        | D<br>D | 20 | 0.12 | 0.14 | 0.24 | 0.19 | 0     | 0.14  | 0.14  |
| VNP041C | COO2   | D<br>D | 20 | 0.11 | 0.00 | 0.11 | 0.10 | 0.03  | 0     | 0.07  |
| VND043W | MVD1   | ם<br>ח | 20 | 0.2  | 0.23 | 0.19 | 0.22 | -0.03 | 0.16  | 0.16  |
| VND044W |        | D<br>D | 20 | 0.55 | 0.44 | 0.52 | 0.05 | 0.1   | 0.10  | 0.10  |
| VND044W | AUAI   | D<br>D | 20 | 0.10 | 0.28 | 0.12 | 0.44 | 0.10  | -0.22 | 0.12  |
| INKU40W |        | D      | 20 | 0.14 | 0.43 | 0.40 | 0.47 | 0.12  | 0.05  | 0.15  |
| INKU4/W |        | D      | 20 | 0.11 | 0.08 | 0.05 | 0.00 | 0     | 0     | 0     |
| INKU48W | MCO1   | D      | 20 | 0.11 | 0.08 | 0.00 | 0.08 | 0     | 0     | 0     |
| YNR049C | MSUI   | D      | 20 | 0.11 | 0.08 | 0.07 | 0.08 | 0     |       | 0     |
| YNRUSUC | LY59   | D      | 20 | 2.88 | 1.54 | 4.73 | 1.52 | -0.16 | 0.3   | -0.21 |
| YNRUSIC | DODO   | D      | 20 | 0.11 | 0.08 | 0.07 | 0.06 | 0     | 0     | 0     |
| YNR052C | POP2   | D      | 20 | 0.12 | 0.18 | 0.23 | 0.2  | 0.06  | 0     | -0.01 |
| YNR053C |        | D      | 41 | 0.11 | 0.14 | 0.14 | 0.14 | 0.09  | 0.02  | -0.04 |
| YNR054C |        | D      | 21 | 0.11 | 0.08 | 0.05 | 0.04 | 0     | 0     | 0     |
| YNR055C | HOLI   | D      | 21 | 0.31 | 0.39 | 0.39 | 0.52 | 0.01  | 0     | 0.08  |
| YNR057C | BIO4   | D      | 21 | 0.11 | 0.11 | 0.29 | 0.33 | 0     | 0.26  | 0.17  |
| YNR058W | BIO3   | D      | 21 | 0.11 | 0.08 | 0.19 | 0.09 | 0     | 0.19  | -0.1  |
| YNR061C |        | D      | 21 | 0.16 | 0.27 | 0.31 | 0.19 | 0.07  | -0.06 | -0.09 |
| YNR065C |        | D      | 21 | 0.11 | 0.1  | 0.15 | 0.11 | 0     | 0.03  | 0     |
| YNR067C |        | D      | 21 | 0.12 | 0.19 | 0.28 | 0.59 | -0.02 | 0.12  | 0.35  |
| YNR068C |        | D      | 20 | 0.11 | 0.08 | 0.04 | 0.05 | 0     | 0     | 0     |
| YNR071C |        | D      | 21 | 0.11 | 0.08 | 0.06 | 0.04 | 0     | 0     | 0     |
| YNR074C |        | D      | 20 | 0.11 | 0.08 | 0.1  | 0.16 | 0     | 0     | 0.1   |
| YNR075W | COS10  | D      | 20 | 0.11 | 0.08 | 0.04 | 0.06 | 0     | 0     | 0     |
| YNR076W | PAU6   | D      | 20 | 0.26 | 0.28 | 0.67 | 0.54 | -0    | 0.11  | 0.08  |
| YOL001W | PHO80  | D      | 21 | 0.11 | 0.08 | 0.04 | 0.1  | 0     | 0     | 0     |
| YOL002C |        | D      | 20 | 0.32 | 0.28 | 0.48 | 0.56 | 0.03  | 0.17  | 0.12  |
| YOL003C |        | D      | 20 | 0.11 | 0.08 | 0.05 | 0.09 | 0     | 0     | 0     |
| YOL004W | SIN3   | D      | 20 | 0.11 | 0.09 | 0.08 | 0.1  | 0     | 0     | 0     |
| YOL005C | RPB11  | D      | 21 | 0.44 | 0.42 | 0.41 | 0.43 | 0     | 0.09  | 0.03  |
| YOL007C | CSI2   | D      | 21 | 0.11 | 0.08 | 0.11 | 0.04 | 0     | -0.04 | 0     |
| YOL008W |        | D      | 21 | 0.11 | 0.14 | 0.17 | 0.19 | 0     | 0.07  | 0.09  |
| YOL009C | MDM12  | D      | 21 | 0.11 | 0.1  | 0.15 | 0.13 | 0     | 0.01  | 0     |
| YOL010W |        | D      | 20 | 0.11 | 0.1  | 0.05 | 0.11 | 0     | 0     | -0    |
| YOL011W |        | D      | 21 | 0.15 | 0.1  | 0.17 | 0.3  | 0     | 0     | 0.17  |
| YOL012C | HTA3   | D      | 20 | 0.5  | 0.6  | 0.8  | 0.43 | 0.1   | 0.01  | -0.1  |

| YOL013C    | HRD1   | D | 20 | 0.11  | 0.08  | 0.05        | 0.08         | 0     | 0     | 0     |
|------------|--------|---|----|-------|-------|-------------|--------------|-------|-------|-------|
| YOL014W    |        | D | 20 | 0.14  | 0.23  | 0.05        | 0.04         | 0.11  | 0     | 0     |
| YOL016C    | CMK2   | D | 20 | 0.24  | 0.13  | 0.35        | 0.31         | 0     | 0.12  | 0.03  |
| YOL019W    |        | D | 20 | 0.15  | 0.29  | 0.36        | 0.27         | 0.11  | 0.21  | 0.03  |
| YOL020W    | TAT2   | D | 21 | 0.11  | 0.15  | 0.17        | 0.13         | 0.05  | 0.17  | 0     |
| YOL021C    | DIS3   | D | 20 | 0.11  | 0.21  | 0.16        | 0.11         | 0.21  | 0.1   | -0.02 |
| YOL022C    |        | D | 21 | 0.11  | 0.14  | 0.06        | 0.08         | -0.01 | 0     | -0.14 |
| YOL026C    |        | D | 20 | 0.36  | 0.34  | 0.27        | 0.68         | 0     | -0.1  | 0.12  |
| YOL027C    |        | D | 21 | 0.17  | 0.11  | 0.2         | 0.24         | -0.1  | 0.07  | 0.07  |
| YOL030W    |        | D | 20 | 1.07  | 0.98  | 1.31        | 0.83         | 0.06  | 0.11  | -0.02 |
| YOL031C    |        | D | 20 | 0.11  | 0.08  | 0.43        | 0.13         | 0     | 0.45  | 0     |
| YOL032W    |        | D | 20 | 0.11  | 0.12  | 0.07        | 0.09         | 0     | 0     | 0     |
| YOL033W    | MSE1   | D | 20 | 0.11  | 0.08  | 0.08        | 0.05         | 0     | 0     | 0     |
| YOL035C    |        | D | 20 | 0.11  | 0.1   | 0.04        | 0.04         | 0     | 0     | 0     |
| YOL036W    |        | D | 20 | 011   | 0.08  | 0.06        | 0.07         | Ő     | Ő     | Ő     |
| YOL038W    | PRE6   | D | 20 | 0.51  | 0.54  | 0.57        | 0.96         | 0.05  | 012   | 03    |
| YOL 039W   | RPP2A  | D | 20 | 81    | 11.06 | 13 38       | 10.26        | 0.1   | -0.09 | -0.12 |
| YOL 040C   | RPS15  | D | 20 | 10.86 | 20.6  | 12.30       | 8.63         | 0.24  | 0.02  | -0.12 |
| YOL 042W   | IU 515 | D | 20 | 0.11  | 0.12  | 0.1         | 0.09         | 0.06  | 0     | 0.17  |
| YOL 0/3C   | NTG2   | D | 20 | 0.11  | 0.12  | 0.1         | 0.05         | 0.00  | 0     | 0     |
| YOL 048C   | 1102   | D | 20 | 0.17  | 0.00  | 0.00        | 0.00         | 0     | 0.12  | 01    |
| VOI 040W   | GSH2   | D | 20 | 0.17  | 0.17  | 0.11        | 0.24<br>0.12 | 0     | 0.12  | 0.1   |
| VOL 051W   | GAL 11 | D | 20 | 0.13  | 0.11  | 0.11        | 0.12         | 0     | 0     | 0     |
| VOL 052C   | SPE2   | D | 20 | 0.11  | 0.08  | 0.07        | 0.04         | 0     | 0.03  | 0.15  |
| VOL 053C A |        |   | 20 | 5.4   | 5.24  | 0.23<br>8 5 | 16.53        | 0.07  | 0.03  | 0.13  |
| VOL 053W   | DDR2   |   | 20 | 0.11  | 0.08  | 0.5         | 0.06         | -0.07 | 0.19  | 0.44  |
| VOL 055C   |        |   | 20 | 0.11  | 0.08  | 0.00        | 0.00         | 0     | 0     | -0.5  |
| VOL 056W   | CDM2   |   | 20 | 0.11  | 0.09  | 0.09        | 0.07         | 0     | 0     | 0     |
| YOL 057W   | OFM5   |   | 20 | 0.11  | 0.08  | 0.05        | 0.08         | 0 02  | 0.06  | 0.07  |
| VOL 058W   | APC1   |   | 20 | 0.10  | 0.21  | 1.00        | 0.17         | 0.02  | -0.00 | -0.07 |
| YOL 050W   | CDD2   |   | 20 | 0.05  | 0.22  | 1.99        | 0.30         | -0.35 | 0.55  | 0 10  |
| YOL 060C   | GPD2   |   | 21 | 0.45  | 0.5   | 0.97        | 0.07         | 0.05  | 0.27  | 0.19  |
| YOL 061W   | DDDC5  |   | 21 | 0.11  | 0.14  | 0.15        | 0.10         | 0 12  | 0.07  | -0.01 |
| VOL 062C   |        |   | 21 | 0.45  | 0.74  | 0.57        | 0.95         | 0.15  | 0.07  | 0.17  |
| YOL 062C   | APM4   |   | 20 | 0.11  | 0.15  | 0.15        | 0.10         | 0     | 0     | 0.05  |
| YOL 064C   | METOO  |   | 20 | 0.11  | 0.09  | 0.00        | 0.07         | 0     | 0 16  | 0 07  |
| YOL 065C   |        |   | 21 | 0.11  | 0.15  | 0.2         | 0.17         | 0     | 0.10  | 0.07  |
| YOL 066C   | DID2   |   | 20 | 0.11  | 0.08  | 0.08        | 0.00         | 0     | 0     | 0     |
| YOL 069C   | KID2   |   | 20 | 0.11  | 0.08  | 0.00        | 0.04         | 0     | 0     | 0     |
| YOL 070C   | пзтт   |   | 20 | 0.11  | 0.12  | 0.10        | 0.19         | 0     | 0     | 0.05  |
| YOL 071W   |        |   | 20 | 0.11  | 0.08  | 0.04        | 0.00         | 0.06  | 0     | 0 17  |
| YOL 072W   |        |   | 21 | 0.11  | 0.1   | 0.15        | 0.25         | -0.00 | 0     | 0.17  |
| YOL072W    |        | D | 21 | 0.11  | 0.08  | 0.07        | 0.08         | 0     | 0     | 0 02  |
| YOL075C    |        | D | 20 | 0.40  | 0.47  | 0.54        | 0.55         | 0.1   | 0     | -0.03 |
| YOL075C    |        | D | 20 | 0.11  | 0.08  | 0.05        | 0.00         | 0     | 0     | 0     |
| YOL077C    |        | D | 20 | 0.11  | 0.18  | 0.19        | 0.13         | 0.14  | 0     | -0.05 |
| YOL080C    | ID 4.2 | D | 20 | 0.11  | 0.08  | 0.07        | 0.04         | 0     | 0     | 0     |
| YOLU81W    | IRA2   | D | 21 | 0.11  | 0.09  | 0.08        | 0.21         | 0     | 0     | 0.2   |
| YOL082W    |        | D | 21 | 0.11  | 0.12  | 0.15        | 0.19         | 0     | 0.04  | 0.16  |
| YOL083W    |        | D | 20 | 0.11  | 0.11  | 0.14        | 0.22         | 0     | -0.11 | 0.11  |
| YOL084W    | 1.511  | D | 21 | 0.11  | 0.08  | 0.04        | 0.07         | 0     | 0     | 0     |
| YOLU86C    | ADHI   | D | 20 | 7.45  | 8.52  | 12.76       | 12.09        | 0.11  | 0.11  | 0.12  |
| YULU8/C    | 10000  | D | 20 | 0.11  | 0.08  | 0.06        | 0.04         | 0     | 0     | U     |
| YOL088C    | MPD2   | D | 21 | 0.14  | 0.11  | 0.18        | 0.18         | 0     | -0.06 | -0.01 |
| YOL090W    | MSH2   | D | 20 | 0.11  | 0.08  | 0.04        | 0.06         | 0     | 0     | 0     |
| YOL092W    |        | D | 20 | 0.39  | 0.62  | 0.54        | 0.45         | 0.17  | 0.06  | -0.02 |

| YOL094C  | RFC4              | D      | 20              | 0.11 | 0.17 | 0.17 | 0.17 | 0          | 0     | 0     |
|----------|-------------------|--------|-----------------|------|------|------|------|------------|-------|-------|
| YOL096C  | COQ3              | D      | 21              | 0.11 | 0.11 | 0.11 | 0.1  | 0          | -0.18 | -0.1  |
| YOL097C  |                   | D      | 20              | 0.29 | 0.52 | 0.49 | 0.63 | 0.16       | 0.1   | 0.18  |
| YOL098C  |                   | D      | 20              | 0.11 | 0.1  | 0.04 | 0.1  | 0          | 0     | 0     |
| YOL101C  |                   | D      | 20              | 0.11 | 0.08 | 0.11 | 0.06 | 0          | 0     | 0     |
| YOL102C  | TPT1              | D      | 20              | 0.11 | 0.08 | 0.11 | 0.07 | 0          | 0     | 0     |
| YOL103W  | ITR2              | D      | 20              | 0.22 | 0.23 | 0.2  | 0.33 | 0          | 0     | 0.17  |
| YOL106W  |                   | D      | 20              | 0.11 | 0.08 | 0.06 | 0.07 | 0          | 0     | 0     |
| YOL107W  |                   | D      | 20              | 0.15 | 0.16 | 0.23 | 0.21 | 0.03       | 013   | 0     |
| YOL108C  | INO4              | D      | 20              | 0.13 | 0.17 | 0.15 | 0.11 | -0.04      | -0    | -0.18 |
| YOL109W  | ZEO1              | D      | $\frac{20}{20}$ | 1 59 | 1.89 | 2 5  | 2.26 | 0.16       | 0.28  | 0.15  |
| YOL110W  | SHR5              | D      | 20              | 0.19 | 0.36 | 0.31 | 0.6  | 0.10       | 0.13  | 0.15  |
| YOL111C  | 511(3             | D      | 20              | 0.17 | 0.50 | 0.51 | 0.78 | 0.07       | 0.02  | 0.13  |
| YOL 112W | MSB4              | D      | 20              | 0.17 | 0.08 | 0.06 | 0.76 | 0.05       | 0.02  | 0.15  |
| YOL 119C | MODT              | D      | 20              | 0.11 | 0.00 | 0.00 | 0.00 | 0          | 0     | 0     |
| YOL 120C | <b>RPI 184</b>    | D      | 20<br>40        | 7 79 | 678  | 8 19 | 7.15 | 0.1        | 0.11  | _0.02 |
| VOL 121C | RI LIOA<br>RDS10A | D      | 40              | 3 34 | 3.80 | 1 38 | 20   | 0.1        | 0.11  | 0.11  |
| VOL 122C | SME1              | ם<br>ח | 40<br>21        | 0.23 | 0.23 | 4.30 | 2.9  | 0.04       | 0.07  | -0.11 |
| VOL 122W |                   | D<br>D | 21              | 0.23 | 0.23 | 0.55 | 0.30 | -0.00      | 0.27  | 0.10  |
| YOL 124C | IIKF I            | D      | 21              | 0.12 | 0.14 | 0.10 | 0.11 | 0.07       | 0.07  | -0.19 |
| IOL124C  |                   | D<br>D | 20              | 0.11 | 0.00 | 0.09 | 0.07 | 0          | 0     | 0     |
| YOL 1260 | MDUA              | D      | 20              | 0.11 | 0.09 | 0.06 | 0.06 | 0          | 0     | 0     |
| YOL126C  | MDH2              | D      | 21              | 0.18 | 0.14 | 0.45 | 0.24 | 0          | 0.2   | -0.06 |
| YOL12/W  | RPL25             | D      | 20              | 2.08 | 3.37 | 2.36 | 1.38 | 0.18       | 0.02  | -0.13 |
| YOL128C  |                   | D      | 21              | 0.11 | 0.08 | 0.05 | 0.05 | 0          | 0     | 0     |
| YOL129W  |                   | D      | 21              | 1.56 | 1.5  | 1.61 | 2.13 | 0.04       | 0.13  | 0.07  |
| YOL130W  | ALR1              | D      | 21              | 0.11 | 0.08 | 0.09 | 0.1  | 0          | 0     | -0.17 |
| YOL133W  | HRT1              | D      | 20              | 0.19 | 0.15 | 0.25 | 0.28 | 0          | 0.06  | 0.04  |
| YOL135C  | MED7              | D      | 20              | 0.11 | 0.09 | 0.11 | 0.09 | 0          | 0     | 0     |
| YOL136C  | PFK27             | D      | 20              | 0.14 | 0.15 | 0.19 | 0.26 | 0.11       | 0.03  | 0.27  |
| YOL137W  |                   | D      | 20              | 0.11 | 0.08 | 0.13 | 0.1  | 0          | 0     | 0     |
| YOL139C  | CDC33             | D      | 21              | 1.27 | 1.24 | 1.21 | 0.99 | 0.13       | 0.18  | 0.05  |
| YOL140W  | ARG8              | D      | 20              | 0.11 | 0.11 | 0.13 | 0.1  | 0          | 0     | 0     |
| YOL142W  |                   | D      | 20              | 0.14 | 0.24 | 0.28 | 0.25 | 0.09       | 0.13  | 0.04  |
| YOL143C  | RIB4              | D      | 20              | 0.32 | 0.48 | 0.66 | 0.47 | 0.17       | 0.34  | 0.23  |
| YOL146W  |                   | D      | 20              | 0.11 | 0.09 | 0.08 | 0.08 | 0          | 0     | 0     |
| YOL147C  | PEX11             | D      | 20              | 0.79 | 0.81 | 0.77 | 0.48 | 0.05       | 0.01  | -0.18 |
| YOL148C  | SPT20             | D      | 21              | 0.11 | 0.08 | 0.04 | 0.08 | 0          | 0     | 0     |
| YOL149W  | DCP1              | D      | 20              | 0.11 | 0.08 | 0.09 | 0.05 | 0          | 0     | 0     |
| YOL151W  | GRE2              | D      | 20              | 0.64 | 0.42 | 0.8  | 0.79 | 0          | 0.17  | 0.24  |
| YOL153C  |                   | D      | 21              | 0.17 | 0.15 | 0.2  | 0.24 | 0          | -0.12 | -0.04 |
| YOL154W  |                   | D      | 21              | 1.89 | 1.48 | 0.17 | 0.08 | 0.18       | -0.78 | -0.99 |
| YOL155C  |                   | D      | 20              | 0.13 | 0.13 | 0.21 | 0.28 | 0          | 0     | 0.01  |
| YOL158C  |                   | D      | 21              | 0.11 | 0.09 | 0.05 | 0.1  | 0          | -0.33 | 0     |
| YOL159C  |                   | D      | 20              | 0.11 | 0.13 | 0.2  | 0.19 | 0          | 0.09  | 0.1   |
| YOL162W  |                   | D      | 20              | 0.11 | 0.08 | 0.05 | 0.06 | 0          | 0     | 0     |
| YOL164W  |                   | D      | 20              | 0.11 | 0.11 | 0.15 | 0.09 | 0          | 0.05  | 0     |
| YOL165C  |                   | D      | 20              | 0.11 | 0.1  | 0.07 | 0.05 | 0          | -0.23 | 0     |
| YOR001W  | RRP6              | D      | 20              | 0.11 | 0.18 | 0.12 | 0.11 | -0.04      | -0.11 | 0     |
| YOR002W  | ALG6              | D      | 20              | 0.18 | 0.13 | 0.18 | 0.14 | 0          | -0.02 | -0.19 |
| YOR004W  | THEOU             | D      | 20              | 0.10 | 0.08 | 0.07 | 0.09 | Ő          | 0.02  | -0.14 |
| YOR006C  |                   | D      | 20              | 0.11 | 0.08 | 0.07 | 0.02 | 0          | 0     | 0.14  |
| YOR007C  | SGT2              | Л      | 20              | 0.71 | 0.54 | 1 00 | 1 86 | 0.01       | 0 10  | 0 /1  |
| VOR008C  | SUG1              | Л      | 20              | 0.71 | 0.19 | 0.22 | 0.25 | _0.01      | _0.02 | 0.1   |
| VORDOW   | SLUI              | ם<br>ח | 20              | 0.21 | 0.10 | 0.22 | 0.25 | -0.07<br>A | -0.02 | _0.1  |
| VOR010C  | ΤΙΟΊ              | ם<br>ח | 21              | 1 16 | 1.62 | 1.50 | 0.4  | 0 12       | -0.17 | -0.00 |
| JULUIUU  | 11K2              | υ      | ∠0              | 1.10 | 1.02 | 1.39 | 0.01 | 0.15       | 0.11  | -0.07 |

| YOR013W  |       | D      | 21 | 0.11 | 0.11 | 0.09 | 0.17         | 0     | 0     | 0.02  |
|----------|-------|--------|----|------|------|------|--------------|-------|-------|-------|
| YOR014W  | RTS1  | D      | 21 | 0.11 | 0.08 | 0.08 | 0.07         | 0     | 0     | 0     |
| YOR015W  |       | D      | 20 | 0.11 | 0.15 | 0.16 | 0.23         | 0.05  | 0.01  | 0.16  |
| YOR016C  |       | D      | 20 | 0.18 | 0.35 | 0.32 | 0.27         | 0.13  | -0.07 | 0     |
| YOR018W  | ROD1  | D      | 21 | 0.11 | 0.08 | 0.05 | 0.05         | 0     | 0     | 0     |
| YOR020C  | HSP10 | D      | 21 | 1.22 | 0.77 | 1.63 | 2.71         | 0.06  | 0.24  | 0.42  |
| YOR021C  |       | D      | 21 | 0.11 | 0.23 | 0.24 | 0.16         | 0.2   | 0.22  | -0.05 |
| YOR022C  |       | D      | 20 | 0.11 | 0.12 | 0.08 | 0.07         | 0     | 0     | 0     |
| YOR023C  |       | D      | 21 | 0.11 | 0.16 | 0.06 | 0.17         | 0.08  | 0     | 0.12  |
| YOR027W  | STI1  | D      | 21 | 0.3  | 0.21 | 0.41 | 0.89         | 0     | 0.01  | 0.38  |
| YOR031W  | CRS5  | D      | 20 | 0.16 | 0.17 | 0.24 | 0.51         | 0     | 0     | 0.34  |
| YOR034C  | AKR2  | D      | 20 | 0.11 | 0.1  | 0.08 | 0.11         | 0     | Ő     | 0     |
| YOR035C  |       | D      | 20 | 0.11 | 0.09 | 0.04 | 0.05         | 0     | 0     | 0     |
| YOR036W  | PEP12 | D      | 20 | 011  | 0.08 | 0.05 | 0.06         | 0     | 0     | 0     |
| YOR039W  | CKB2  | D      | 20 | 0.2  | 0.18 | 0.05 | 0.00         | -0.03 | 0.08  | 0.05  |
| YOR040W  | GL04  | D      | 20 | 0.11 | 0.08 | 0.08 | 0.27<br>0.12 | 0     | 0.00  | 0.07  |
| YOR042W  | OLO I | D      | 21 | 0.11 | 0.13 | 0.00 | 0.28         | -0.07 | -0.06 | 0.18  |
| YOR043W  | WHI2  | D      | 20 | 0.11 | 0.19 | 0.13 | 0.15         | 0.07  | 0.00  | 0.10  |
| YOR044W  | W1112 | D      | 20 | 0.11 | 0.02 | 0.11 | 0.15         | 0     | -0.09 | 0.2   |
| VOR045W  | TOM6  | D      | 20 | 1.6  | 2.22 | 2.00 | 0.20         | 0.13  | -0.07 | 0.2   |
| VOR045W  | DBP5  | D<br>D | 20 | 0.14 | 0.18 | 0.26 | 0.25         | 0.15  | 0.08  | 0.00  |
| VOP047C  | STD1  | D<br>D | 20 | 0.14 | 0.10 | 0.20 | 0.23         | 0.11  | 0.05  | 0.09  |
| VOP051C  | 5101  | ם<br>ח | 21 | 0.11 | 0.1  | 0.05 | 0.11         | 0.05  | 0     | 0.08  |
| VOP052C  |       | ם<br>ח | 20 | 0.17 | 0.12 | 0.04 | 0.09         | 0.05  | 0.18  | -0.08 |
| YOR052W  |       | D      | 20 | 0.17 | 0.15 | 0.5  | 0.41         | 0     | 0.18  | 0.20  |
| I ORUSSW |       | D<br>D | 20 | 0.11 | 0.08 | 0.00 | 0.07         | 0     | 0     | 0     |
| I OR034C |       | D<br>D | 21 | 0.11 | 0.08 | 0.07 | 0.09         | 0     | 0     | 0     |
| I OR050C | CCT1  | D      | 20 | 0.11 | 0.08 | 0.08 | 0.04         | 0     | 0     | 0     |
| YOR05/W  | 5611  | D      | 20 | 0.11 | 0.08 | 0.04 | 0.00         |       | 0     | 0     |
| YOR059C  | CVAD  | D      | 21 | 0.14 | 0.15 | 0.10 | 0.19         | -0.06 | 0     | 0.1   |
| YOROGIW  | CKA2  | D      | 20 | 0.15 | 0.18 | 0.15 | 0.17         | 0.05  | 0.27  | 0     |
| YOR062C  | DDI 2 | D      | 20 | 0.11 | 0.15 | 0.11 | 0.11         | 0     | -0.27 | 0     |
| YOR063W  | RPL3  | D      | 20 | 4.// | 0.58 | 5.5  | 4.18         | 0.09  | 0.05  | -0.15 |
| YOR064C  | OVT1  | D      | 20 | 0.11 | 0.08 | 0.1  | 0.05         | 0     | 0     | 0     |
| YOR065W  | CYII  | D      | 20 | 0.28 | 0.23 | 0.92 | 0.28         | 0     | 0.17  | -0.02 |
| YORU66W  |       | D      | 20 | 0.11 | 0.11 | 0.1  | 0.17         | 0     | 0     | 0.10  |
| YOR06/C  | ALG8  | D      | 21 | 0.18 | 0.10 | 0.21 | 0.18         | 0     | 0.02  | 0.01  |
| YOR069W  | VP55  | D      | 21 | 0.11 | 0.08 | 0.05 | 0.04         | 0     | 0     | 0     |
| YOR0/IC  |       | D      | 21 | 0.11 | 0.09 | 0.11 | 0.12         | 0     | -0.05 | -0.1  |
| YOR0/2W  |       | D      | 21 | 0.11 | 0.09 | 0.04 | 0.04         | 0     | 0     | 0     |
| YOR0/4C  | CDC21 | D      | 45 | 0.11 | 0.08 | 0.04 | 0.05         | 0     | 0     | 0     |
| YOR0/8W  |       | D      | 20 | 0.11 | 0.09 | 0.09 | 0.06         | 0     | 0     | 0     |
| YOR079C  | ATX2  | D      | 21 | 0.11 | 0.12 | 0.18 | 0.12         | -0.07 | 0.05  | 0     |
| YOR081C  |       | D      | 21 | 0.11 | 0.09 | 0.12 | 0.11         | 0     | 0     | -0.31 |
| YOR084W  |       | D      | 20 | 0.18 | 0.17 | 0.21 | 0.17         | 0     | 0.07  | -0.19 |
| YOR085W  | OST3  | D      | 20 | 0.25 | 0.23 | 0.31 | 0.2          | 0.1   | 0.09  | -0.02 |
| YOR086C  |       | D      | 20 | 0.11 | 0.13 | 0.11 | 0.19         | 0     | -0.1  | 0     |
| YOR087W  |       | D      | 20 | 0.11 | 0.08 | 0.05 | 0.04         | 0     | 0     | 0     |
| YOR088W  |       | D      | 20 | 0.11 | 0.08 | 0.07 | 0.13         | 0     | 0     | 0     |
| YOR089C  | VPS21 | D      | 21 | 0.11 | 0.12 | 0.18 | 0.24         | 0.02  | 0.05  | 0.14  |
| YOR090C  |       | D      | 20 | 0.11 | 0.08 | 0.08 | 0.16         | 0     | 0     | -0.04 |
| YOR091W  |       | D      | 20 | 0.11 | 0.15 | 0.08 | 0.08         | 0     | 0     | 0     |
| YOR092W  | ECM3  | D      | 20 | 0.12 | 0.21 | 0.24 | 0.33         | 0.11  | 0.01  | 0.23  |
| YOR094W  | ARF3  | D      | 20 | 0.11 | 0.08 | 0.06 | 0.07         | 0     | 0     | 0     |
| YOR095C  | RKI1  | D      | 20 | 0.11 | 0.13 | 0.13 | 0.07         | 0.08  | 0.07  | 0     |
| YOR096W  | RPS7A | D      | 42 | 2.93 | 3.29 | 4.26 | 2.03         | 0.13  | 0.11  | -0.1  |

| YOR097C |        | D      | 20 | 0.14 | 0.19 | 0.18 | 0.18 | 0     | 0.04  | 0.11  |
|---------|--------|--------|----|------|------|------|------|-------|-------|-------|
| YOR098C | NUP1   | D      | 20 | 0.11 | 0.1  | 0.09 | 0.11 | 0     | 0     | -0    |
| YOR099W | KTR1   | D      | 20 | 1.34 | 1.16 | 2.53 | 1.54 | 0.05  | 0.23  | 0.01  |
| YOR101W | RAS1   | D      | 20 | 0.11 | 0.09 | 0.1  | 0.05 | 0     | 0     | 0     |
| YOR102W |        | D      | 20 | 0.11 | 0.08 | 0.04 | 0.06 | 0     | 0     | 0     |
| YOR103C | OST2   | D      | 20 | 0.37 | 0.32 | 0.71 | 0.42 | -0.01 | 0.26  | 0.07  |
| YOR104W |        | D      | 20 | 0.11 | 0.08 | 0.06 | 0.08 | 0     | 0     | 0     |
| YOR106W | VAM3   | D      | 21 | 0.11 | 0.11 | 0.11 | 0.1  | 0.01  | -0.1  | 0     |
| YOR107W |        | D      | 20 | 0.11 | 0.08 | 0.06 | 0.07 | 0     | 0     | 0     |
| YOR108W |        | D      | 21 | 0.27 | 0.34 | 0.27 | 0.22 | 0.18  | 0.11  | 0     |
| YOR109W | INP53  | D      | 21 | 0.11 | 0.08 | 0.04 | 0.08 | 0     | 0     | 0     |
| YOR110W |        | D      | 21 | 0.11 | 0.08 | 0.04 | 0.04 | 0     | 0     | 0     |
| YOR112W |        | D      | 21 | 0.11 | 0.08 | 0.07 | 0.04 | 0     | 0     | 0     |
| YOR115C |        | D      | 21 | 0.11 | 0.08 | 0.1  | 0.08 | 0     | 0     | 0     |
| YOR116C | RPO31  | D      | 20 | 0.11 | 0.08 | 0.04 | 0.05 | 0     | Ő     | Ő     |
| YOR117W | RPT5   | D      | 20 | 0.33 | 0.00 | 0.33 | 0.05 | 0     | Ő     | 0.07  |
| YOR119C | RIO1   | D      | 20 | 0.11 | 0.08 | 0.55 | 0.05 | 0     | 0     | 0.07  |
| YOR120W | GCY1   | D      | 20 | 0.11 | 0.00 | 3 21 | 0.03 | 0     | 1 /19 | 0 48  |
| YOR121C | 0011   | D      | 20 | 0.11 | 0.14 | 0.13 | 0.72 | 0     | 0     | 0.40  |
| YOR122C | DEV1   | Л      | 20 | 273  | 4.46 | 4.22 | 3.77 | 0.12  | 0.00  | 0.07  |
| YOR122C | LEO1   | D<br>D | 20 | 0.11 | 4.40 | 4.22 | 0.05 | 0.12  | 0.09  | 0.07  |
| VOP124C | LEOI   | D<br>D | 20 | 0.11 | 0.1  | 0.00 | 0.00 | 0     | 0     | 0     |
| VOR124C |        | D      | 20 | 0.11 | 0.08 | 0.00 | 0.09 | 0     | 0.05  | 0.04  |
| VOR125C |        | D      | 21 | 0.11 | 0.1  | 0.2  | 0.16 | 0     | 0.05  | 0.04  |
| VOR120C |        | D      | 20 | 0.11 | 0.08 | 0.19 | 0.14 | 0.06  | 0.01  | 0 22  |
| YOR120C | ADE2   | D      | 20 | 0.19 | 0.24 | 0.21 | 0.48 | 0.00  | 0.07  | 0.55  |
| YOR129C | ADC11  | D      | 20 | 0.11 | 0.08 | 0.09 | 0.05 | 0     | 0 14  | 0     |
| YOR130C | ARGII  | D      | 21 | 0.11 | 0.12 | 0.10 | 0.06 | -0.09 | 0.14  | 0     |
| YORISIC | VDC17  | D      | 20 | 0.11 | 0.18 | 0.19 | 0.14 | 0.01  | 0.05  | 0.02  |
| YOR132W | VPS1/  | D      | 20 | 0.11 | 0.1  | 0.1  | 0.21 | 0     | -0.11 | 0.04  |
| YOR133W | EFII   | D      | 20 | 2.91 | 3.52 | 3.39 | 2.87 | 0.14  | 0.07  | 0.02  |
| YOR134W | BAG/   | D      | 21 | 0.11 | 0.08 | 0.08 | 0.32 | 0     | 0     | 0.22  |
| YORI35C | IDUA   | D      | 20 | 0.11 | 0.08 | 0.04 | 0.05 | 0     | 0     | 0     |
| YOR136W | IDH2   | D      | 20 | 1.42 | 0.88 | 3.46 | 2.03 | -0.13 | 0.28  | 0.12  |
| YOR13/C |        | D      | 20 | 0.11 | 0.08 | 0.04 | 0.08 | 0     | 0     | 0     |
| YOR138C |        | D      | 21 | 0.11 | 0.08 | 0.08 | 0.06 | 0     | -0.13 | 0     |
| YOR140W | SFLI   | D      | 20 | 0.11 | 0.08 | 0.06 | 0.04 | 0     | 0     | 0     |
| YOR14IC | ARP8   | D      | 20 | 0.11 | 0.08 | 0.07 | 0.06 | 0     | 0     | 0     |
| YOR142W |        | D      | 20 | 0.52 | 0.49 | 0.74 | 0.53 | 0.01  | 0.14  | -0.04 |
| YOR143C | THI80  | D      | 20 | 0.11 | 0.08 | 0.05 | 0.04 | 0     | 0     | 0     |
| YOR145C |        | D      | 20 | 0.11 | 0.08 | 0.13 | 0.15 | 0     | 0     | 0.03  |
| YOR147W |        | D      | 20 | 0.11 | 0.08 | 0.05 | 0.04 | 0     | 0     | 0     |
| YOR149C | SMP3   | D      | 21 | 0.11 | 0.08 | 0.07 | 0.09 | 0     | 0     | -0.1  |
| YOR150W |        | D      | 20 | 0.3  | 0.16 | 0.36 | 0.27 | 0     | 0.1   | 0.07  |
| YOR151C | RPB2   | D      | 20 | 0.11 | 0.18 | 0.18 | 0.24 | 0.09  | 0.07  | 0.1   |
| YOR152C |        | D      | 20 | 0.11 | 0.1  | 0.08 | 0.06 | 0     | 0     | 0     |
| YOR153W | PDR5   | D      | 20 | 0.46 | 0.52 | 0.8  | 0.63 | 0.09  | 0.04  | 0.07  |
| YOR154W |        | D      | 21 | 0.11 | 0.08 | 0.04 | 0.07 | 0     | 0     | -0.31 |
| YOR155C |        | D      | 20 | 0.11 | 0.08 | 0.08 | 0.15 | 0     | 0     | 0     |
| YOR157C | PUP1   | D      | 20 | 0.47 | 0.68 | 0.7  | 0.86 | 0.16  | 0.13  | 0.21  |
| YOR158W | PET123 | D      | 20 | 0.11 | 0.11 | 0.05 | 0.06 | 0     | 0     | 0     |
| YOR159C | SME1   | D      | 21 | 0.11 | 0.14 | 0.13 | 0.14 | 0     | -0    | 0.01  |
| YOR160W | MTR10  | D      | 21 | 0.11 | 0.09 | 0.04 | 0.05 | 0     | 0     | 0     |
| YOR161C |        | D      | 20 | 0.25 | 0.16 | 0.16 | 0.38 | 0     | -0.17 | 0.13  |
| YOR163W |        | D      | 21 | 0.11 | 0.08 | 0.12 | 0.12 | 0     | -0.03 | -0.05 |
| YOR164C |        | D      | 20 | 0.17 | 0.17 | 0.19 | 0.2  | -0.09 | 0.02  | -0.1  |

| YOR165W   |               | D      | 20              | 0.12 | 0.08  | 0.1  | 0.08 | 0     | -0.06 | 0     |
|-----------|---------------|--------|-----------------|------|-------|------|------|-------|-------|-------|
| YOR166C   |               | D      | 21              | 0.11 | 0.08  | 0.04 | 0.06 | 0     | 0     | 0     |
| YOR167C   | RPS28A        | D      | 36              | 2.32 | 2.43  | 3.4  | 2.6  | 0.15  | 0.08  | -0.14 |
| YOR168W   | GLN4          | D      | 21              | 0.11 | 0.15  | 0.14 | 0.15 | -0.02 | -0.09 | 0.02  |
| YOR172W   |               | D      | 20              | 0.11 | 0.08  | 0.04 | 0.07 | 0     | 0     | 0     |
| YOR173W   |               | D      | 20              | 0.11 | 0.08  | 0.14 | 0.17 | 0     | 0     | 0.13  |
| YOR174W   | MED4          | D      | 21              | 0.11 | 0.08  | 0.08 | 0.06 | 0     | 0     | 0     |
| YOR175C   |               | D      | 20              | 0.11 | 0.19  | 0.16 | 0.14 | -0.02 | -0    | -0.02 |
| YOR176W   | HEM15         | D      | 21              | 0.69 | 0.73  | 0.89 | 0.72 | -0.04 | 0.07  | -0.07 |
| YOR178C   | GAC1          | D      | 20              | 0.07 | 0.08  | 0.02 | 0.08 | 0.01  | 0.07  | -0.14 |
| YOR179C   | Grief         | D      | 20              | 0.11 | 0.08  | 0.17 | 0.00 | 0     | -0.01 | -0.08 |
| VOR180C   | EHD2          | Л      | $\frac{21}{20}$ | 0.11 | 0.00  | 0.17 | 0.11 | 0     | -0.01 | -0.00 |
| VOR181W   |               | Л      | 20              | 0.11 | 0.00  | 0.07 | 0.00 | 0     | 0     | 0     |
| VOR182C   | RPS30R        | D      | 20              | 7    | 11.26 | 0.07 | 5.75 | 0.18  | 0.15  | 0.08  |
| VOP184W   | SED1          | ם<br>ח | 20              | 017  | 0.22  | 9.27 | 0.31 | 0.16  | 0.15  | -0.08 |
| VOP185C   | CSD2          | D<br>D | 20              | 0.17 | 0.22  | 0.24 | 1.74 | 0.00  | 0.05  | 0.10  |
| VOD197W   | USF2          | D      | 20              | 0.7  | 0.54  | 0.0  | 1./4 | -0.1  | 0.00  | 0.12  |
| IUKI8/W   |               | D<br>D | 21              | 1.05 | 0.97  | 1.20 | 1.31 | -0.02 | 0.09  | 0.15  |
| YOR189W   | DICI          | D      | 20              | 0.11 | 0.11  | 0.09 | 0.07 | 0     | 0     | 0     |
| YORI91W   | KISI<br>TOA 1 | D      | 20              | 0.11 | 0.08  | 0.06 | 0.04 | 0     | 0     | 0     |
| YOR194C   | IOAI          | D      | 20              | 0.11 | 0.08  | 0.09 | 0.15 | 0     | 0     | 0     |
| YOR196C   | LIP5          | D      | 20              | 0.11 | 0.09  | 0.24 | 0.16 | 0     | 0.18  | 0.06  |
| YOR19/W   |               | D      | 20              | 0.17 | 0.26  | 0.27 | 0.24 | -0.06 | 0.09  | 0.05  |
| YOR198C   | BFR1          | D      | 20              | 0.18 | 0.18  | 0.55 | 0.32 | -0.03 | 0.01  | 0     |
| YOR200W   |               | D      | 20              | 0.11 | 0.08  | 0.04 | 0.05 | 0     | 0     | 0     |
| YOR201C   | PET56         | D      | 20              | 0.11 | 0.09  | 0.16 | 0.2  | 0     | 0.09  | 0.08  |
| YOR202W   | HIS3          | D      | 20              | 0.23 | 0.27  | 0.69 | 0.67 | -0.01 | 0.33  | 0.32  |
| YOR203W   |               | D      | 20              | 0.12 | 0.21  | 0.23 | 0.19 | 0.09  | 0.21  | 0.18  |
| YOR204W   | DED1          | D      | 21              | 0.34 | 0.32  | 0.5  | 0.43 | 0.01  | 0.11  | 0.12  |
| YOR205C   |               | D      | 20              | 0.11 | 0.08  | 0.08 | 0.05 | 0     | 0     | 0     |
| YOR206W   |               | D      | 20              | 0.11 | 0.09  | 0.06 | 0.05 | 0     | 0     | 0     |
| YOR207C   | RET1          | D      | 20              | 0.11 | 0.1   | 0.1  | 0.14 | 0     | 0     | 0     |
| YOR208W   | PTP2          | D      | 20              | 0.11 | 0.08  | 0.08 | 0.11 | 0     | 0     | -0.2  |
| YOR209C   | NPT1          | D      | 21              | 0.24 | 0.21  | 0.53 | 0.46 | 0.06  | 0.26  | 0.2   |
| YOR210W   | RPB10         | D      | 20              | 0.17 | 0.2   | 0.51 | 0.37 | -0.04 | 0.21  | 0.1   |
| YOR212W   | STE4          | D      | 21              | 0.11 | 0.14  | 0.23 | 0.17 | 0     | 0     | 0.02  |
| YOR213C   | SAS5          | D      | 21              | 0.11 | 0.08  | 0.16 | 0.12 | 0     | 0.09  | -0.01 |
| YOR215C   |               | D      | 20              | 0.18 | 0.1   | 0.24 | 0.16 | -0.2  | -0.01 | 0.02  |
| YOR217W   | RFC1          | D      | 20              | 0.11 | 0.09  | 0.04 | 0.07 | 0     | 0     | 0     |
| YOR218C   |               | D      | 21              | 0.11 | 0.08  | 0.04 | 0.05 | 0     | 0     | 0     |
| YOR219C   | STE13         | D      | 21              | 0.11 | 0.08  | 0.07 | 0.07 | 0     | 0     | -0.2  |
| YOR220W   |               | D      | 20              | 0.32 | 0.22  | 0.75 | 0.54 | 0     | 0.15  | 0.17  |
| YOR222W   |               | D      | 20              | 0.24 | 0.29  | 0.42 | 0.2  | 0.06  | 0.14  | -0.1  |
| YOR223W   |               | D      | 20              | 0.11 | 0.08  | 0.05 | 0.1  | 0     | 0     | 0     |
| YOR224C   | RPB8          | D      | 21              | 1 35 | 1.63  | 13   | 1 36 | 0.07  | 0 07  | 0 12  |
| YOR226C   | Id Do         | D      | 20              | 0.19 | 0.23  | 0.31 | 0.26 | -0.05 | 0.07  | 0.06  |
| YOR220C   |               | D      | 20              | 0.17 | 0.23  | 0.06 | 0.20 | 0.05  | 0.07  | 0.00  |
| VOP228C   |               | D<br>D | 20              | 0.11 | 0.00  | 0.00 | 0.11 | 0     | 0.06  | 0.07  |
| VOR220C   | WTM2          | D<br>D | 21              | 0.39 | 0.13  | 0.45 | 0.55 | 0     | 0.00  | -0.07 |
| VOP230W   | WTM1          | ם<br>ח | 21              | 3.27 | 2.1   | 2 22 | 5.06 | 0.08  | -0.01 | 0.02  |
| YOD 221W  |               | D      | 21              | 5.27 | 0.11  | 5.55 | 0.12 | -0.08 | -0.04 | 0.2   |
| I UK251W  | MCEL          | ע<br>ת | 20              | 0.11 | 0.11  | 0.07 | 0.15 | 0 12  | 0.05  | 0.02  |
| I UK252W  | MGEI<br>VINI4 | ע<br>ת | 20              | 0.10 | 0.24  | 0.19 | 0.22 | 0.12  | 0.05  | 0.03  |
| 1 UK233W  | KIIN4         | D<br>D | 20              | 0.11 | 0.08  | 0.04 | 0.06 | U     | U     | 0     |
| YOR234C   |               | D      | 64              | 1.87 | 2.69  | 2.54 | 2.07 | 0.06  | 0.06  | -0.01 |
| YOR236W   | DFRI          | D      | 21              | 0.11 | 0.11  | 0.13 | 0.06 | 0     | 0.09  | 0     |
| Y OK 238W |               | D      | 21              | 0.11 | 0.1   | 0.08 | 0.07 | 0     | -0.11 | -0.17 |

| YOR239W            |          | D      | 20 | 0.11         | 0.14 | 0.12 | 0.14         | 0     | 0     | -0.01 |
|--------------------|----------|--------|----|--------------|------|------|--------------|-------|-------|-------|
| YOR240W            |          | D      | 21 | 0.11         | 0.1  | 0.18 | 0.1          | 0     | 0.13  | 0     |
| YOR241W            |          | D      | 20 | 0.11         | 0.11 | 0.11 | 0.14         | 0     | 0     | -0.04 |
| YOR243C            |          | D      | 20 | 0.11         | 0.08 | 0.04 | 0.08         | 0     | 0     | 0     |
| YOR244W            | ESA1     | D      | 21 | 0.11         | 0.08 | 0.08 | 0.09         | 0     | 0     | -0.19 |
| YOR245C            |          | D      | 20 | 0.11         | 0.11 | 0.19 | 0.24         | 0     | 0.04  | 0.15  |
| YOR246C            |          | D      | 20 | 0.27         | 0.42 | 0.32 | 0.32         | 0.1   | -0.06 | -0.02 |
| YOR247W            |          | D      | 20 | 3.99         | 5.53 | 4.21 | 3.89         | 0.21  | 0.08  | 0.05  |
| YOR248W            |          | D      | 22 | 1.59         | 2.18 | 2.03 | 1.14         | 0.11  | 0.11  | -0.02 |
| YOR249C            | APC5     | D      | 20 | 0.11         | 0.08 | 0.04 | 0.05         | 0     | 0     | 0     |
| YOR250C            | CLP1     | D      | 21 | 0.11         | 0.08 | 0.16 | 0.11         | 0     | 0.13  | -0.15 |
| YOR251C            | 0211     | D      | 20 | 0.14         | 0.17 | 0.24 | 0.17         | 0.02  | 0.12  | 0.02  |
| YOR253W            |          | D      | 20 | 0.22         | 0.27 | 0.39 | 0.21         | 0     | 0.14  | 0     |
| YOR254C            | SEC63    | D      | 20 | 0.11         | 0.2  | 0.23 | 0.23         | 0     | 0.14  | 0.05  |
| YOR257W            | CDC31    | D      | 21 | 0.11         | 0.14 | 0.23 | 0.23         | 0 03  | 0.07  | -0.05 |
| YOR258W            | 02001    | D      | 21 | 011          | 0.08 | 0.05 | 0.23         | 0     | 0     | 0     |
| YOR259C            | RPT4     | D      | 20 | 0.22         | 0.26 | 0.35 | 0.53         | 0.05  | 0 19  | 0.34  |
| YOR260W            | GCD1     | D      | 20 | 0.22         | 0.20 | 0.33 | 0.33         | 0.05  | 0.1   | 0.22  |
| YOR261C            | RPN8     | D      | 20 | $0.2^{j}$    | 0.09 | 0.55 | 0.12         | 0.15  | 0.1   | 0     |
| YOR262W            | KI I I I | D      | 20 | 0.11         | 0.09 | 0.12 | 0.12         | 0     | 0     | 0.01  |
| YOR264W            |          | D<br>D | 20 | 0.11         | 0.09 | 0.12 | 0.17         | 0     | 0     | 0.01  |
| VOR265W            | PBI 2    | Л      | 20 | 0.11         | 0.00 | 0.07 | 0.02         | 0.06  | 0.13  | 0.02  |
| VOR266W            | DNT1     | D      | 20 | 0.21         | 0.18 | 0.01 | 0.22         | -0.00 | 0.15  | 0.02  |
| YOR267C            | 1111     | D      | 20 | 0.11         | 0.00 | 0.08 | 1.16         | 0     | 0     | 0.15  |
| VOP260W            | PAC1     | D<br>D | 20 | 0.01         | 0.55 | 0.07 | 0.07         | 0     | 0     | 0.15  |
| 10K209W            | VDU1     | ם<br>ח | 21 | 1.73         | 2.15 | 1.38 | 0.07<br>2.54 | 0.1   | 0.03  | 0.14  |
| YOR270C            | VFIII    | D<br>D | 21 | 0.49         | 2.15 | 1.50 | 2.34         | 0.1   | -0.03 | 0.14  |
| IOK2/IC<br>VOD272W | VTM1     | D      | 20 | 0.40         | 0.07 | 0.02 | 0.75         | 0.14  | 0.05  | -0.02 |
| IOK2/2W<br>VOR272C | I I WI I | D<br>D | 20 | 0.11         | 0.09 | 0.08 | 0.04         | 0.07  | 016   | 0.05  |
| IOR2/SC<br>VOP275C |          | D<br>D | 21 | 0.42         | 0.4  | 0.80 | 0.55         | -0.07 | 0.10  | -0.05 |
| IUK2/JC<br>VOD276W | CAE20    | D      | 20 | 0.11         | 0.08 | 0.05 | 0.07         | 0 12  | 0 00  | 0.00  |
| IOK2/0W            | UEM4     | D      | 20 | 0.05         | 0.75 | 0.74 | 0.38         | 0.15  | 0.08  | -0.09 |
| IUK2/6W            | TEN14    | D<br>D | 21 | 0.11         | 0.00 | 0.07 | 0.1          | 0     | 0.00  | -0.05 |
| IUK200C            |          | D      | 20 | 0.17         | 0.1  | 0.20 | 0.25         | 0     | 0.09  | 0.11  |
| IUK201C            |          | D      | 20 | 0.11         | 0.08 | 0.08 | 0.08         | 0.04  | 0     | 0 16  |
| I UK265W           |          | D      | 20 | 0.11         | 0.12 | 0.21 | 0.2          | 0.04  | 0.08  | 0.10  |
| I UK264W           |          | D      | 21 | 0.11         | 0.00 | 0.09 | 0.04         | 0 07  | -0.12 | 0 22  |
| IUK285W            |          | D      | 20 | 5.41<br>0.52 | 1.08 | 4.03 | 0.73         | -0.07 | 0.17  | 0.22  |
| YOR280W            | MDD 1    | D      | 20 | 0.52         | 0.58 | 0.8  | 0.09         | 0.08  | 0.12  | 0.04  |
| YOD280W            | MPDI     | D      | 21 | 0.18         | 0.18 | 0.55 | 0.25         | -0.03 | 0.30  | 0.21  |
| YOR289W            | CNEO     | D      | 20 | 0.11         | 0.14 | 0.25 | 0.24         | 0     | 0.04  | 0.19  |
| YOR290C            | SINF2    | D      | 21 | 0.11         | 0.1  | 0.07 | 0.00         | -0.07 | -0.27 | -0.27 |
| YOR291W            |          | D      | 20 | 0.14         | 0.09 | 0.08 | 0.08         | 0     | 0     | 0     |
| YOR292C            |          | D      | 20 | 0.11         | 0.08 | 0.07 | 0.09         | 0 00  | 0 02  |       |
| YOR293W            | RPSIOA   | D      | 50 | 3.03         | 3.22 | 3.27 | 2.24         | 0.09  | 0.02  | -0.2  |
| YOR294W            |          | D      | 20 | 0.11         | 0.08 | 0.06 | 0.06         | 0     | 0     | 0     |
| YOR29/C            | DUDT     | D      | 20 | 0.19         | 0.17 | 0.27 | 0.2          | 0     | -0.04 | 0     |
| YOR299W            | BUD7     | D      | 20 | 0.11         | 0.08 | 0.06 | 0.08         | 0     | 0     | 0     |
| YOR301W            |          | D      | 21 | 0.11         | 0.13 | 0.12 | 0.12         | -0.08 | -0.19 | -0.2  |
| YOR302W            |          | D      | 20 | 0.54         | 0.39 | 0.83 | 0.83         | -0.09 | 0.14  | 0.16  |
| YOR303W            | CPA1     | D      | 20 | 0.67         | 0.68 | 1.58 | 1.35         | -0.02 | 0.28  | 0.23  |
| YOR304C-A          | *****    | D      | 20 | 0.11         | 0.08 | 0.06 | 0.04         | 0     | 0     | 0     |
| YOR304W            | ISW2     | D      | 20 | 0.11         | 0.08 | 0.05 | 0.04         | 0     | 0     | 0     |
| YOR305W            |          | D      | 20 | 0.13         | 0.08 | 0.11 | 0.15         | 0     | 0     | 0     |
| YOR306C            | a        | D      | 21 | 0.11         | 0.08 | 0.06 | 0.14         | 0     | -0.24 | 0.13  |
| YOR307C            | SLY41    | D      | 20 | 0.11         | 0.1  | 0.09 | 0.12         | 0     | 0     | -0.11 |

| VOD200C |             | D | 24             | 0.41 | 0.02 | 0.00 | 0.02 | 0.20   | 0.21  | 0.12  |
|---------|-------------|---|----------------|------|------|------|------|--------|-------|-------|
| YOR309C | NODE        | D | 34<br>20       | 0.41 | 0.95 | 0.99 | 0.62 | 0.29   | 0.31  | 0.12  |
| YORSIUC | NOP5        | D | 20             | 0.42 | 0.70 | 0.87 | 0.00 | 0.21   | 0.22  | 0.11  |
| YORSTIC |             | D | 20             | 0.38 | 0.38 | 0.53 | 0.41 | 0      | 0.09  | 0.01  |
| YOR312C | RPL20B      | D | 66             | 1.2  | 1.05 | 1.14 | 1.08 | 0.11   | -0.11 | -0.16 |
| YORSISW | COTI        | D | 20             | 0.11 | 0.08 | 0.11 | 0.04 | 0      | -0.1  | 0     |
| YOR316C |             | D | 21             | 0.11 | 0.15 | 0.19 | 0.26 | -0.07  | -0.07 | 0.21  |
| YOR31/W | FAAI        | D | 20             | 0.46 | 0.38 | 0.44 | 0.76 | -0.13  | -0.06 | 0.04  |
| YOR318C |             | D | 21             | 0.11 | 0.08 | 0.05 | 0.04 | 0      | 0     | 0     |
| YOR319W | HSH49       | D | 20             | 0.11 | 0.08 | 0.06 | 0.06 | 0      | 0     | 0     |
| YOR320C |             | D | 21             | 0.11 | 0.11 | 0.07 | 0.08 | 0      | 0     | 0     |
| YOR321W | PMT3        | D | 20             | 0.11 | 0.09 | 0.16 | 0.19 | 0      | 0.01  | -0.07 |
| YOR322C | <b>DDOO</b> | D | 20             | 0.11 | 0.08 | 0.08 | 0.08 | 0      | 0     | 0     |
| YOR323C | PRO2        | D | 20             | 0.2  | 0.17 | 0.25 | 0.27 | -0.07  | 0.03  | 0.11  |
| YOR326W | MYO2        | D | 20             | 0.13 | 0.1  | 0.1  | 0.1  | -0.1   | 0     | 0     |
| YOR327C | SNC2        | D | 21             | 0.27 | 0.35 | 0.44 | 0.46 | -0.04  | 0.12  | 0.13  |
| YOR328W | PDR10       | D | 20             | 0.11 | 0.08 | 0.04 | 0.1  | 0      | 0     | 0     |
| YOR329C | SCD5        | D | 20             | 0.11 | 0.1  | 0.09 | 0.1  | 0      | 0     | 0     |
| YOR331C |             | D | 21             | 0.11 | 0.08 | 0.05 | 0.04 | 0      | 0     | 0     |
| YOR332W | VMA4        | D | 20             | 0.91 | 0.49 | 1.03 | 0.95 | 0      | 0.04  | 0.02  |
| YOR335C | ALA1        | D | 20             | 0.35 | 0.43 | 0.56 | 0.41 | 0.01   | 0.17  | 0.05  |
| YOR336W | KRE5        | D | 21             | 0.11 | 0.12 | 0.13 | 0.1  | 0      | -0.1  | 0     |
| YOR337W | TEA1        | D | 21             | 0.11 | 0.08 | 0.06 | 0.04 | 0      | 0     | 0     |
| YOR338W |             | D | 20             | 0.11 | 0.08 | 0.06 | 0.12 | 0      | 0     | 0     |
| YOR340C | RPA43       | D | 20             | 0.11 | 0.08 | 0.1  | 0.07 | 0      | 0     | 0     |
| YOR341W | RPA190      | D | 21             | 0.11 | 0.08 | 0.06 | 0.11 | 0      | 0     | -0.09 |
| YOR342C |             | D | 21             | 0.11 | 0.08 | 0.07 | 0.1  | 0      | 0     | -0.07 |
| YOR343C |             | D | 20             | 0.11 | 0.08 | 0.08 | 0.09 | 0      | 0     | 0     |
| YOR344C | TYE7        | D | 20             | 0.21 | 0.17 | 0.53 | 0.38 | 0      | 0.13  | 0.07  |
| YOR346W | REV1        | D | 21             | 0.11 | 0.08 | 0.04 | 0.05 | 0      | 0     | 0     |
| YOR347C | PYK2        | D | 21             | 0.13 | 0.11 | 0.25 | 0.21 | 0      | 0.13  | 0.08  |
| YOR348C | PUT4        | D | 20             | 0.11 | 0.08 | 0.06 | 0.04 | 0      | 0     | 0     |
| YOR349W | CIN1        | D | 21             | 0.11 | 0.08 | 0.05 | 0.05 | 0      | 0     | 0     |
| YOR352W |             | D | 21             | 0.11 | 0.08 | 0.08 | 0.09 | 0      | -0.36 | 0     |
| YOR354C |             | D | 20             | 0.11 | 0.1  | 0.08 | 0.07 | 0      | 0     | 0     |
| YOR355W | GDS1        | D | 20             | 0.15 | 0.2  | 0.2  | 0.32 | 0.15   | 0.15  | 0.23  |
| YOR356W |             | D | 20             | 0.11 | 0.13 | 0.14 | 0.11 | 0      | 0.08  | 0     |
| YOR357C | GRD19       | D | 20             | 0.11 | 0.1  | 0.12 | 0.13 | 0      | 0     | 0     |
| YOR358W | HAP5        | D | 21             | 0.11 | 0.08 | 0.05 | 0.11 | 0      | 0     | 0     |
| YOR359W |             | D | 20             | 0.12 | 0.21 | 0.16 | 0.21 | -0.03  | 0.02  | 0.07  |
| YOR360C | PDE2        | D | 20             | 0.15 | 0.11 | 0.16 | 0.23 | 0      | -0    | 0.1   |
| YOR361C | PRT1        | D | 20             | 0.24 | 0.3  | 0.34 | 0.37 | 0.02   | 0.02  | 0.03  |
| YOR362C | PRE10       | D | 20             | 0.23 | 0.26 | 0.56 | 0.66 | 0.07   | 0.14  | 0.24  |
| YOR363C | PIP2        | D | 21             | 0.11 | 0.11 | 0.06 | 0.11 | 0      | 0     | -0.02 |
| YOR367W | SCP1        | D | 20             | 0.11 | 0.1  | 0.12 | 0.21 | 0      | 0     | 0.05  |
| YOR369C | RPS12       | D | 21             | 3.54 | 3.26 | 5.34 | 4.02 | 0.05   | 0.06  | -0.17 |
| YOR370C | MRS6        | D | 20             | 0.12 | 0.15 | 0.17 | 0.25 | 0      | 0     | 0.12  |
| YOR373W | NUD1        | D | 21             | 0.11 | 0.08 | 0.04 | 0.07 | 0      | 0     | 0     |
| YOR374W | ALD7        | D | 20             | 0.88 | 0.48 | 1.58 | 1.55 | -0.21  | 0.23  | 0.23  |
| YOR375C | GDH1        | D | 20             | 1.18 | 1.05 | 2.05 | 0.93 | 0.01   | 0.28  | -0.1  |
| YOR377W | ATF1        | D | 20             | 0.11 | 0.08 | 0.05 | 0.06 | 0      | -0.35 | 0     |
| YOR380W |             | D | 20             | 0.11 | 0.08 | 0.11 | 0.1  | 0      | 0     | 0     |
| YOR382W |             | D | $\frac{1}{20}$ | 0.14 | 0.15 | 0.28 | 0.41 | 0.02   | 0.14  | 0.24  |
| YOR383C |             | D | 21             | 1.18 | 1.37 | 1.37 | 1.72 | 0.04   | 0.06  | 0.02  |
| YOR385W |             | D | 20             | 0.12 | 0.14 | 0.18 | 0.12 | 0      | 0.02  | -0.11 |
| YOR388C | FDH1        | D | 27             | 0.11 | 0.08 | 0.07 | 0.04 | Ū<br>0 | 0     | 0     |
|         |             |   | -              |      |      |      |      | -      | -     |       |

| YOR389W             |            | D      | 20 | 0.11 | 0.08 | 0.06 | 0.05         | 0     | 0     | 0     |
|---------------------|------------|--------|----|------|------|------|--------------|-------|-------|-------|
| YOR390W             |            | D      | 20 | 0.12 | 0.08 | 0.09 | 0.1          | 0     | -0.18 | -0.23 |
| YOR391C             |            | D      | 20 | 0.11 | 0.08 | 0.05 | 0.09         | 0     | 0     | 0     |
| YOR393W             | ERR1       | D      | 20 | 0.11 | 0.08 | 0.04 | 0.07         | 0     | 0     | 0     |
| YOR394W             |            | D      | 20 | 0.11 | 0.08 | 0.11 | 0.11         | 0     | 0     | -0.09 |
| YPL001W             | HAT1       | D      | 20 | 0.11 | 0.08 | 0.04 | 0.07         | 0     | 0     | 0     |
| YPL002C             | SNF8       | D      | 21 | 0.11 | 0.08 | 0.08 | 0.1          | 0     | 0     | 0     |
| YPL003W             | ULA1       | D      | 20 | 0.12 | 0.11 | 0.12 | 0.11         | 0     | -0.05 | 0     |
| YPL004C             |            | D      | 21 | 1.47 | 1.1  | 1.71 | 1.76         | -0.04 | 0.15  | 0.09  |
| YPL006W             | NCR1       | D      | 21 | 0.12 | 0.12 | 0.22 | 0.38         | -0.09 | 0.13  | 0.3   |
| YPL007C             |            | D      | 21 | 0.11 | 0.08 | 0.05 | 0.06         | 0     | 0     | 0     |
| YPL009C             |            | D      | 20 | 0.11 | 0.09 | 0.12 | 0.12         | 0     | 0     | 0     |
| YPL010W             | RET3       | D      | 20 | 0.72 | 0.8  | 1.2  | 0.75         | 0     | 0.13  | -0.02 |
| YPL011C             | TAF47      | D      | 20 | 0.11 | 0.09 | 0.11 | 0.12         | 0     | 0     | 0     |
| YPL012W             |            | D      | 20 | 0.11 | 0.13 | 0.1  | 0.09         | 0.06  | 0     | -0.11 |
| YPL013C             |            | D      | 20 | 0.21 | 0.28 | 0.31 | 0.29         | 0.02  | 0.13  | 0.08  |
| YPL014W             |            | D      | 20 | 0.26 | 0.33 | 0.57 | 0.65         | 0.04  | 0.17  | 0.22  |
| YPL015C             | HST2       | D      | 20 | 0.27 | 0.18 | 0.4  | 0.27         | -0.04 | 0.09  | -0.07 |
| YPL017C             |            | D      | 21 | 0.11 | 0.08 | 0.04 | 0.06         | 0     | 0     | 0     |
| YPL018W             | CTF19      | D      | 21 | 0.11 | 0.08 | 0.04 | 0.06         | 0     | 0     | 0     |
| YPL019C             |            | D      | 20 | 0.11 | 0.09 | 0.2  | 0.19         | 0     | 0.07  | 0     |
| YPL020C             |            | D      | 20 | 0.11 | 0.08 | 0.06 | 0.1          | 0     | 0     | 0     |
| YPL023C             | MET12      | D      | 20 | 0.14 | 0.12 | 0.1  | 0.11         | 0     | 0     | 0     |
| YPL024W             | NCE4       | D      | 20 | 0.11 | 0.08 | 0.05 | 0.12         | 0     | 0     | 0     |
| YPL026C             | SKS1       | D      | 20 | 0.11 | 0.14 | 0.08 | 0.13         | 0     | -0.19 | -0.01 |
| YPL028W             | ERG10      | D      | 21 | 2.49 | 2.75 | 3.82 | 2.35         | 0.04  | 0.16  | -0.06 |
| YPL030W             | 211010     | D      | 20 | 0.11 | 0.12 | 0.12 | 0.15         | 0     | 0     | 0.06  |
| YPL031C             | PHO85      | D      | 20 | 0.52 | 0.12 | 0.12 | 0.66         | 0.01  | 0 08  | 0.00  |
| YPL 032C            | SVL3       | D      | 20 | 0.11 | 0.11 | 0.14 | 0.00         | 0.07  | 0.00  | 0.11  |
| YPI 034W            | 5715       | D      | 20 | 0.11 | 0.08 | 0.1  | 0.08         | 0.07  | -0.1  | -0.24 |
| YPI 036W            | PMA2       | D      | 21 | 0.11 | 0.00 | 0.1  | 0.00         | 0     | 0.1   | -0.1  |
| YPL 037C            | FGD1       | D      | 21 | 3 31 | 1 77 | 3.26 | 3 13         | 0.01  | 0.01  | -0.06 |
| VPI 039W            | MET31      | D      | 20 | 0.11 | 0.08 | 0.11 | 0.08         | 0.01  | 0.01  | 0.00  |
| YPL 042C            | SSN3       | D      | 20 | 0.11 | 0.00 | 0.05 | 0.00         | 0     | 0     | 0     |
| YPL 046C            | FLC1       | D      | 20 | 0.11 | 0.02 | 0.05 | 0.07         | 0     | 0     | -0.27 |
| YPI 047W            | LLCI       | D      | 20 | 0.12 | 0.00 | 0.07 | 0.07         | 0     | 0     | 0.027 |
| VPI 0/8W            | CAM1       | D      | 20 | 1.6  | 0.12 | 1.02 | 1 28         | -0.06 | 0     | -0.02 |
| VPL 0/19C           | DIG1       | D      | 20 | 0.11 | 0.00 | 0.05 | 0.16         | -0.00 | 0     | -0.00 |
| VPL 050C            | MNNO       | D      | 20 | 0.11 | 0.00 | 0.05 | 0.10         | 0     | 0     | 0.02  |
| YPI 051W            | IVII NIN 9 | D      | 20 | 0.11 | 0.1  | 0.11 | 0.21<br>0.04 | 0     | 0     | 0.02  |
| VPI 052W            |            | D      | 20 | 0.11 | 0.08 | 0.07 | 0.04         | 0     | 0     | 0     |
| VDL 052C            | VTD6       | ם      | 20 | 0.11 | 0.00 | 0.05 | 0.03         | 0.07  | 0     | 0.06  |
| VDL 054W            |            | ם<br>ח | 20 | 0.11 | 0.10 | 0.11 | 0.13         | 0.07  | 0.24  | 0.00  |
| VDL 055C            | LEEI       | ם<br>ח | 20 | 0.11 | 0.00 | 0.00 | 0.11         | 0     | -0.24 | -0.19 |
| VDL 056C            |            | D<br>D | 20 | 0.11 | 0.09 | 0.11 | 0.12         | 0     | 0.00  | 0     |
| VDL 057C            | SUD 1      | D<br>D | 20 | 0.11 | 0.00 | 0.15 | 0.1          | 0.05  | -0.09 | 0 00  |
| VDL 059C            | DDD12      | D      | 20 | 0.23 | 0.52 | 0.49 | 0.44         | -0.05 | 0.12  | 0.08  |
| IPLUSOC<br>VDL 050W | PDR12      |        | 20 | 0.12 | 0.24 | 0.22 | 0.29         | 0.11  | 0.15  | 0.12  |
| YPL059W             |            | D<br>D | 20 | 0.57 | 0.52 | 0.00 | 0.02         | 0.01  | 0.22  | 0.24  |
| YPL061W             | ALD6       | D      | 20 | 1.33 | 0.86 | 1.30 | 1.59         | 0.01  | 0.05  | 0.09  |
| 1 PL063W            |            | D      | 20 | 0.12 | 0.08 | 0.09 | 0.15         | 0     | U     | U     |
| I PLU64C            | VDCAO      | D<br>P | 20 | 0.11 | 0.08 | 0.05 | 0.05         | 0     | 0     | 0     |
| I PLU65W            | vPS28      | D      | 20 | 0.11 | 0.08 | 0.05 | 0.1          | 0     | U     | 0     |
| YPL066W             |            | D      | 20 | 0.11 | 0.08 | 0.76 | 0.08         | 0     | 0.8   | U     |
| YPL067C             |            | D      | 21 | 0.21 | 0.49 | 1.76 | 0.52         | 0.01  | 0.77  | 0.02  |
| YPL068C             |            | D      | 21 | 0.11 | 0.08 | 0.09 | 0.04         | 0     | -0.12 | 0     |

| YPL069C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BTS1            | D      | 21 | 0.11  | 0.08  | 0.04         | 0.05         | 0     | 0     | 0         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------|----|-------|-------|--------------|--------------|-------|-------|-----------|
| YPL071C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | D      | 20 | 0.11  | 0.08  | 0.06         | 0.06         | 0     | 0     | 0         |
| YPL075W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GCR1            | D      | 21 | 0.11  | 0.08  | 0.12         | 0.12         | 0     | -0.08 | 0.05      |
| YPL076W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GPI2            | D      | 21 | 0.11  | 0.08  | 0.16         | 0.11         | 0     | 0     | -0.05     |
| YPL077C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | D      | 20 | 0.11  | 0.09  | 0.04         | 0.04         | 0     | 0     | 0         |
| YPL078C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ATP4            | D      | 20 | 0.65  | 0.53  | 1.32         | 0.65         | 0     | 0.31  | -0.05     |
| YPL079W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RPL21B          | D      | 20 | 17.13 | 10.75 | 16           | 9.9          | -0.06 | -0.05 | -0.15     |
| YPL080C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 2212         | D      | 20 | 0.11  | 0.08  | 0.04         | 0.06         | 0     | 0     | 0         |
| YPL081W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RPS9A           | D      | 21 | 0.25  | 0.33  | 04           | 0.53         | 0.04  | 0.01  | 0.25      |
| YPI 084W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BRO1            | D      | 21 | 0.23  | 0.08  | 0.08         | 0.06         | 0.01  | 0.01  | 0         |
| YPI 085W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SEC16           | D      | 20 | 0.11  | 0.00  | 0.00         | 0.00         | 0     | 0     | 0         |
| YPI 086C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HPA1            | D      | 20 | 0.11  | 0.17  | 0.14         | 0.14         | 0     | -0.26 | 0         |
| YPI 087W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 111 / 11        | D      | 20 | 1.01  | 0.11  | 0.07         | 1 46         | 0     | 0.03  | 0.2       |
| VPI 088W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 | D      | 20 | 0.11  | 0.02  | 0.7          | 0.12         | 0     | 0.05  | 0.2       |
| VDL 080C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DI M1           | ם<br>ח | 20 | 0.11  | 0.00  | 0.04         | 0.12         | 0.03  | 0.05  | 0.24      |
| VPL 000C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DDS6A           | ם<br>ח | 20 | 2.11  | 3.1   | 26           | 0.27<br>2.14 | -0.05 | 0.03  | 0.24      |
| VDL 001W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CL D1           | D      | 20 | 2.44  | 0.15  | 2.0          | 2.14         | 0.05  | 0.04  | -0.14     |
| IPL091W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GLKI            | D<br>D | 20 | 0.24  | 0.13  | 0.27         | 0.23         | 0     | 0.07  | 0         |
| YPL092W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5501            | D      | 21 | 0.11  | 0.08  | 0.24         | 0.15         | 0     | 0.24  | 0.05      |
| YPL093W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | D      | 20 | 0.11  | 0.08  | 0.05         | 0.1          | 0     | 0     | 0         |
| YPL094C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SEC62           | D      | 20 | 0.7   | 0.61  | 1.46         | 0.78         | 0.02  | 0.24  | 0.17      |
| YPL095C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | D      | 20 | 0.32  | 0.31  | 0.52         | 0.18         | 0.02  | 0.17  | -0.13     |
| YPL097W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MSYI            | D      | 20 | 0.11  | 0.1   | 0.11         | 0.13         | 0     | 0     | 0         |
| YPL098C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | D      | 20 | 0.94  | 1.46  | 1.19         | 1.28         | 0.12  | 0.15  | 0.1       |
| YPL100W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | D      | 20 | 0.11  | 0.08  | 0.05         | 0.1          | 0     | 0     | 0         |
| YPL101W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | D      | 20 | 0.11  | 0.08  | 0.08         | 0.1          | 0     | 0     | 0         |
| YPL104W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MSD1            | D      | 20 | 0.11  | 0.08  | 0.04         | 0.07         | 0     | 0     | 0         |
| YPL105C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | D      | 20 | 0.11  | 0.08  | 0.16         | 0.07         | 0     | -0.07 | 0         |
| YPL106C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SSE1            | D      | 20 | 0.83  | 0.49  | 0.97         | 1.72         | -0.06 | 0.09  | 0.32      |
| YPL107W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | D      | 20 | 0.11  | 0.08  | 0.06         | 0.04         | 0     | 0     | 0         |
| YPL111W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CAR1            | D      | 20 | 0.11  | 0.09  | 0.1          | 0.12         | 0     | 0     | 0         |
| YPL112C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | D      | 21 | 0.11  | 0.1   | 0.08         | 0.08         | 0     | 0     | 0         |
| YPL113C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | D      | 20 | 0.11  | 0.08  | 0.05         | 0.04         | 0     | 0     | 0         |
| YPL115C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BEM3            | D      | 21 | 0.11  | 0.08  | 0.04         | 0.08         | 0     | 0     | -0.11     |
| YPL117C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IDI1            | D      | 20 | 0.12  | 0.15  | 0.18         | 0.25         | 0     | 0     | 0.08      |
| YPL118W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | D      | 20 | 0.11  | 0.09  | 0.13         | 0.1          | 0     | 0     | 0         |
| YPL122C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TFB2            | D      | 20 | 0.11  | 0.08  | 0.07         | 0.09         | 0     | 0     | 0         |
| YPL123C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | D      | 20 | 0.11  | 0.08  | 0.04         | 0.08         | 0     | 0     | 0         |
| YPL125W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | D      | 21 | 0.11  | 0.08  | 0.07         | 0.04         | 0     | -0.24 | 0         |
| YPL127C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HHO1            | D      | 20 | 0.34  | 0.24  | 0.22         | 0.12         | -0.06 | -0.2  | -0.34     |
| YPL128C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TBF1            | D      | 21 | 0.16  | 0.2   | 0.11         | 0.23         | 0.06  | -0.22 | -0.04     |
| YPL129W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | D      | 20 | 0.16  | 0.16  | 0.15         | 0.18         | 0     | -0.13 | -0.06     |
| YPL131W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RPL5            | D      | 21 | 9.79  | 15.07 | 11.54        | 9.28         | 0.1   | -0.05 | -0.11     |
| YPL132W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | COX11           | D      | 20 | 0.11  | 0.08  | 0.06         | 0.13         | 0     | 0     | -0.12     |
| YPL134C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | comm            | D      | 20 | 0.24  | 0.2   | 0.00         | 0.22         | 0     | 0.36  | -0.14     |
| YPL135W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | D      | 20 | 0.76  | 0.47  | 0.67         | 1 16         | 0.04  | -0.02 | 0.31      |
| YPL138C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | D      | 20 | 0.10  | 0.08  | 0.04         | 0.1          | 0.01  | 0.02  | 0         |
| VPI 139C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | UME1            | D      | 20 | 0.11  | 0.00  | 0.14         | 0.08         | 0     | -0.05 | -0.25     |
| VPI 1/2C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | UMEI            | D<br>D | 20 | 0.13  | 0.17  | 0.14         | 0.00         | 0     | 0.05  | -0.20     |
| VPI 1/3W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>RDI 33</b> 4 | D<br>D | 18 | 12 45 | 7 79  | 0.00<br>8.49 | 7.04         | -0.07 | 0     | -0.11     |
| $\frac{11}{VDI} \frac{1}{1} \frac$ | CNID 17D        | ת<br>ח | 20 | 0 22  | 0.24  | 0.47         | 0.22         | -0.07 | 0.07  | -0.11     |
| VDI 1/15C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VEC1            | ע<br>ח | 20 | 0.52  | 0.24  | 0.23         | 0.22         | -0.02 | -0.07 | -0.13     |
| VDI 149C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NEO I<br>DDTO   | ע      | 20 | 0.17  | 0.13  | 0.12         | 0.1          | 0     | 0     | 0         |
| VDI 140W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 | ע<br>ח | 20 | 0.15  | 0.11  | 0.08         | 0.13         | 0.02  | 0 11  | 0.02      |
| 1 FL149W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | APUJ            | ע<br>ר | 21 | 0.42  | 0.42  | 0.5          | 0.49         | 0.02  | 0.11  | 0.09      |
| IPLI52W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | KKD2            | ע<br>ת | 21 | 0.11  | 0.08  | 0.04         | 0.09         | 0 11  | 0     | U<br>0.10 |
| IPLI54C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PEP4            | υ      | 20 | 1.94  | 1.5   | 1.85         | 5.12         | -0.11 | -0.04 | 0.18      |

| YPL156C  |              | D      | 20              | 0.11 | 0.08 | 0.05  | 0.06 | 0      | 0     | 0     |
|----------|--------------|--------|-----------------|------|------|-------|------|--------|-------|-------|
| YPL157W  |              | D      | 20              | 0.11 | 0.08 | 0.05  | 0.04 | 0      | 0     | 0     |
| YPL159C  |              | D      | 20              | 0.11 | 0.08 | 0.11  | 0.1  | 0      | 0     | 0     |
| YPL160W  | CDC60        | D      | 20              | 0.12 | 0.16 | 0.21  | 0.21 | 0.08   | 0.12  | 0.08  |
| YPL162C  |              | D      | 21              | 0.11 | 0.08 | 0.08  | 0.06 | 0      | 0     | 0     |
| YPL163C  | SVS1         | D      | 20              | 0.48 | 0.82 | 0.87  | 0.61 | 0.18   | 0.09  | 0     |
| YPL168W  | 2121         | D      | 20              | 0.11 | 0.08 | 0.04  | 0.06 | 0      | 0     | 0     |
| YPL169C  | MEX67        | D      | 20              | 0.16 | 0.11 | 0.15  | 0.25 | 0      | -0.22 | 0.07  |
| YPL170W  |              | D      | 21              | 0.42 | 0.26 | 0.51  | 0.75 | 0      | 0.16  | 0.24  |
| YPL171C  | OYE3         | D      | 20              | 0.11 | 0.08 | 0.07  | 0.04 | 0      | 0     | 0     |
| YPL172C  | COX10        | D      | $\frac{20}{20}$ | 0.11 | 0.08 | 0.06  | 0.1  | 0<br>0 | 0     | -0.21 |
| YPI 173W | MRPI 40      | D      | 20              | 0.11 | 0.00 | 0.00  | 0.12 | 0      | 0     | -0.11 |
| YPL175W  |              | D      | 20              | 0.11 | 0.02 | 0.09  | 0.09 | 0      | 0     | 0.11  |
| YPI 176C |              | D      | 20              | 0.11 | 0.12 | 0.02  | 0.02 | 0      | -0.13 | -0.1  |
| VPI 177C | CUP9         | D      | 20              | 0.10 | 0.12 | 0.15  | 0.10 | -0.08  | 0.15  | 0.1   |
| VPI 178W | MUD13        | D      | 21              | 0.2  | 0.25 | 0.27  | 0.52 | -0.00  | -0.12 | 0.01  |
| VDI 170W | DD01         | D<br>D | $\frac{21}{20}$ | 0.10 | 0.2  | 0.17  | 0.17 | 0      | -0.12 | 0     |
| VDI 180W | rrųi         | ם<br>ח | 20              | 0.11 | 0.11 | 0.13  | 0.14 | 0      | 0     | 0     |
| VDL 192C |              | D<br>D | $\frac{21}{20}$ | 0.11 | 0.08 | 0.04  | 0.04 | 0      | 0     | 0     |
| 1FL102C  |              | D      | 20              | 0.11 | 0.09 | 0.05  | 0.04 | 0      | 0     | 0     |
| VDL 184C |              | D      | 20              | 0.11 | 0.08 | 0.04  | 0.09 | 0 02   | 0.05  | 0     |
| YPL184C  |              | D      | 20              | 0.12 | 0.2  | 0.15  | 0.12 | 0.02   | -0.05 | 0 12  |
| YPL186C  |              | D      | 21              | 0.11 | 0.08 | 0.07  | 0.09 | 0      | 0     | -0.13 |
| YPL18/W  | MFal         | D      | 20              | 0.11 | 2.88 | 0.07  | 0.04 | 1.28   | 0     | 0     |
| YPL188W  | POS5         | D      | 20              | 0.11 | 0.08 | 0.13  | 0.09 | 0      | 0.03  | 0     |
| YPL190C  |              | D      | 20              | 0.11 | 0.08 | 0.06  | 0.06 | 0      | 0     | 0     |
| YPL195W  | APL5         | D      | 21              | 0.11 | 0.08 | 0.08  | 0.06 | 0      | 0     | -0.33 |
| YPL196W  |              | D      | 21              | 0.11 | 0.08 | 0.06  | 0.08 | 0      | 0     | -0.12 |
| YPL197C  |              | D      | 21              | 0.11 | 0.08 | 0.04  | 0.07 | 0      | 0     | 0     |
| YPL198W  | RPL7B        | D      | 39              | 0.81 | 0.76 | 1.02  | 1.97 | 0      | -0.05 | -0.04 |
| YPL199C  |              | D      | 20              | 0.23 | 0.21 | 0.29  | 0.21 | 0      | -0.03 | -0.06 |
| YPL203W  | PKA3         | D      | 21              | 0.18 | 0.14 | 0.18  | 0.34 | 0      | -0.01 | 0.1   |
| YPL204W  | HRR25        | D      | 21              | 0.31 | 0.13 | 0.21  | 0.41 | 0      | -0.15 | 0.02  |
| YPL206C  |              | D      | 20              | 0.44 | 0.14 | 0.36  | 0.45 | -0.25  | -0.05 | 0.1   |
| YPL207W  |              | D      | 20              | 0.11 | 0.18 | 0.18  | 0.22 | -0.05  | 0.03  | 0.03  |
| YPL208W  |              | D      | 20              | 0.11 | 0.08 | 0.07  | 0.06 | 0      | -0.28 | 0     |
| YPL210C  | SRP72        | D      | 20              | 0.11 | 0.11 | 0.05  | 0.1  | 0      | 0     | 0     |
| YPL211W  | NIP7         | D      | 21              | 0.11 | 0.15 | 0.17  | 0.11 | 0.08   | 0.03  | -0.08 |
| YPL212C  | PUS1         | D      | 21              | 0.11 | 0.08 | 0.08  | 0.06 | 0      | -0.23 | 0     |
| YPL214C  | THI6         | D      | 20              | 0.11 | 0.08 | 0.1   | 0.04 | 0      | 0     | 0     |
| YPL215W  | CBP3         | D      | 21              | 0.11 | 0.1  | 0.16  | 0.11 | 0      | 0.15  | -0.17 |
| YPL218W  | SAR1         | D      | 20              | 2.18 | 1.36 | 3.16  | 2.2  | -0.08  | 0.1   | -0.06 |
| YPL219W  | PCL8         | D      | 20              | 0.11 | 0.08 | 0.05  | 0.04 | 0      | 0     | 0     |
| YPL220W  | RPL1A        | D      | 20              | 9.9  | 5.87 | 10.04 | 5.6  | -0.39  | -0.03 | -0.21 |
| YPL221W  |              | D      | 21              | 0.26 | 0.14 | 0.48  | 0.52 | -0.22  | 0.18  | 0.19  |
| YPL 222W |              | D      | 21              | 0.11 | 0.08 | 0.04  | 0.08 | 0      | 0     | 0     |
| YPL223C  | GRE1         | D      | 21              | 0.11 | 0.08 | 0.06  | 1.04 | 0<br>0 | 0     | 0.83  |
| VPI 224C | MMT2         | D      | 21              | 0.11 | 0.00 | 0.00  | 0.16 | 0      | -0.28 | 0.05  |
| YPI 225W | 10110112     | D      | 21              | 0.15 | 0.02 | 0.11  | 0.10 | 0      | 0.20  | 0.2   |
| VPI 226W |              | D      | 21              | 0.24 | 0.10 | 0.07  | 0.07 | 0      | 0.23  | 0.2   |
| VDI 227C | ALC5         | ם<br>ח | $\frac{21}{20}$ | 0.11 | 0.15 | 0.07  | 0.09 | 0      | -0.19 | 0     |
| VDI 220W | ALUJ         | ע<br>ח | 20              | 0.11 | 0.00 | 0.07  | 0.1  | 0<br>0 | 0.01  | 0.01  |
| VDI 220W |              | ע<br>ת | 21<br>20        | 0.5  | 0.22 | 0.32  | 0.40 | 0      | -0.01 | -0.01 |
| 1 FL230W | EASO         | ע<br>ח | 20              | 0.11 | 0.00 | 0.09  | 1.00 | 0      | 0.04  | 0.12  |
| VDI 222W | radz<br>SSO1 | ע      | 20              | 1.32 | 0.00 | 2.07  | 1.08 | 0      | 0.04  | -0.12 |
| IPL232W  | 2201         | ע<br>ר | 20              | 0.14 | 0.21 | 0.23  | 0.29 | 0 10   | 0     | 0.13  |
| r PL234C | 15P3         | D      | 21              | 2.78 | 1.14 | 2.44  | 1.56 | -0.19  | -0.04 | -0.12 |

| YPL235W   |              | D      | 21              | 0.18 | 0.12 | 0.2   | 0.27 | -0.06 | -0.07     | 0.05  |
|-----------|--------------|--------|-----------------|------|------|-------|------|-------|-----------|-------|
| YPL236C   |              | D      | 21              | 0.11 | 0.08 | 0.06  | 0.09 | 0     | 0         | -0.07 |
| YPL237W   | SUI3         | D      | 20              | 0.18 | 0.22 | 0.28  | 0.28 | 0.12  | 0.08      | 0.13  |
| YPL238C   |              | D      | 20              | 0.11 | 0.08 | 0.04  | 0.08 | 0     | 0         | -0.22 |
| YPL239W   | YAR1         | D      | 20              | 0.11 | 0.08 | 0.11  | 0.11 | 0     | -0.09     | 0     |
| YPL240C   | HSP82        | D      | 20              | 0.15 | 0.14 | 0.21  | 0.67 | 0     | -0.12     | 0.39  |
| YPL244C   |              | D      | 21              | 0.21 | 0.17 | 0.27  | 0.22 | 0     | 0.06      | 0     |
| YPL245W   |              | D      | 20              | 0.11 | 0.14 | 0.08  | 0.13 | -0.01 | 0         | -0.08 |
| YPL246C   |              | D      | 20              | 0.96 | 0.72 | 0.81  | 0.68 | 0     | -0.09     | -0.13 |
| YPL247C   |              | D      | 20              | 0.43 | 0.09 | 0.55  | 0.38 | -0.3  | 0.14      | -0.09 |
| YPL250C   |              | D      | 21              | 1.05 | 0.53 | 0.73  | 0.48 | -0.12 | -0.17     | 0     |
| YPL252C   |              | D      | 20              | 0.88 | 0.78 | 0.97  | 1.09 | 0.02  | 0.01      | 0.1   |
| YPL256C   | CLN2         | D      | 21              | 0.21 | 0.15 | 0.17  | 0.2  | 0     | 0         | -0.02 |
| YPL258C   |              | D      | 21              | 0.11 | 0.08 | 0.05  | 0.05 | 0     | 0         | 0     |
| YPL259C   | APM1         | D      | 20              | 0.11 | 0.11 | 0.09  | 0.06 | 0     | 0         | 0     |
| YPL260W   |              | D      | 21              | 0.11 | 0.08 | 0.04  | 0.1  | 0     | 0         | -0.25 |
| YPL262W   | FUM1         | D      | 21              | 0.97 | 0.64 | 3 1 1 | 1 42 | -0.28 | 0.4       | 0.14  |
| YPL263C   | KEL3         | D      | 20              | 0.11 | 0.08 | 0.05  | 0.04 | 0     | 0         | 0     |
| YPL264C   | KEE5         | D      | 20              | 0.11 | 0.00 | 0.08  | 0.08 | 0     | 0         | Ő     |
| YPI 265W  | DIP5         | D      | 20              | 0.11 | 0.22 | 0.00  | 0.00 | -0.08 | -0.12     | 0.07  |
| YPL266W   | DIM1         | D      | 20              | 0.11 | 0.02 | 0.09  | 0.20 | 0.00  | 0.12      | 0.07  |
| VPI 268W  | PL C1        | D      | 20              | 0.11 | 0.00 | 0.07  | 0.00 | 0     | 0         | _0.19 |
| YPI 270W  | MDL 2        | D      | 20              | 0.11 | 0.00 | 0.07  | 0.1  | 0     | -0.25     | 0.02  |
| VPI 271W  |              | D      | $\frac{21}{20}$ | 2.11 | 0.09 | 3.99  | 2.87 | -01   | 0.16      | -0.02 |
| VPI 273W  | AIIII        | D      | 20              | 0.25 | 0.58 | 0.43  | 0.16 | -0.4  | 0.10      | -0.00 |
| VPI 274W  |              | D<br>D | 20              | 0.23 | 0.18 | 0.43  | 0.10 | 0.04  | 0.05      | 0.22  |
| VPI 275W  |              | D<br>D | 20              | 0.17 | 0.22 | 0.22  | 0.55 | 0.04  | 0.05      | 0.22  |
| VDI 276W  |              | D<br>D | 24              | 0.11 | 0.08 | 0.07  | 0.04 | 0     | 0         | 0     |
| VDI 278C  |              | D<br>D | 20              | 0.11 | 0.00 | 0.00  | 0.04 | 0.06  | 0.03      | 0     |
| VPI 270C  |              | ע<br>ח | 20              | 0.11 | 0.11 | 0.12  | 0.14 | -0.00 | 0.05      | -0    |
| VDI 280W  |              | D<br>D | 20              | 0.11 | 0.15 | 0.11  | 0.10 | 0     | 0         | 0.07  |
| VDI 282C  |              | D<br>D | 20              | 0.11 | 0.08 | 0.05  | 0.1  | 0     | 0         | 0     |
| VDL 282C  |              | D<br>D | 20              | 0.77 | 0.00 | 0.08  | 0.00 | 0.22  | 0.12      | 0     |
| VPP004C   |              | D      | 20              | 0.72 | 0.55 | 0.05  | 0.78 | -0.22 | -0.12     | 0     |
| VPP005C   | <b>UAI 1</b> | D      | 20              | 0.42 | 0.55 | 0.01  | 0.07 | -0.05 | 0.01      | 0     |
| VPP006C   | ICL 2        | D<br>D | 20              | 0.11 | 0.08 | 0.05  | 0.03 | 0     | -0.10     | 0     |
| VDD008W   | ICL2         | D<br>D | 20              | 0.11 | 0.08 | 0.05  | 0.04 | 0     | 0.10      | 01    |
| VDD000W   |              | D<br>D | 21              | 0.11 | 0.08 | 0.07  | 0.09 | 0     | -0.19     | -0.1  |
| VPP010C   |              | D<br>D | 20              | 0.11 | 0.15 | 0.14  | 0.14 | 0.1   | 0.02      | -0.01 |
| VPP011C   |              | D<br>D | 20              | 0.27 | 0.41 | 0.30  | 0.37 | 0.1   | 0.02      | 0.05  |
| VDD012W   |              | D<br>D | 20              | 0.11 | 0.08 | 0.08  | 0.09 | 0     | 0.13      | 02    |
| VDD012C   |              | D      | 20              | 0.12 | 0.00 | 0.14  | 0.12 | 0     | -0.15     | -0.2  |
| VPR016C   |              | D      | 20              | 0.11 | 1.06 | 0.08  | 0.05 | 0.07  | 0.02      | 0.02  |
| VPP017C   |              | D<br>D | 20              | 0.99 | 0.08 | 0.95  | 0.07 | 0.07  | -0.02     | -0.03 |
| VDD010W   | CDC54        | D      | 20              | 0.11 | 0.00 | 0.06  | 0.05 | 0     | -0.10     | 0     |
| VDD020W   | CDC34        | D      | 21              | 0.11 | 0.00 | 0.00  | 0.04 | 0     | 0 35      | 0 21  |
| VDD021C   |              |        | 20              | 0.52 | 0.15 | 0.01  | 0.10 | 0     | 0.55      | -0.21 |
| VDD022C   |              | D      | 21              | 0.11 | 0.08 | 0.11  | 0.15 | 0     | 0         | -0.11 |
| VDD022C   |              | D      | 21              | 0.11 | 0.08 | 0.08  | 0.09 | 0.04  | 0         | 0 12  |
| YPR023C   |              | D      | 20              | 0.24 | 0.52 | 0.25  | 0.30 | 0.04  | 0.08      | 0.15  |
| I PKU24W  | IMEI         | D<br>D | 21<br>41        | 0.11 | 0.08 | 0.05  | 0.09 | 0 15  | 0         | 0.01  |
| 1 PKU28W  |              | U<br>D | 41              | 4.33 | 1.52 | 5.02  | 3.43 | -0.15 | -0.1      | 0.01  |
| 1 PKU29U  | APL4         | U<br>D | 20              | 0.11 | 0.08 | 0.05  | 0.08 | 0     | 0         | -0.2  |
| I PKU3UW  | 117701       | D<br>D | 20              | 0.11 | 0.08 | 0.09  | 0.04 | 0 07  | U<br>0 10 | 0     |
| 1 PKU55C  | HISI         | D<br>D | 20              | 0.55 | 0.51 | 0.6   | 0.4/ | 0.07  | 0.18      | U     |
| 1 PKU34 W | AKP/         | D      | 21              | 0.11 | 0.11 | 0.06  | 0.07 | -0.01 | -0.28     | 0     |

| YPR035W  | GLN1           | D      | 20              | 1.04  | 0.63 | 1.73  | 2.74         | -0.02 | 0.19  | 0.43  |
|----------|----------------|--------|-----------------|-------|------|-------|--------------|-------|-------|-------|
| YPR036W  | VMA13          | D      | 21              | 1.16  | 1.1  | 1.57  | 1.97         | -0.1  | -0.02 | 0.2   |
| YPR037C  |                | D      | 20              | 0.46  | 0.39 | 0.46  | 0.41         | -0.07 | 0.01  | -0.1  |
| YPR040W  |                | D      | 20              | 0.11  | 0.08 | 0.06  | 0.08         | 0     | 0     | 0     |
| YPR041W  | TIF5           | D      | 20              | 0.2   | 0.27 | 0.2   | 0.29         | 0     | 0     | 0.01  |
| YPR042C  |                | D      | 21              | 0.11  | 0.09 | 0.05  | 0.09         | 0     | 0     | -0.16 |
| YPR043W  | RPL43A         | D      | 20              | 15.59 | 9.63 | 9.66  | 7.48         | -0.18 | -0.13 | -0.22 |
| YPR044C  |                | D      | 20              | 0.13  | 0.14 | 0.14  | 0.06         | 0     | -0.1  | 0     |
| YPR047W  | MSF1           | D      | 21              | 0.11  | 0.08 | 0.04  | 0.05         | 0     | 0     | 0     |
| YPR048W  |                | D      | 21              | 0.11  | 0.08 | 0.05  | 0.05         | 0     | 0     | 0     |
| YPR051W  | MAK3           | D      | 21              | 0.11  | 0.08 | 0.11  | 0.07         | 0     | 0     | 0     |
| YPR052C  | NHP6A          | D      | 21              | 1.5   | 0.49 | 1.39  | 1.2          | -0.21 | -0.08 | -0.11 |
| YPR053C  |                | D      | 20              | 0.12  | 0.15 | 0.12  | 0.14         | 0     | -0.15 | 0     |
| YPR057W  | BRR1           | D      | 20              | 0.11  | 0.08 | 0.06  | 0.11         | 0     | 0     | 0     |
| YPR058W  | YMC1           | D      | 21              | 0.36  | 0.22 | 0.61  | 0.3          | 0.05  | 0.25  | -0.09 |
| YPR060C  | ARO7           | D      | 20              | 0.11  | 0.12 | 0.06  | 0.11         | 0     | 0     | 0     |
| YPR061C  |                | D      | 21              | 0.11  | 0.08 | 0.07  | 0.04         | 0     | -0.31 | 0     |
| YPR062W  | FCY1           | D      | 20              | 0.62  | 0.55 | 0.79  | 0.7          | -0.01 | 0.07  | 0     |
| YPR063C  |                | D      | $\frac{1}{22}$  | 1.37  | 0.72 | 1.4   | 1.46         | 0     | -0.02 | Õ     |
| YPR065W  | ROX1           | D      | 20              | 0.11  | 0.08 | 0.06  | 0.06         | 0     | 0     | 0     |
| YPR066W  | UBA3           | D      | 21              | 0.11  | 0.08 | 0.05  | 0.05         | 0     | 0     | 0     |
| YPR067W  | 02110          | D      | 20              | 0.2   | 0.16 | 0.2   | 03           | 0     | 0     | 0.07  |
| YPR069C  | SPE3           | D      | 20              | 0.29  | 0.10 | 0.49  | 0.39         | -0.03 | 0 09  | 0.07  |
| YPR072W  | 51 25          | D      | 20              | 0.12  | 0.11 | 0.12  | 0.09         | 0     | 0     | Ő     |
| YPR073C  | LTP1           | D      | 20              | 0.11  | 0.08 | 0.08  | 0.04         | 0     | Ő     | Ő     |
| YPR074C  | TKL1           | D      | 20              | 1 97  | 1 53 | 2 79  | 2 72         | -0.06 | 0.02  | 0.03  |
| YPR075C  | OPY2           | D      | 20              | 0.11  | 0.16 | 0.2   | 0.21         | 0.00  | 0.02  | 0.03  |
| VPR079W  | 0112           | D      | 20              | 0.11  | 0.10 | 0.14  | 0.21         | 0     | 0.04  | 0.12  |
| VPR080W  | TFF1           | D<br>D | $\frac{21}{20}$ | 11.68 | 4.82 | 10.14 | 0.10<br>8 1/ | -0.13 | -0.1  | -0.14 |
| VPR081C  | ILI'I          | D      | 20              | 0.11  | 4.82 | 0.04  | 0.14         | -0.15 | -0.1  | -0.14 |
| VPR082C  |                | D      | 21              | 0.13  | 0.00 | 0.04  | 0.1          | 0     | 0.21  | 0     |
| VPR084W  |                | D<br>D | 20              | 0.13  | 0.17 | 0.40  | 0.2          | 0     | 0.21  | 0.17  |
| VDD085C  |                | ם<br>ח | 20              | 0.11  | 0.08 | 0.00  | 0.08         | 0     | 0     | -0.17 |
| VDD086W  | SILA7          | D<br>D | 20              | 0.12  | 0.00 | 0.07  | 0.05         | 0.06  | 0.22  | 0.02  |
| VDD088C  | SUAT           | ם<br>ח | 20              | 0.12  | 0.17 | 0.23  | 0.14         | -0.00 | 0.22  | 0.05  |
| VPR001C  |                | D<br>D | 20              | 0.23  | 0.22 | 0.52  | 0.4          | 0     | 0.05  | 0.05  |
| VDD002C  |                | D<br>D | 21              | 0.11  | 0.08 | 0.03  | 0.07         | 0     | -0.5  | 0     |
| VDD004W  |                | D<br>D | 21              | 0.11  | 0.08 | 0.07  | 0.05         | 0     | 0     | 0.12  |
| VDD008C  |                | D<br>D | 20              | 0.11  | 0.08 | 1.25  | 1.20         | 01    | 0.06  | -0.12 |
| VDD 100W |                | D<br>D | 20              | 0.94  | 0.77 | 1.55  | 1.39         | -0.1  | 0.00  | 0.05  |
| VDD 101W | SNT200         | D<br>D | 20              | 0.15  | 0.2  | 0.27  | 0.2          | 0     | 0.07  | -0.01 |
| VDD 102C | SIN I 509      | D<br>D | 20              | 0.11  | 0.00 | 0.04  | 0.05         | 0 20  | 0.01  | 0     |
| VDD 102W | KPLIIA<br>DDE2 | D      | 20              | 4.38  | 1.5  | 5.45  | 5.44<br>1.25 | -0.20 | -0.01 | -0.08 |
| VDD 106W | PKE2           | D      | 20              | 1.55  | 0.37 | 1.21  | 1.23         | 0     | -0.12 | 0.00  |
| YPR100W  | ISKI<br>VTU1   | D      | 20              | 0.28  | 0.29 | 0.19  | 0.31         | 0     | 0     | -0.04 |
| YPRI0/C  | Y I H I        | D      | 20              | 0.11  | 0.08 | 0.08  | 0.09         | 0     | 0     | 0     |
| YPR108W  | RPN/           | D      | 21              | 0.26  | 0.18 | 0.27  | 0.31         | 0     | 0.04  | 0.1   |
| YPR109W  | DDC 10         | D      | 20              | 0.18  | 0.09 | 0.24  | 0.24         | 0     | 0     | 0.17  |
| YPR110C  | RPC40          | D      | 20              | 0.16  | 0.19 | 0.22  | 0.19         | -0.01 | 0.09  | 0.04  |
| YPR113W  | PIST           | D      | 20              | 2.51  | 1.89 | 1.65  | 1.64         | -0.12 | -0.09 | -0.14 |
| YPR114W  |                | D      | 20              | 0.69  | 0.4  | 0.59  | 0.81         | -0.2  | 0.03  | 0.05  |
| YPR115W  |                | D      | 21              | 0.11  | 0.08 | 0.21  | 0.1          | 0     | -0.14 | -0.13 |
| YPR117W  |                | D      | 20              | 0.11  | 0.08 | 0.04  | 0.07         | 0     | 0     | 0     |
| YPR118W  | <del>~-</del>  | D      | 20              | 0.17  | 0.17 | 0.16  | 0.21         | 0     | 0     | -0.07 |
| YPR119W  | CLB2           | D      | 20              | 0.11  | 0.08 | 0.08  | 0.06         | 0     | 0     | 0     |
| YPR120C  | CLB5           | D      | 21              | 0.11  | 0.08 | 0.07  | 0.13         | 0     | 0     | -0.21 |

| YPR121W             |        | D      | 20              | 0.11 | 0.08 | 0.06 | 0.08 | 0      | 0     | 0     |
|---------------------|--------|--------|-----------------|------|------|------|------|--------|-------|-------|
| YPR124W             | CTR1   | D      | 20              | 0.11 | 0.08 | 0.06 | 0.04 | 0      | 0     | 0     |
| YPR125W             |        | D      | 21              | 0.11 | 0.09 | 0.2  | 0.15 | 0      | 0.08  | 0.13  |
| YPR126C             |        | D      | 20              | 0.11 | 0.09 | 0.07 | 0.04 | 0      | 0     | 0     |
| YPR127W             |        | D      | 20              | 0.16 | 0.18 | 0.16 | 0.79 | 0      | -0.03 | 0.47  |
| YPR128C             |        | D      | 21              | 0.17 | 0.13 | 0.13 | 0.22 | 0      | -0.22 | -0.08 |
| YPR129W             | SCD6   | D      | 20              | 0.11 | 0.08 | 0.08 | 0.11 | 0      | 0     | 0     |
| YPR131C             |        | D      | 21              | 0.11 | 0.08 | 0.06 | 0.07 | 0      | 0     | -0.2  |
| YPR132W             | RPS23B | D      | 40              | 3.53 | 4.34 | 5.31 | 2.72 | 0.01   | 0.05  | -0.14 |
| YPR133C             |        | D      | 20              | 0.11 | 0.09 | 0.1  | 0.13 | 0      | 0     | 0     |
| YPR134W             | MSS18  | D      | 21              | 0.11 | 0.08 | 0.05 | 0.09 | 0      | 0     | -0.08 |
| YPR135W             | CTF4   | D      | 20              | 0.11 | 0.08 | 0.06 | 0.07 | 0      | 0     | 0     |
| YPR138C             | MEP3   | D      | 21              | 0.27 | 0.26 | 0.38 | 0.27 | 0      | 0     | -0.05 |
| YPR139C             | MILI S | D      | 20              | 0.13 | 0.08 | 0.14 | 0.1  | 0<br>0 | -0.01 | 0     |
| YPR140W             |        | D      | 20              | 0.13 | 0.00 | 0.14 | 0.1  | 0      | -0.15 | 0 16  |
| YPR143W             |        | D      | 20              | 0.17 | 0.08 | 0.05 | 0.07 | 0      | 0.15  | -0.26 |
| VPR144C             |        | D      | 21              | 0.11 | 0.00 | 0.03 | 0.07 | -0.07  | -0.04 | -0.20 |
| VPR1/15W            | A SN1  | D<br>D | $\frac{21}{20}$ | 0.11 | 0.11 | 0.11 | 0.00 | -0.07  | 0.04  | 0.06  |
| VPR1/6C             | ASIVI  | D      | 20              | 0.40 | 0.57 | 0.33 | 0.47 | 0      | 0.55  | 0.00  |
| VDD147C             |        | D<br>D | 20              | 0.17 | 0.10 | 0.33 | 0.39 | 0.03   | 0.11  | 0.17  |
| VDD149C             |        | ם<br>ח | 20              | 0.24 | 0.25 | 0.43 | 0.38 | 0.05   | 0.20  | 0.10  |
| VDD 140W            | NCE102 | D      | 20              | 5.06 | 1.00 | 0.23 | 4.27 | 0.44   | 0.02  | 0.12  |
| VDD151C             | NCE102 | D      | 20              | 5.00 | 1.20 | 5.75 | 4.37 | -0.44  | -0.09 | 0.05  |
| VDD152W             |        | D      | 20              | 0.11 | 0.08 | 0.04 | 0.00 | 0      | 0 28  | 0     |
| IPKIJOW<br>VDD 154W |        | D      | 21              | 0.11 | 0.00 | 0.00 | 0.00 | 0      | -0.28 | 0 22  |
| YPR154W             | NCAO   | D      | 20              | 0.27 | 0.28 | 0.42 | 0.52 | 0      | 0.07  | 0.22  |
| YPR155C             | NCA2   | D      | 20              | 0.11 | 0.08 | 0.06 | 0.06 | 0      | 0     | 0     |
| YPRI56C             |        | D      | 20              | 0.41 | 0.3  | 0.54 | 0.95 | 0      | 0     | 0.24  |
| YPRI5/W             |        | D      | 21              | 0.11 | 0.12 | 0.12 | 0.53 | 0      | 0     | 0.47  |
| YPR158W             | VDEC   | D      | 20              | 0.11 | 0.08 | 0.05 | 0.05 | 0      | 0     | 0     |
| YPR159W             | KRE6   | D      | 20              | 0.37 | 0.46 | 0.84 | 0.69 | 0      | 0.26  | 0.12  |
| YPR160W             | GPHI   | D      | 21              | 0.55 | 0.28 | 0.68 | 0.65 | -0.13  | 0.21  | 0.09  |
| YPR16IC             | SGVI   | D      | 20              | 0.11 | 0.08 | 0.04 | 0.13 | 0      | 0     | -0.03 |
| YPR162C             | ORC4   | D      | 21              | 0.11 | 0.08 | 0.07 | 0.09 | 0      | -0.26 | 0     |
| YPR163C             | TIF3   | D      | 20              | 0.29 | 0.24 | 0.21 | 0.27 | 0      | -0.19 | -0.1  |
| YPR165W             | RHO1   | D      | 20              | 1.57 | 0.41 | 1.85 | 1.32 | -0.4   | 0.06  | -0.08 |
| YPR166C             | MRP2   | D      | 20              | 0.16 | 0.09 | 0.25 | 0.18 | 0      | -0.03 | 0     |
| YPR167C             | MET16  | D      | 20              | 0.11 | 0.08 | 0.06 | 0.05 | 0      | 0     | 0     |
| YPR169W             |        | D      | 20              | 0.11 | 0.08 | 0.05 | 0.09 | 0      | 0     | -0.19 |
| YPR172W             |        | D      | 20              | 0.22 | 0.21 | 0.27 | 0.58 | 0      | 0.01  | 0.26  |
| YPR173C             | VPS4   | D      | 20              | 0.11 | 0.08 | 0.09 | 0.16 | 0      | 0     | 0.09  |
| YPR174C             |        | D      | 21              | 0.11 | 0.08 | 0.07 | 0.04 | 0      | -0.33 | 0     |
| YPR176C             | BET2   | D      | 20              | 0.29 | 0.18 | 0.29 | 0.23 | 0      | -0.06 | -0.11 |
| YPR178W             | PRP4   | D      | 21              | 0.11 | 0.08 | 0.07 | 0.07 | 0      | 0     | 0     |
| YPR181C             | SEC23  | D      | 21              | 0.33 | 0.2  | 0.39 | 0.37 | -0.1   | 0     | 0     |
| YPR182W             | SMX3   | D      | 21              | 0.22 | 0.24 | 0.46 | 0.36 | -0.04  | 0.13  | 0.1   |
| YPR183W             | DPM1   | D      | 20              | 0.75 | 0.43 | 1.23 | 0.7  | -0.16  | 0.18  | -0.01 |
| YPR184W             |        | D      | 21              | 0.11 | 0.08 | 0.04 | 0.11 | 0      | 0     | 0     |
| YPR185W             | APG13  | D      | 20              | 0.11 | 0.08 | 0.04 | 0.08 | 0      | 0     | 0     |
| YPR187W             | RPO26  | D      | 20              | 0.23 | 0.15 | 0.26 | 0.19 | 0      | 0.04  | -0.11 |
| YPR188C             |        | D      | 21              | 0.14 | 0.08 | 0.1  | 0.07 | -0.11  | -0.19 | -0.34 |
| YPR191W             | QCR2   | D      | 21              | 0.51 | 0.22 | 0.46 | 0.35 | -0.22  | 0.24  | -0.13 |
| YPR194C             |        | D      | 21              | 0.11 | 0.08 | 0.22 | 0.08 | 0      | 0     | 0     |
| YPR198W             | SGE1   | D      | 20              | 0.14 | 0.11 | 0.16 | 0.28 | 0      | -0.02 | 0.14  |
| YPR199C             | ARR1   | D      | 20              | 0.14 | 0.1  | 0.14 | 0.15 | 0      | -0.19 | 0     |
| YPR204W             |        | D      | 20              | 0.48 | 0.36 | 0.72 | 0.81 | 0      | 0.05  | 0.1   |

### **References**

1. **Wenzel, T.J., Teunissen, A.W. and de Steensma, H.Y.,** PDA1 mRNA: a standard for quantitation of mRNA in Saccharomyces cerevisiae superior to ACT1 mRNA, *Nucleic Acids Research*, 23(5), 883-884, 1995.

2. **Iyer, V. and Struhl, K.,** Absolute mRNA levels and transcription initiation rates in Saccharomyces cerevisiae., *Proceedings of the National Academy of Sciences of the United States of America*, 93, 5208-5212, 1996.

Appendix D

# Transcripts Not Detected

in Four Saccharomyces cerevisiae Cultures

A number of ORFs were not detected, for one of two reasons. The first possibility is that probe pairs corresponding to the undetected ORF were simply not on the microarray. Since the list of ORFs in *S. cerevisiae*, as represented by the Saccharomyces Genome Database (SGD) has changed over time, since the design of the Affymetrix microarrays. The following ORFs were not detected for this reason.

| ORF ID    | Gene Name |
|-----------|-----------|
| YAL064C-A |           |
| YAL064W-B |           |
| YDL045W-A | MRP10     |
| YDL134C-A | RPL47B    |
| YDL184C   | RPL41A    |
| YFL002W-A |           |
| YGL226C-A | OST5      |
| YHR005C-A | MRS11     |
| YHR021W-A | ECM12     |
| YIL009C-A | EST3      |
| YIL017C   |           |
| YIL071C   |           |
| YIL174W   |           |
| YKR035W-A | FTI1      |
| YLR312W-A | MRPL15    |
| YLR337C   | VRP1      |
| YLR391W-A | SSR1      |
| YLR438C-A | SMX4      |
| YMR307W   | GAS1      |
| YNL338W   |           |
| YOR008C-A | KIM1      |
| YPR133W-A | TOM5      |

#### **ORFs Not Represented on the Affymetrix Yeast Microarrays Used**

Detection thresholds were calculated as described in Chapter 3. The following

table shows the detection thresholds applied for each microarray assay.

#### **Detection Thresholds for each Microarray Assay**

|                | a     | α     | gal   | heat  |
|----------------|-------|-------|-------|-------|
| microarray "A" | 0.086 | 0.039 | 0.069 | 0.091 |
| microarray "B" | 0.069 | 0.072 | 0.066 | 0.046 |
| microarray "C" | 0.347 | 0.089 | 0.260 | 0.236 |
| microarray "D" | 0.105 | 0.082 | 0.044 | 0.045 |

These detection thresholds range from 0.2 to greater than 1 transcript per cell, based on the rough correspondence of absolute abundance units to number of transcripts per cell described in Appendix C.

Listed below are those ORFs with absolute abundance measures that were below detection thresholds in all four conditions, and which were undetectably changed between conditions. These ORFs have been split into four lists, one for each microarray type.

### ORFs not detected in any of four cultures on microarray 'A'.

| YAL001C   | TFC3  | YBR184W | MEL1   | YDL017W | CDC7  | YDR159W   | SAC3  |
|-----------|-------|---------|--------|---------|-------|-----------|-------|
| YAL002W   | VPS8  | YBR186W | PCH2   | YDL019C |       | YDR162C   | NBP2  |
| YAL004W   |       | YBR190W |        | YDL020C | RPN4  | YDR164C   | SEC1  |
| YAL010C   | MDM10 | YBR192W | RIM2   | YDL021W | GPM2  | YDR168W   | CDC37 |
| YAL011W   |       | YBR193C | MED8   | YDL023C |       | YDR169C   | STB3  |
| YAL013W   | DEP1  | YBR194W |        | YDL025C |       | YDR173C   | ARG82 |
| YAL015C   | NTG1  | YBR195C | MSI1   | YDL026W |       | YDR175C   |       |
| YAL018C   |       | YBR197C |        | YDL027C |       | YDR176W   | NGG1  |
| YAL020C   | ATS1  | YBR200W | BEM1   | YDL028C | MPS1  | YDR179C   |       |
| YAL024C   | LTE1  | YBR202W | CDC47  | YDL030W | PRP9  | YDR179W-A |       |
| YAL025C   | MAK16 | YBR203W |        | YDL031W |       | YDR180W   | SCC2  |
| YAL026C   | DRS2  | YBR204C |        | YDL032W |       | YDR181C   | SAS4  |
| YAL028W   |       | YBR208C | DUR1,2 | YDL034W |       | YDR183W   |       |
| YAL029C   | MYO4  | YBR209W |        | YDL035C |       | YDR184C   | ATC1  |
| YAL031C   | FUN21 | YBR215W | HPC2   | YDL036C |       | YDR186C   |       |
| YAL032C   | FUN20 | YBR216C |        | YDL037C |       | YDR189W   | SLY1  |
| YAL034C   | FUN19 | YBR217W |        | YDL041W |       | YDR191W   | HST4  |
| YAL034W-A |       | YBR219C |        | YDL043C | PRP11 | YDR192C   | NUP42 |
| YAL035C-A |       | YBR223C |        | YDL044C | MTF2  | YDR193W   |       |
| YAL037W   |       | YBR224W |        | YDL045C | FAD1  | YDR195W   | REF2  |
| YAL041W   | CDC24 | YBR225W |        | YDL050C |       | YDR197W   | CBS2  |
| YAL043C-A |       | YBR226C |        | YDL056W | MBP1  | YDR198C   |       |
| YAL047C   | SPI6  | YBR228W |        | YDL058W | USO1  | YDR199W   |       |
| YAL048C   |       | YBR229C | ROT2   | YDL060W |       | YDR200C   |       |
| YAL058C-A |       | YBR232C |        | YDL062W |       | YDR201W   |       |
| YAL058W   | CNE1  | YBR233W |        | YDL063C |       | YDR202C   |       |
| YAL059W   | ECM1  | YBR236C | ABD1   | YDL065C | PEX19 | YDR203W   |       |
| YAL064W   | FLO9  | YBR237W | PRP5   | YDL068W |       | YDR206W   |       |
| YAL065C   |       | YBR238C |        | YDL069C | CBS1  | YDR207C   | UME6  |
| YAL065C-A |       | YBR240C | THI2   | YDL070W | BDF2  | YDR211W   | GCD6  |
| YAL066W   |       | YBR245C | ISW1   | YDL071C |       | YDR213W   |       |
| YAL067C   | SEO1  | YBR247C | ENP1   | YDL073W |       | YDR215C   |       |
| YAL069W   |       | YBR250W |        | YDL074C |       | YDR217C   | RAD9  |
| YAR002W   |       | YBR251W | MRPS5  | YDL077C | VAM6  | YDR218C   | SPR28 |
| YAR008W   | SEN34 | YBR255W |        | YDL079C | MRK1  | YDR219C   |       |
| YAR014C   |       | YBR257W | POP4   | YDL087C | EXM2  | YDR221W   |       |
| YAR018C   | KIN3  | YBR259W |        | YDL088C | ASM4  | YDR223W   |       |
| YAR019C   | CDC15 | YBR266C |        | YDL089W |       | YDR227W   | SIR4  |
| YAR029W   |       | YBR267W |        | YDL090C | RAM1  | YDR228C   | PCF11 |
| YAR030C   |       | YBR270C |        | YDL091C |       | YDR229W   |       |
| YAR031W   |       | YBR271W |        | YDL094C |       | YDR230W   |       |
| YAR037W   |       | YBR272C |        | YDL096C |       | YDR237W   | MRPL7 |
| YAR040C   |       | YBR273C |        | YDL098C |       | YDR240C   | SNU56 |
| YAR043C   |       | YBR275C | RIF1   | YDL099W |       | YDR241W   |       |
| YAR044W   | OSH1  | YBR277C |        | YDL101C | DUN1  | YDR243C   | PRP28 |
| YAR047C   |       | YBR278W | DPB3   | YDL104C | QRI7  | YDR244W   | PEX5  |
| YAR050W   | FLO1  | YBR281C |        | YDL105W | QRI2  | YDR246W   |       |

| YAR052C   |        | YBR284W |       | YDL106C | GRF10 | YDR249C |       |
|-----------|--------|---------|-------|---------|-------|---------|-------|
| YAR053W   |        | YBR285W |       | YDL107W | MSS2  | YDR250C |       |
| YAR060C   |        | YBR289W | SNF5  | YDL108W | KIN28 | YDR251W | PAM1  |
| YAR061W   |        | YBR292C |       | YDL113C |       | YDR253C | MET32 |
| YAR062W   |        | YBR294W | SUL1  | YDL114W |       | YDR254W | CHL4  |
| YAR064W   |        | YBR295W | PCA1  | YDL115C |       | YDR255C |       |
| YAR068W   |        | YBR296C |       | YDL116W | NUP84 | YDR256C | CTA1  |
| YAR069C   |        | YBR298C | MAL31 | YDL117W |       | YDR257C | RMS1  |
| YAR070C   |        | YBR299W | MAL32 | YDL118W |       | YDR259C | YAP6  |
| YAR074C   |        | YBR300C |       | YDL119C |       | YDR263C | DIN7  |
| YBL004W   |        | YCL003W | PEL1  | YDL121C |       | YDR265W | PEX10 |
| YBL005W-A |        | YCL004W | PEL1  | YDL127W | PCL2  | YDR268W | MSW1  |
| YBL005W-B |        | YCL005W |       | YDL129W |       | YDR269C |       |
| YBL008W   | HIR1   | YCL006C |       | YDL138W | RGT2  | YDR270W | CCC2  |
| YBL009W   |        | YCL007C | CWH36 | YDL139C |       | YDR273W |       |
| YBL010C   |        | YCL010C |       | YDL146W |       | YDR274C |       |
| YBL012C   |        | YCL012W |       | YDL148C |       | YDR277C | MTH1  |
| YBL013W   |        | YCL013W |       | YDL149W |       | YDR278C |       |
| YBL014C   | RRN6   | YCL014W | BUD3  | YDL150W | RPC53 | YDR279W |       |
| YBL018C   |        | YCL020W |       | YDL151C |       | YDR281C |       |
| YBL019W   | ETH1   | YCL021W |       | YDL152W |       | YDR282C |       |
| YBL020W   | RFT1   | YCL022C |       | YDL154W | MSH5  | YDR283C | GCN2  |
| YBL023C   | MCM2   | YCL023C |       | YDL156W |       | YDR285W | ZIP1  |
| YBL028C   |        | YCL024W |       | YDL159W | STE7  | YDR288W |       |
| YBL029W   |        | YCL026C |       | YDL161W |       | YDR289C |       |
| YBL031W   | SHE1   | YCL031C | RRP7  | YDL162C |       | YDR290W |       |
| YBL035C   | POL12  | YCL032W | STE50 | YDL163W |       | YDR295C |       |
| YBL036C   |        | YCL041C |       | YDL164C | CDC9  | YDR299W | BFR2  |
| YBL037W   |        | YCL046W |       | YDL166C |       | YDR305C | HNT2  |
| YBL044W   |        | YCL048W |       | YDL167C | NRP1  | YDR310C | SUM1  |
| YBL046W   |        | YCL051W | LRE1  | YDL169C | UGX2  | YDR311W | TFB1  |
| YBL052C   | SAS3   | YCL052C | PBN1  | YDL170W | UGA3  | YDR312W | SSF2  |
| YBL054W   |        | YCL053C |       | YDL172C |       | YDR313C |       |
| YBL059W   |        | YCL054W |       | YDL175C |       | YDR314C |       |
| YBL060W   |        | YCL055W | KAR4  | YDL176W |       | YDR316W |       |
| YBL061C   | SKT5   | YCL058C |       | YDL177C |       | YDR317W |       |
| YBL062W   |        | YCL059C | KRR1  | YDL183C |       | YDR324C |       |
| YBL065W   |        | YCL060C |       | YDL186W |       | YDR325W |       |
| YBL066C   | SEF1   | YCL061C |       | YDL187C |       | YDR326C |       |
| YBL067C   | UBP13  | YCL062W |       | YDL189W |       | YDR327W |       |
| YBL070C   |        | YCL063W |       | YDL194W | SNF3  | YDR330W |       |
| YBL073W   |        | YCL065W |       | YDL196W |       | YDR331W | GPI8  |
| YBL074C   | AAR2   | YCL068C |       | YDL197C | ASF2  | YDR332W |       |
| YBL075C   | SSA3   | YCL069W |       | YDL199C |       | YDR333C |       |
| YBL079W   | NUP170 | YCL074W |       | YDL203C |       | YDR334W |       |
| YBL080C   | PET112 | YCL075W |       | YDL206W |       | YDR336W |       |
| YBL086C   |        | YCL076W |       | YDL207W | GLE1  | YDR340W |       |
| YBL088C   | TEL1   | YCLX01W |       | YDL209C |       | YDR344C |       |
| YBL090W   | MRP21  | YCLX02C |       | YDL210W | UGA4  | YDR351W | SBE2  |
| YBL093C   | ROX3   | YCLX03C |       | YDL211C |       | YDR355C |       |

| YBL094C                                                                                                                                                                                 |                                                | YCLX04W                                                                                                                                                                                                                             |                                                                                   | YDL214C                                                                                                                                                                                            |                                                                         | YDR356W                                                                                                                                                                                                       | NUF1                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| YBL095W                                                                                                                                                                                 |                                                | YCLX05C                                                                                                                                                                                                                             |                                                                                   | YDL216C                                                                                                                                                                                            |                                                                         | YDR359C                                                                                                                                                                                                       |                                       |
| YBL096C                                                                                                                                                                                 |                                                | YCLX07W                                                                                                                                                                                                                             |                                                                                   | YDL218W                                                                                                                                                                                            |                                                                         | YDR360W                                                                                                                                                                                                       |                                       |
| YBL097W                                                                                                                                                                                 | BRN1                                           | YCLX08C                                                                                                                                                                                                                             | FRM2                                                                              | YDL219W                                                                                                                                                                                            |                                                                         | YDR361C                                                                                                                                                                                                       |                                       |
| YBL098W                                                                                                                                                                                 |                                                | YCLX09W                                                                                                                                                                                                                             |                                                                                   | YDL221W                                                                                                                                                                                            |                                                                         | YDR363W                                                                                                                                                                                                       | ESC2                                  |
| YBL100C                                                                                                                                                                                 |                                                | YCLX10C                                                                                                                                                                                                                             |                                                                                   | YDL225W                                                                                                                                                                                            |                                                                         | YDR366C                                                                                                                                                                                                       |                                       |
| YBL101W-B                                                                                                                                                                               |                                                | YCLX11W                                                                                                                                                                                                                             |                                                                                   | YDL227C                                                                                                                                                                                            | HO                                                                      | YDR369C                                                                                                                                                                                                       | XRS2                                  |
| YBL104C                                                                                                                                                                                 |                                                | YCR001W                                                                                                                                                                                                                             |                                                                                   | YDL231C                                                                                                                                                                                            |                                                                         | YDR370C                                                                                                                                                                                                       |                                       |
| YBL105C                                                                                                                                                                                 | PKC1                                           | YCR003W                                                                                                                                                                                                                             | MRPL32                                                                            | YDL233W                                                                                                                                                                                            |                                                                         | YDR371W                                                                                                                                                                                                       |                                       |
| YBL107C                                                                                                                                                                                 |                                                | YCR006C                                                                                                                                                                                                                             |                                                                                   | YDL238C                                                                                                                                                                                            |                                                                         | YDR372C                                                                                                                                                                                                       |                                       |
| YBL108W                                                                                                                                                                                 |                                                | YCR007C                                                                                                                                                                                                                             |                                                                                   | YDL239C                                                                                                                                                                                            |                                                                         | YDR374C                                                                                                                                                                                                       |                                       |
| YBL109W                                                                                                                                                                                 |                                                | YCR010C                                                                                                                                                                                                                             |                                                                                   | YDL240W                                                                                                                                                                                            | LRG1                                                                    | YDR379W                                                                                                                                                                                                       | RGA2                                  |
| YBL111C                                                                                                                                                                                 |                                                | YCR014C                                                                                                                                                                                                                             | POL4                                                                              | YDL242W                                                                                                                                                                                            |                                                                         | YDR380W                                                                                                                                                                                                       |                                       |
| YBR002C                                                                                                                                                                                 |                                                | YCR015C                                                                                                                                                                                                                             |                                                                                   | YDL243C                                                                                                                                                                                            |                                                                         | YDR383C                                                                                                                                                                                                       |                                       |
| YBR003W                                                                                                                                                                                 | COQ1                                           | YCR016W                                                                                                                                                                                                                             |                                                                                   | YDL244W                                                                                                                                                                                            |                                                                         | YDR386W                                                                                                                                                                                                       |                                       |
| YBR007C                                                                                                                                                                                 |                                                | YCR019W                                                                                                                                                                                                                             | MAK32                                                                             | YDL245C                                                                                                                                                                                            | HXT15                                                                   | YDR393W                                                                                                                                                                                                       |                                       |
| YBR012C                                                                                                                                                                                 |                                                | YCR022C                                                                                                                                                                                                                             |                                                                                   | YDL247W                                                                                                                                                                                            |                                                                         | YDR396W                                                                                                                                                                                                       |                                       |
| YBR017C                                                                                                                                                                                 | KAP104                                         | YCR024C                                                                                                                                                                                                                             |                                                                                   | YDL248W                                                                                                                                                                                            | COS7                                                                    | YDR401W                                                                                                                                                                                                       |                                       |
| YBR021W                                                                                                                                                                                 | FUR4                                           | YCR025C                                                                                                                                                                                                                             |                                                                                   | YDR004W                                                                                                                                                                                            | RAD57                                                                   | YDR402C                                                                                                                                                                                                       |                                       |
| YBR027C                                                                                                                                                                                 |                                                | YCR026C                                                                                                                                                                                                                             |                                                                                   | YDR008C                                                                                                                                                                                            |                                                                         | YDR403W                                                                                                                                                                                                       | DIT1                                  |
| YBR030W                                                                                                                                                                                 |                                                | YCR027C                                                                                                                                                                                                                             |                                                                                   | YDR010C                                                                                                                                                                                            |                                                                         | YDR405W                                                                                                                                                                                                       | MRP20                                 |
| YBR032W                                                                                                                                                                                 |                                                | YCR028C                                                                                                                                                                                                                             | FEN2                                                                              | YDR013W                                                                                                                                                                                            |                                                                         | YDR406W                                                                                                                                                                                                       | PDR15                                 |
| YBR033W                                                                                                                                                                                 |                                                | YCR032W                                                                                                                                                                                                                             | BPH1                                                                              | YDR014W                                                                                                                                                                                            |                                                                         | YDR412W                                                                                                                                                                                                       |                                       |
| YBR040W                                                                                                                                                                                 | FIG1                                           | YCR033W                                                                                                                                                                                                                             |                                                                                   | YDR015C                                                                                                                                                                                            |                                                                         | YDR413C                                                                                                                                                                                                       |                                       |
| YBR044C                                                                                                                                                                                 |                                                | YCR038C                                                                                                                                                                                                                             | BUD5                                                                              | YDR018C                                                                                                                                                                                            |                                                                         | YDR414C                                                                                                                                                                                                       | ERD1                                  |
| YBR045C                                                                                                                                                                                 | GIP1                                           | YCR041W                                                                                                                                                                                                                             |                                                                                   | YDR021W                                                                                                                                                                                            | FAL1                                                                    | YDR416W                                                                                                                                                                                                       | SYF1                                  |
| YBR047W                                                                                                                                                                                 |                                                | YCR042C                                                                                                                                                                                                                             | TSM1                                                                              | YDR022C                                                                                                                                                                                            | CIS1                                                                    | YDR417C                                                                                                                                                                                                       |                                       |
| YBR051W                                                                                                                                                                                 |                                                | YCR045C                                                                                                                                                                                                                             |                                                                                   | YDR026C                                                                                                                                                                                            |                                                                         | YDR419W                                                                                                                                                                                                       | RAD30                                 |
| YBR055C                                                                                                                                                                                 | PRP6                                           | YCR049C                                                                                                                                                                                                                             |                                                                                   | YDR028C                                                                                                                                                                                            | REG1                                                                    | YDR420W                                                                                                                                                                                                       | HKR1                                  |
| YBR057C                                                                                                                                                                                 | MUM2                                           | YCR050C                                                                                                                                                                                                                             |                                                                                   | YDR029W                                                                                                                                                                                            |                                                                         | YDR421W                                                                                                                                                                                                       |                                       |
| YBR059C                                                                                                                                                                                 |                                                | YCR054C                                                                                                                                                                                                                             | CTR86                                                                             | YDR030C                                                                                                                                                                                            | RAD28                                                                   | YDR425W                                                                                                                                                                                                       |                                       |
| YBR060C                                                                                                                                                                                 |                                                |                                                                                                                                                                                                                                     |                                                                                   |                                                                                                                                                                                                    | 101020                                                                  |                                                                                                                                                                                                               |                                       |
| YBR064W                                                                                                                                                                                 | RRR1                                           | YCR055C                                                                                                                                                                                                                             | PWP2                                                                              | YDR034C                                                                                                                                                                                            | LYS14                                                                   | YDR426C                                                                                                                                                                                                       |                                       |
| 1210010                                                                                                                                                                                 | RRR1                                           | YCR055C<br>YCR056W                                                                                                                                                                                                                  | PWP2                                                                              | YDR034C<br>YDR040C                                                                                                                                                                                 | LYS14<br>ENA1                                                           | YDR426C<br>YDR428C                                                                                                                                                                                            |                                       |
| YBR065C                                                                                                                                                                                 | RRR1<br>ECM2                                   | YCR055C<br>YCR056W<br>YCR058C                                                                                                                                                                                                       | PWP2<br>PWP2                                                                      | YDR034C<br>YDR040C<br>YDR042C                                                                                                                                                                      | LYS14<br>ENA1                                                           | YDR426C<br>YDR428C<br>YDR430C                                                                                                                                                                                 |                                       |
| YBR065C<br>YBR074W                                                                                                                                                                      | RRR1<br>ECM2                                   | YCR055C<br>YCR056W<br>YCR058C<br>YCR063W                                                                                                                                                                                            | PWP2<br>PWP2                                                                      | YDR034C<br>YDR040C<br>YDR042C<br>YDR048C                                                                                                                                                           | LYS14<br>ENA1                                                           | YDR426C<br>YDR428C<br>YDR430C<br>YDR431W                                                                                                                                                                      |                                       |
| YBR065C<br>YBR074W<br>YBR075W                                                                                                                                                           | RRR1<br>ECM2                                   | YCR055C<br>YCR056W<br>YCR058C<br>YCR063W<br>YCR064C                                                                                                                                                                                 | PWP2<br>PWP2                                                                      | YDR034C<br>YDR040C<br>YDR042C<br>YDR048C<br>YDR049W                                                                                                                                                | LYS14<br>ENA1                                                           | YDR426C<br>YDR428C<br>YDR430C<br>YDR431W<br>YDR437W                                                                                                                                                           |                                       |
| YBR065C<br>YBR074W<br>YBR075W<br>YBR076W                                                                                                                                                | RRR1<br>ECM2<br>ECM8                           | YCR055C<br>YCR056W<br>YCR058C<br>YCR063W<br>YCR064C<br>YCR066W                                                                                                                                                                      | PWP2<br>PWP2<br>RAD18                                                             | YDR034C<br>YDR040C<br>YDR042C<br>YDR048C<br>YDR049W<br>YDR052C                                                                                                                                     | LYS14<br>ENA1<br>DBF4                                                   | YDR426C<br>YDR428C<br>YDR430C<br>YDR431W<br>YDR437W<br>YDR438W                                                                                                                                                |                                       |
| YBR065C<br>YBR074W<br>YBR075W<br>YBR076W<br>YBR081C                                                                                                                                     | RRR1<br>ECM2<br>ECM8<br>SPT7                   | YCR055C<br>YCR056W<br>YCR058C<br>YCR063W<br>YCR064C<br>YCR066W<br>YCR068W                                                                                                                                                           | PWP2<br>PWP2<br>RAD18                                                             | YDR034C<br>YDR040C<br>YDR042C<br>YDR048C<br>YDR049W<br>YDR052C<br>YDR053W                                                                                                                          | LYS14<br>ENA1<br>DBF4                                                   | YDR426C<br>YDR428C<br>YDR430C<br>YDR431W<br>YDR437W<br>YDR438W<br>YDR439W                                                                                                                                     | LRS4                                  |
| YBR065C<br>YBR074W<br>YBR075W<br>YBR076W<br>YBR081C<br>YBR089W                                                                                                                          | RRR1<br>ECM2<br>ECM8<br>SPT7                   | YCR055C<br>YCR056W<br>YCR058C<br>YCR063W<br>YCR064C<br>YCR066W<br>YCR068W<br>YCR068W                                                                                                                                                | PWP2<br>PWP2<br>RAD18<br>SSK22                                                    | YDR034C<br>YDR040C<br>YDR042C<br>YDR048C<br>YDR049W<br>YDR052C<br>YDR053W<br>YDR054C                                                                                                               | LYS14<br>ENA1<br>DBF4<br>CDC34                                          | YDR426C<br>YDR428C<br>YDR430C<br>YDR431W<br>YDR437W<br>YDR438W<br>YDR439W<br>YDR439W                                                                                                                          | LRS4<br>PCH1                          |
| YBR065C<br>YBR074W<br>YBR075W<br>YBR076W<br>YBR081C<br>YBR089W<br>YBR094W                                                                                                               | RRR1<br>ECM2<br>ECM8<br>SPT7                   | YCR055C<br>YCR056W<br>YCR058C<br>YCR063W<br>YCR064C<br>YCR066W<br>YCR066W<br>YCR068W<br>YCR073C<br>YCR074C                                                                                                                          | PWP2<br>PWP2<br>RAD18<br>SSK22                                                    | YDR034C<br>YDR040C<br>YDR042C<br>YDR048C<br>YDR049W<br>YDR052C<br>YDR053W<br>YDR054C<br>YDR057W                                                                                                    | LYS14<br>ENA1<br>DBF4<br>CDC34                                          | YDR426C<br>YDR428C<br>YDR430C<br>YDR431W<br>YDR437W<br>YDR438W<br>YDR439W<br>YDR439W<br>YDR440W<br>YDR442W                                                                                                    | LRS4<br>PCH1                          |
| YBR065C<br>YBR074W<br>YBR075W<br>YBR076W<br>YBR081C<br>YBR089W<br>YBR094W<br>YBR095C                                                                                                    | RRR1<br>ECM2<br>ECM8<br>SPT7                   | YCR055C<br>YCR056W<br>YCR058C<br>YCR063W<br>YCR064C<br>YCR066W<br>YCR066W<br>YCR073C<br>YCR074C<br>YCR074C                                                                                                                          | PWP2<br>PWP2<br>RAD18<br>SSK22<br>SRB8                                            | YDR034C<br>YDR040C<br>YDR042C<br>YDR048C<br>YDR049W<br>YDR052C<br>YDR053W<br>YDR054C<br>YDR057W<br>YDR058C                                                                                         | LYS14<br>ENA1<br>DBF4<br>CDC34<br>TGL2                                  | YDR426C<br>YDR428C<br>YDR430C<br>YDR431W<br>YDR437W<br>YDR438W<br>YDR439W<br>YDR440W<br>YDR442W<br>YDR442W                                                                                                    | LRS4<br>PCH1<br>SSN2                  |
| YBR065C<br>YBR074W<br>YBR075W<br>YBR076W<br>YBR081C<br>YBR089W<br>YBR094W<br>YBR095C<br>YBR097W                                                                                         | RRR1<br>ECM2<br>ECM8<br>SPT7<br>VPS15          | YCR055C<br>YCR056W<br>YCR058C<br>YCR063W<br>YCR064C<br>YCR066W<br>YCR068W<br>YCR073C<br>YCR074C<br>YCR074C<br>YCR081W<br>YCR085W                                                                                                    | PWP2<br>PWP2<br>RAD18<br>SSK22<br>SRB8                                            | YDR034C<br>YDR040C<br>YDR042C<br>YDR048C<br>YDR052C<br>YDR052C<br>YDR053W<br>YDR054C<br>YDR057W<br>YDR058C<br>YDR060W                                                                              | LYS14<br>ENA1<br>DBF4<br>CDC34<br>TGL2                                  | YDR426C<br>YDR428C<br>YDR430C<br>YDR431W<br>YDR437W<br>YDR438W<br>YDR439W<br>YDR440W<br>YDR440W<br>YDR442W<br>YDR442C<br>YDR444W                                                                              | LRS4<br>PCH1<br>SSN2                  |
| YBR065C<br>YBR074W<br>YBR075W<br>YBR076W<br>YBR081C<br>YBR089W<br>YBR094W<br>YBR094W<br>YBR095C<br>YBR097W<br>YBR098W                                                                   | RRR1<br>ECM2<br>ECM8<br>SPT7<br>VPS15          | YCR055C<br>YCR056W<br>YCR058C<br>YCR063W<br>YCR064C<br>YCR066W<br>YCR068W<br>YCR073C<br>YCR074C<br>YCR074C<br>YCR081W<br>YCR085W<br>YCR085W                                                                                         | PWP2<br>PWP2<br>RAD18<br>SSK22<br>SRB8                                            | YDR034C<br>YDR040C<br>YDR042C<br>YDR048C<br>YDR052C<br>YDR053W<br>YDR054C<br>YDR054C<br>YDR057W<br>YDR058C<br>YDR060W                                                                              | LYS14<br>ENA1<br>DBF4<br>CDC34<br>TGL2                                  | YDR426C<br>YDR428C<br>YDR430C<br>YDR431W<br>YDR437W<br>YDR438W<br>YDR439W<br>YDR449W<br>YDR440W<br>YDR442W<br>YDR444C<br>YDR444W                                                                              | LRS4<br>PCH1<br>SSN2                  |
| YBR065C<br>YBR074W<br>YBR075W<br>YBR076W<br>YBR081C<br>YBR089W<br>YBR094W<br>YBR095C<br>YBR097W<br>YBR098W<br>YBR099C                                                                   | RRR1<br>ECM2<br>ECM8<br>SPT7<br>VPS15          | YCR055C<br>YCR056W<br>YCR058C<br>YCR063W<br>YCR064C<br>YCR066W<br>YCR068W<br>YCR073C<br>YCR074C<br>YCR074C<br>YCR081W<br>YCR085W<br>YCR085W<br>YCR086W<br>YCR089W                                                                   | PWP2<br>PWP2<br>RAD18<br>SSK22<br>SRB8<br>FIG2                                    | YDR034C<br>YDR040C<br>YDR042C<br>YDR048C<br>YDR052C<br>YDR053W<br>YDR054C<br>YDR057W<br>YDR058C<br>YDR060W<br>YDR061W                                                                              | LYS14<br>ENA1<br>DBF4<br>CDC34<br>TGL2                                  | YDR426C<br>YDR428C<br>YDR430C<br>YDR431W<br>YDR437W<br>YDR438W<br>YDR439W<br>YDR440W<br>YDR440W<br>YDR442W<br>YDR444C<br>YDR444W<br>YDR445C<br>YDR446W                                                        | LRS4<br>PCH1<br>SSN2<br>ECM11         |
| YBR065C<br>YBR074W<br>YBR075W<br>YBR076W<br>YBR081C<br>YBR089W<br>YBR094W<br>YBR094W<br>YBR095C<br>YBR097W<br>YBR098W<br>YBR099C<br>YBR100W                                             | RRR1<br>ECM2<br>ECM8<br>SPT7<br>VPS15          | YCR055C<br>YCR056W<br>YCR058C<br>YCR063W<br>YCR064C<br>YCR066W<br>YCR068W<br>YCR073C<br>YCR074C<br>YCR074C<br>YCR081W<br>YCR085W<br>YCR085W<br>YCR086W<br>YCR089W<br>YCR091W                                                        | PWP2<br>PWP2<br>RAD18<br>SSK22<br>SRB8<br>FIG2<br>KIN82                           | YDR034C<br>YDR040C<br>YDR042C<br>YDR048C<br>YDR052C<br>YDR053W<br>YDR054C<br>YDR057W<br>YDR058C<br>YDR060W<br>YDR061W<br>YDR065W                                                                   | LYS14<br>ENA1<br>DBF4<br>CDC34<br>TGL2                                  | YDR426C<br>YDR428C<br>YDR430C<br>YDR431W<br>YDR437W<br>YDR438W<br>YDR439W<br>YDR440W<br>YDR442W<br>YDR442W<br>YDR444C<br>YDR444W<br>YDR445C<br>YDR446W<br>YDR448W                                             | LRS4<br>PCH1<br>SSN2<br>ECM11<br>ADA2 |
| YBR065C<br>YBR074W<br>YBR075W<br>YBR076W<br>YBR081C<br>YBR089W<br>YBR094W<br>YBR094W<br>YBR095C<br>YBR097W<br>YBR098W<br>YBR099C<br>YBR100W<br>YBR102C                                  | RRR1<br>ECM2<br>ECM8<br>SPT7<br>VPS15          | YCR055C<br>YCR056W<br>YCR058C<br>YCR063W<br>YCR064C<br>YCR066W<br>YCR068W<br>YCR073C<br>YCR074C<br>YCR074C<br>YCR081W<br>YCR085W<br>YCR085W<br>YCR086W<br>YCR089W<br>YCR091W<br>YCR092C                                             | PWP2<br>PWP2<br>RAD18<br>SSK22<br>SRB8<br>FIG2<br>KIN82<br>MSH3                   | YDR034C<br>YDR040C<br>YDR042C<br>YDR048C<br>YDR052C<br>YDR053W<br>YDR054C<br>YDR057W<br>YDR058C<br>YDR060W<br>YDR061W<br>YDR065W<br>YDR066C<br>YDR066W                                             | LYS14<br>ENA1<br>DBF4<br>CDC34<br>TGL2<br>DOS2                          | YDR426C<br>YDR428C<br>YDR430C<br>YDR431W<br>YDR437W<br>YDR438W<br>YDR439W<br>YDR440W<br>YDR440W<br>YDR442W<br>YDR442C<br>YDR444W<br>YDR445C<br>YDR446W<br>YDR448W<br>YDR449C                                  | LRS4<br>PCH1<br>SSN2<br>ECM11<br>ADA2 |
| YBR065C<br>YBR074W<br>YBR075W<br>YBR076W<br>YBR081C<br>YBR089W<br>YBR094W<br>YBR094W<br>YBR095C<br>YBR097W<br>YBR097W<br>YBR098W<br>YBR099C<br>YBR100W<br>YBR102C<br>YBR103W            | RRR1<br>ECM2<br>ECM8<br>SPT7<br>VPS15          | YCR055C<br>YCR056W<br>YCR058C<br>YCR063W<br>YCR064C<br>YCR066W<br>YCR066W<br>YCR073C<br>YCR073C<br>YCR074C<br>YCR074C<br>YCR081W<br>YCR085W<br>YCR085W<br>YCR086W<br>YCR086W<br>YCR089W<br>YCR091W<br>YCR092C<br>YCR093W            | PWP2<br>PWP2<br>RAD18<br>SSK22<br>SRB8<br>FIG2<br>KIN82<br>MSH3<br>CDC39          | YDR034C<br>YDR040C<br>YDR042C<br>YDR048C<br>YDR054C<br>YDR053W<br>YDR054C<br>YDR057W<br>YDR058C<br>YDR060W<br>YDR061W<br>YDR065W<br>YDR065W<br>YDR066C<br>YDR068W                                  | LYS14<br>ENA1<br>DBF4<br>CDC34<br>TGL2<br>DOS2<br>DOA4                  | YDR426C<br>YDR428C<br>YDR430C<br>YDR431W<br>YDR437W<br>YDR438W<br>YDR439W<br>YDR440W<br>YDR440W<br>YDR442W<br>YDR443C<br>YDR444W<br>YDR445C<br>YDR446W<br>YDR446W<br>YDR448W<br>YDR449C<br>YDR455C            | LRS4<br>PCH1<br>SSN2<br>ECM11<br>ADA2 |
| YBR065C<br>YBR074W<br>YBR075W<br>YBR076W<br>YBR081C<br>YBR089W<br>YBR094W<br>YBR094W<br>YBR095C<br>YBR097W<br>YBR097W<br>YBR098W<br>YBR099C<br>YBR100W<br>YBR102C<br>YBR103W<br>YBR104W | RRR1<br>ECM2<br>ECM8<br>SPT7<br>VPS15          | YCR055C<br>YCR056W<br>YCR063W<br>YCR063W<br>YCR064C<br>YCR066W<br>YCR073C<br>YCR073C<br>YCR074C<br>YCR081W<br>YCR085W<br>YCR085W<br>YCR086W<br>YCR086W<br>YCR089W<br>YCR091W<br>YCR091W<br>YCR092C<br>YCR093W                       | PWP2<br>PWP2<br>RAD18<br>SSK22<br>SRB8<br>FIG2<br>KIN82<br>MSH3<br>CDC39<br>CDC50 | YDR034C<br>YDR040C<br>YDR042C<br>YDR048C<br>YDR052C<br>YDR053W<br>YDR054C<br>YDR057W<br>YDR057W<br>YDR060W<br>YDR061W<br>YDR061W<br>YDR065W<br>YDR066C<br>YDR068W<br>YDR069C                       | LYS14<br>ENA1<br>DBF4<br>CDC34<br>TGL2<br>DOS2<br>DOA4<br>PPH3          | YDR426C<br>YDR428C<br>YDR430C<br>YDR431W<br>YDR437W<br>YDR438W<br>YDR439W<br>YDR440W<br>YDR440W<br>YDR442W<br>YDR442W<br>YDR444C<br>YDR445C<br>YDR446W<br>YDR448W<br>YDR448W<br>YDR449C<br>YDR455C<br>YDR458C | LRS4<br>PCH1<br>SSN2<br>ECM11<br>ADA2 |
| YBR065C<br>YBR074W<br>YBR075W<br>YBR076W<br>YBR081C<br>YBR089W<br>YBR094W<br>YBR094W<br>YBR095C<br>YBR097W<br>YBR098W<br>YBR099C<br>YBR100W<br>YBR102C<br>YBR103W<br>YBR104W<br>YBR110W | RRR1<br>ECM2<br>ECM8<br>SPT7<br>VPS15<br>VPS15 | YCR055C<br>YCR056W<br>YCR058C<br>YCR063W<br>YCR064C<br>YCR066W<br>YCR068W<br>YCR073C<br>YCR074C<br>YCR074C<br>YCR081W<br>YCR085W<br>YCR085W<br>YCR085W<br>YCR089W<br>YCR089W<br>YCR091W<br>YCR091W<br>YCR092C<br>YCR093W<br>YCR094W | PWP2<br>PWP2<br>RAD18<br>SSK22<br>SRB8<br>FIG2<br>KIN82<br>MSH3<br>CDC39<br>CDC50 | YDR034C<br>YDR040C<br>YDR042C<br>YDR048C<br>YDR052C<br>YDR053W<br>YDR054C<br>YDR057W<br>YDR058C<br>YDR060W<br>YDR061W<br>YDR065W<br>YDR065W<br>YDR065W<br>YDR066C<br>YDR068W<br>YDR069C<br>YDR075W | LYS14<br>ENA1<br>DBF4<br>CDC34<br>TGL2<br>DOS2<br>DOA4<br>PPH3<br>RAD55 | YDR426C<br>YDR428C<br>YDR430C<br>YDR431W<br>YDR437W<br>YDR438W<br>YDR439W<br>YDR440W<br>YDR442W<br>YDR442W<br>YDR442W<br>YDR444C<br>YDR445C<br>YDR446W<br>YDR448W<br>YDR449C<br>YDR455C<br>YDR458C<br>YDR460W | LRS4<br>PCH1<br>SSN2<br>ECM11<br>ADA2 |

| YBR113W |       | YCR097WB | A1    | YDR080W | VPS41 | YDR469W |       |
|---------|-------|----------|-------|---------|-------|---------|-------|
| YBR114W | RAD16 | YCR098C  | GIT1  | YDR081C | PDC2  | YDR473C |       |
| YBR119W | MUD1  | YCR099C  |       | YDR083W |       | YDR475C |       |
| YBR120C | CBP6  | YCR100C  |       | YDR085C | AFR1  | YDR478W | SNM1  |
| YBR124W |       | YCR101C  |       | YDR087C | RRP1  | YDR480W | DIG2  |
| YBR128C |       | YCR102C  |       | YDR088C | SLU7  | YDR484W | SAC2  |
| YBR130C |       | YCR103C  |       | YDR089W |       | YDR485C |       |
| YBR131W |       | YCR105W  |       | YDR095C |       | YDR488C | PAC11 |
| YBR134W |       | YCR106W  |       | YDR096W | GIS1  | YDR491C |       |
| YBR136W | ESR1  | YCR107W  |       | YDR102C |       | YDR495C | VPS3  |
| YBR138C | HDR1  | YCRX01W  |       | YDR104C |       | YDR496C |       |
| YBR141C |       | YCRX02C  |       | YDR106W | ARP10 | YDR499W |       |
| YBR142W | MAK5  | YCRX03C  |       | YDR108W | GSG1  | YDR501W |       |
| YBR144C |       | YCRX04W  |       | YDR109C |       | YDR507C | GIN4  |
| YBR148W | YSW1  | YCRX05W  |       | YDR110W | FOB1  | YDR509W |       |
| YBR150C |       | YCRX06W  |       | YDR112W |       | YDR515W | SLF1  |
| YBR152W |       | YCRX09C  |       | YDR113C | PDS1  | YDR521W |       |
| YBR153W | RIB7  | YCRX10W  |       | YDR114C |       | YDR522C | SPS2  |
| YBR155W | CNS1  | YCRX11W  |       | YDR118W | APC4  | YDR523C | SPS1  |
| YBR156C |       | YCRX12W  |       | YDR122W | KIN1  | YDR524C |       |
| YBR161W |       | YCRX14W  |       | YDR124W |       | YDR525W |       |
| YBR167C | RPP2  | YCRX15W  |       | YDR125C | ECM18 | YDR526C |       |
| YBR168W |       | YCRX16C  |       | YDR131C |       | YDR527W |       |
| YBR170C | NPL4  | YCRX18C  |       | YDR132C |       | YDR528W |       |
| YBR172C | SMY2  | YCRX20C  |       | YDR135C | YCF1  | YDR530C | APA2  |
| YBR174C |       | YDL002C  | NHP10 | YDR136C |       | YDR532C |       |
| YBR176W | ECM31 | YDL003W  | MCD1  | YDR137W | RGP1  | YDR535C |       |
| YBR178W |       | YDL006W  | PTC1  | YDR145W | TAF61 | YDR536W | STL1  |
| YBR179C | FZO1  | YDL011C  |       | YDR149C |       | YDR537C |       |
| YBR180W |       | YDL013W  | HEX3  | YDR150W | NUM1  | YDR540C |       |
| YBR182C | SMP1  | YDL016C  |       | YDR157W |       | YDR544C |       |

## ORFs not detected in any of four cultures on microarray 'B'.

| YEL003W   | PFD2  | YGL033W | HOP2    | YGR140W | CBF2  | YHR177W  |       |
|-----------|-------|---------|---------|---------|-------|----------|-------|
| YEL004W   | YEA4  | YGL034C |         | YGR142W |       | YHR178W  | STB5  |
| YEL005C   |       | YGL041C |         | YGR145W |       | YHR182W  |       |
| YEL008W   |       | YGL042C |         | YGR150C |       | YHR184W  | SSP1  |
| YEL010W   |       | YGL043W | DST1    | YGR151C |       | YHR185C  |       |
| YEL014C   |       | YGL046W |         | YGR152C | RSR1  | YHR186C  |       |
| YEL016C   |       | YGL049C | TIF4632 | YGR153W |       | YHR189W  |       |
| YEL018W   |       | YGL050W |         | YGR154C |       | YHR196W  |       |
| YEL019C   | MMS21 | YGL052W |         | YGR156W |       | YHR197W  |       |
| YEL022W   |       | YGL059W |         | YGR158C | MTR3  | YHR204W  |       |
| YEL023C   |       | YGL060W |         | YGR160W |       | YHR207C  |       |
| YEL025C   |       | YGL061C | DUO1    | YGR164W |       | YHR209W  |       |
| YEL028W   |       | YGL063W | PUS2    | YGR166W | KRE11 | YHR210C  |       |
| YEL029C   |       | YGL064C |         | YGR168C |       | YHR211W  |       |
| YEL030W   | ECM10 | YGL065C | ALG2    | YGR170W | PSD2  | YHR212C  |       |
| YEL032W   | MCM3  | YGL066W |         | YGR171C | MSM1  | YHR213W  |       |
| YEL033W   |       | YGL069C |         | YGR176W |       | YHR214W  |       |
| YEL035C   | UTR5  | YGL071W | RCS1    | YGR177C | ATF2  | YHR214W- | А     |
| YEL039C   | CYC7  | YGL072C |         | YGR179C |       | YHR216W  |       |
| YEL041W   |       | YGL073W | HSF1    | YGR186W | TFG1  | YHR218W  |       |
| YEL044W   |       | YGL074C |         | YGR187C | HGH1  | YIL002C  | INP51 |
| YEL045C   |       | YGL075C |         | YGR188C | BUB1  | YIL003W  |       |
| YEL048C   |       | YGL083W | SCY1    | YGR190C |       | YIL004C  | BET1  |
| YEL053C   | MAK10 | YGL085W |         | YGR196C |       | YIL005W  |       |
| YEL055C   | POL5  | YGL086W | MAD1    | YGR198W |       | YIL006W  |       |
| YEL061C   | CIN8  | YGL090W |         | YGR202C | PCT1  | YIL012W  |       |
| YEL062W   | NPR2  | YGL092W | NUP145  | YGR205W |       | YIL013C  | PDR11 |
| YEL064C   |       | YGL093W |         | YGR208W | SER2  | YIL016W  | SNL1  |
| YEL065W   |       | YGL094C | PAN2    | YGR212W |       | YIL017W  |       |
| YEL067C   |       | YGL095C | VPS45   | YGR213C | RTA1  | YIL019W  |       |
| YEL068C   |       | YGL098W |         | YGR219W |       | YIL024C  |       |
| YEL069C   | HXT13 | YGL108C |         | YGR221C |       | YIL025C  |       |
| YEL070W   |       | YGL109W |         | YGR223C |       | YIL026C  | IRR1  |
| YEL072W   |       | YGL110C |         | YGR225W |       | YIL028W  |       |
| YEL076C   |       | YGL113W |         | YGR226C |       | YIL029C  |       |
| YEL076C-A |       | YGL116W | CDC20   | YGR228W |       | YIL031W  | SMT4  |
| YEL076W-C |       | YGL118C |         | YGR230W |       | YIL032C  |       |
| YER002W   |       | YGL120C | PRP43   | YGR233C | PHO81 | YIL035C  | CKA1  |
| YER006W   |       | YGL129C |         | YGR236C |       | YIL037C  |       |
| YER007W   | PAC2  | YGL131C |         | YGR237C |       | YIL054W  |       |
| YER008C   | SEC3  | YGL132W |         | YGR238C | KEL2  | YIL055C  |       |
| YER013W   | PRP22 | YGL133W |         | YGR239C |       | YIL057C  |       |
| YER015W   | FAA2  | YGL136C |         | YGR242W |       | YIL058W  |       |
| YER018C   |       | YGL138C |         | YGR245C |       | YIL060W  |       |
| YER032W   | FIR1  | YGL139W |         | YGR247W |       | YIL061C  | SNP1  |
| YER033C   |       | YGL140C |         | YGR249W | MGA1  | YIL063C  | YRB2  |

| YER038C   |          | YGL144C    |            | YGR251W   |         | YIL068C   | SEC6    |
|-----------|----------|------------|------------|-----------|---------|-----------|---------|
| YER040W   | GLN3     | YGL145W    | TIP20      | YGR259C   |         | YIL071W   |         |
| YER041W   |          | YGL146C    |            | YGR261C   | APL6    | YIL072W   | HOP1    |
| YER044C-A | MEI4     | YGL149W    |            | YGR265W   |         | YIL073C   |         |
| YER047C   | SAP1     | YGL150C    |            | YGR266W   |         | YIL079C   |         |
| YER051W   |          | YGL152C    |            | YGR269W   |         | YIL080W   |         |
| YER054C   | GIP2     | YGL158W    | RCK1       | YGR271W   |         | YIL082W   |         |
| YER059W   | PCL6     | YGL163C    | RAD54      | YGR272C   |         | YIL082W-A |         |
| YER065C   | ICL1     | YGL164C    |            | YGR273C   |         | YIL084C   | SDS3    |
| YER066C-A |          | YGL165C    |            | YGR274C   | TAF145  | YIL086C   |         |
| YER070W   | RNR1     | YGL168W    |            | YGR276C   | RNH70   | YIL089W   |         |
| YER071C   |          | YGL169W    | SUA5       | YGR278W   |         | YIL091C   |         |
| YER075C   | PTP3     | YGL170C    |            | YGR280C   |         | YIL092W   |         |
| YER077C   |          | YGL171W    | ROK1       | YGR283C   |         | YIL095W   | PRK1    |
| YER085C   |          | YGL174W    |            | YGR287C   |         | YIL096C   |         |
| YER093C   |          | YGL175C    | SAE2       | YGR288W   |         | YIL097W   |         |
| YER096W   |          | YGL176C    |            | YGR289C   | AGT1    | YIL100W   |         |
| YER097W   |          | YGL177W    |            | YGR290W   |         | YIL102C   |         |
| YER098W   | UBP9     | YGL180W    | APG1       | YGR291C   |         | YIL103W   |         |
| YER101C   | AST2     | YGL182C    |            | YGR292W   | MAL1    | YIL105C   |         |
| YER104W   | 1.012    | YGL183C    |            | YGR293C   |         | YIL107C   | PFK26   |
| YER105C   | NUP157   | YGL185C    |            | YHL005C   |         | YIL110W   | 111120  |
| YER108C   | FLO8     | YGL190C    | CDC55      | YHL007C   | STE20   | YIL112W   |         |
| YER109C   | FLO8     | YGL192W    | IMF4       | YHL009C   | YAP3    | YIL120W   |         |
| YER110C   | KAP123   | YGL194C    | HOS2       | YHL010C   | 1111.5  | YIL122W   |         |
| YER111C   | SWI4     | YGL201C    | MCM6       | YHL012W   |         | YIL126W   | STH1    |
| YER116C   | 5        | YGL204C    | memo       | YHL013C   |         | YIL127C   | 51111   |
| YER119C-A |          | YGL205W    | POX1       | YHL014C   | YLF2    | YIL128W   | MET18   |
| YER123W   | YCK3     | YGL211W    | 10111      | YHL016C   | DUR3    | YIL130W   | 1012110 |
| YER128W   | 10113    | YGL212W    | VAM7       | YHL018W   | Dens    | YIL132C   |         |
| YER129W   | PAK1     | YGL214W    | V / 11VI / | YHL022C   | SPO11   | YIL138C   | TPM2    |
| YER132C   | PMD1     | YGL217C    |            | YHL022C   | 51011   | YIL139C   | REV7    |
| YER135C   | 1 1010 1 | YGL218W    |            | YHL 030W  | ECM29   | YIL 141W  | NE V /  |
| YER137C   |          | YGL222C    |            | YHL036W   | MUP3    | YIL143C   | SSL2    |
| YER139C   |          | YGL226W    |            | YHL037C   | MICT 5  | YIL 144W  | TID3    |
| VFR140W   |          | YGL 227W   | TIN1       | YHL 038C  | CBP2    | YII 146C  | FCM37   |
| YER142C   | MAG1     | YGL228W    | 11111      | YHL041W   | CDI 2   | YIL147C   | SLN1    |
| VFR144C   | LIBP5    | YGL 229C   | SAP4       | YHL 042W  |         | VII 149C  | 5LIVI   |
| YER147C   | OBIS     | YGL230C    | 5711       | YHL043W   | ECM34   | YIL150C   | DNA43   |
| VFR149C   | PFA2     | YGL 232W   |            | YHL045W   | LCMJ4   | YIL 151C  | DIMHJ   |
| VFR153C   | PFT122   | YGL 233W   | SEC15      | YHL 047C  |         | VII 153W  | RRD1    |
| VFR161C   | SPT2     | YGL 235W   | SLC15      | YHR002W   |         | YII 159W  | RNR1    |
| VER162C   | RAD/     | YGL 237C   | НДР2       | VHR006W   | STP2    | VII 161W  | DIVICI  |
| VER168C   |          | YGL 239C   | 11111 2    | VHR011W   | 5112    | VII 163C  |         |
| VEP160W   |          | VGL 240W   | DOC1       |           | SPO13   | VII 166C  |         |
| VER171W   | RAD3     | VGL 241W   | DOCI       | VHP015W   | MIP6    | VII 167W  |         |
| VER172C   | RPP)     | VGL 242W   |            | VHD022W   | MVO1    |           | SDI 1   |
| VER172W   |          | YGI 246C   |            | VHR020W   | WI I UI |           | UVT12   |
|           | DMC1     | VCI 240W   | 7102       |           |         |           | 11/11/2 |
|           | ISC10    | 1 OL 249 W | LIF Z      | VHD025W   |         | VII 172W  |         |
| I EN IOUU | 13010    | 1 GL230 W  |            | 1 HKU33 W |         | 11L1/3W   |         |

| YER181C   |         | YGL251C    | HFM1  | YHR036W     |        | YIL175W   |           |
|-----------|---------|------------|-------|-------------|--------|-----------|-----------|
| YER182W   |         | YGL254W    | FZF1  | YHR038W     | KIM4   | YIR001C   |           |
| YER184C   |         | YGL257C    |       | YHR040W     |        | YIR002C   |           |
| YER187W   |         | YGL258W    |       | YHR044C     | DOG1   | YIR004W   | DJP1      |
| YER188W   |         | YGL259W    | YPS5  | YHR047C     | AAP1'  | YIR005W   |           |
| YER189W   |         | YGL260W    |       | YHR048W     |        | YIR008C   | PRI1      |
| YFL001W   | DEG1    | YGL262W    |       | YHR049C-A   | 1      | YIR009W   | MSL1      |
| YFL003C   | MSH4    | YGL263W    | COS12 | YHR058C     | MED6   | YIR010W   |           |
| YFL004W   |         | YGR002C    |       | YHR059W     |        | YIR014W   |           |
| YFL008W   | SMC1    | YGR003W    |       | YHR060W     | VMA22  | YIR015W   |           |
| YFL011W   | HXT10   | YGR005C    | TFG2  | YHR061C     | GIC1   | YIR017C   | MET28     |
| YFL012W   |         | YGR006W    | PRP18 | YHR066W     | SSF1   | YIR020C   |           |
| YFL013W-A |         | YGR012W    |       | YHR073W     |        | YIR023W   | DAL81     |
| YFL015C   |         | YGR013W    | SNU71 | YHR075C     |        | YIR025W   |           |
| YFL023W   |         | YGR016W    |       | YHR077C     | NMD2   | YIR027C   | DAL1      |
| YFL024C   |         | YGR018C    |       | YHR079BC    | SAE3   | YIR029W   | DAL2      |
| YFL025C   | BST1    | YGR022C    |       | YHR079C     | IRE1   | YIR030C   | DCG1      |
| YFL029C   | CAK1    | YGR025W    |       | YHR080C     |        | YIR031C   | DAL7      |
| YFL032W   |         | YGR030C    |       | YHR081W     |        | YIR032C   | DAL3      |
| YFL033C   | RIM15   | YGR035C    |       | YHR085W     |        | YIR033W   | MGA2      |
| YFL035C   | MOB2    | YGR039W    |       | YHR088W     |        | YIR039C   | YPS6      |
| YFL036W   | RPO41   | YGR040W    | KSS1  | YHR090C     | NBN1   | YIR040C   |           |
| YFL040W   |         | YGR042W    |       | YHR093W     | AHT1   | YIR042C   |           |
| YFL042C   |         | YGR045C    |       | YHR095W     |        | YJL.003W  |           |
| YFL046W   |         | YGR046W    |       | YHR099W     | TRA1   | YJL005W   | CYR1      |
| YFL047W   |         | YGR047C    | TFC4  | YHR101C     | BIG1   | YJL006C   | CTK2      |
| YFL049W   |         | YGR048W    | UFD1  | YHR102W     | NRK1   | YIL007C   | 01112     |
| YFL050C   | ALR2    | YGR051C    | 0121  | YHR103W     | SBE22  | YIL009W   |           |
| YFL051C   |         | YGR053C    |       | YHR105W     |        | YIL010C   |           |
| YFL052W   |         | YGR056W    | RSC1  | YHR109W     |        | YIL013C   | MAD3      |
| YFL053W   | DAK2    | YGR057C    | LST7  | YHR111W     |        | YIL018W   | 111120    |
| YFL055W   | AGP3    | YGR058W    | 2017  | YHR117W     | TOM71  | YJL019W   |           |
| YFL056C   |         | YGR059W    | SPR3  | YHR118C     | ORC6   | YIL022W   |           |
| YFL060C   | SNO3    | YGR064W    | 5110  | YHR119W     | SET1   | YIL023C   | PET130    |
| YFL061W   | 51100   | YGR066C    |       | YHR120W     | MSH1   | YIL024C   | APS3      |
| YFL063W   |         | YGR067C    |       | YHR121W     |        | YIL025W   | RRN7      |
| YFL064C   |         | YGR068C    |       | YHR122W     |        | YJL028W   | idd ()    |
| YFL065C   |         | YGR070W    | ROM1  | YHR124W     | NDT80  | YIL029C   |           |
| YFL067W   |         | YGR071C    | Rom   | YHR125W     | 112100 | YJL031C   | BET4      |
| YFL068W   |         | YGR072W    | LIPE3 | YHR126C     |        | YIL.033W  | HCA4      |
| YFR002W   | NIC96   | YGR081C    | 0115  | YHR127W     | HSN1   | YIL035C   | merri     |
| YFR005C   | 11070   | YGR087C    | PDC6  | YHR129C     | ARP1   | YIL036W   |           |
| YFR008W   |         | YGR089W    | I DC0 | YHR130C     | 711011 | YIL.037W  |           |
| VFR012W   |         | YGR091W    | PRP31 | VHR131C     |        | YIL 038C  |           |
| VFR013W   |         | YGR092W    | DRF2  | VHR134W     |        | YIL 039C  |           |
| VFR014C   | CMK1    | YGR093W    | DDI 2 | VHR136C     | SPI 2  | VII 0/3W  |           |
| VFR016C   | CIVILLI | YGRUOKW    |       | YHR127W     |        | YII 0/6W  |           |
| VFR010W   | FAR1    | YGR098C    | FSP1  | YHR130C A   |        | YII 047C  |           |
| VFR023W   | PFS/    | YGRUOOW    | TFI 2 | YHR144C     |        | YII 0/0W  |           |
| VFR027W   | I LOH   | YGR100W    | MDR1  | YHR1/8W     | ועסע   | YII 050W  | MTR/      |
| 111104/11 |         | 1 01/10/01 |       | 11111140 11 |        | 132030 11 | 141 1 1/4 |
| YFR029W | PTR3   | YGR103W |       | YHR149C |        | YJL051W |       |
|---------|--------|---------|-------|---------|--------|---------|-------|
| YFR032C |        | YGR104C | SRB5  | YHR150W |        | YJL054W | TIM54 |
| YFR035C |        | YGR107W |       | YHR151C |        | YJL056C | ZAP1  |
| YFR038W |        | YGR109C | CLB6  | YHR152W | SPO12  | YJL058C |       |
| YFR039C |        | YGR112W | SHY1  | YHR153C | SPO16  | YJL059W | YHC3  |
| YFR040W | SAP155 | YGR113W | DIF1  | YHR154W | ESC4   | YJL064W |       |
| YFR043C |        | YGR114C |       | YHR155W |        | YJL067W |       |
| YFR046C |        | YGR115C |       | YHR156C |        | YJL069C |       |
| YFR054C |        | YGR116W | SPT6  | YHR157W | REC104 | YJL070C |       |
| YFR055W |        | YGR117C |       | YHR158C | KEL1   | YJL071W | ARG2  |
| YFR056C |        | YGR119C | NUP57 | YHR159W |        | YJL072C |       |
| YFR057W |        | YGR120C |       | YHR160C |        | YJL073W | JEM1  |
| YGL005C |        | YGR122W |       | YHR164C | DNA2   | YJL074C | SMC3  |
| YGL007W |        | YGR123C | PPT1  | YHR165C | PRP8   | YJL075C |       |
| YGL014W |        | YGR128C |       | YHR166C | CDC23  | YJL076W | ESC5  |
| YGL015C |        | YGR129W | SYF2  | YHR167W |        | YJL077C |       |
| YGL016W | PDR6   | YGR130C |       | YHR168W |        | YJL084C |       |
| YGL017W | ATE1   | YGR131W |       | YHR169W | DBP8   | YJL085W | EXO70 |
| YGL018C | JAC1   | YGR134W |       | YHR172W | SPC97  | YJL086C |       |
| YGL025C | PGD1   | YGR139W |       | YHR173C |        | YJL087C | TRL1  |
| YGL027C | CWH41  |         |       |         |        |         |       |
|         |        |         |       |         |        |         |       |

#### ORFs not detected in any of four cultures on microarray 'C'.

| YJL089W | SIP4  | YKL070W  |        | YLR055C  | SPT8   | YLR444C   |       |
|---------|-------|----------|--------|----------|--------|-----------|-------|
| YJL090C | DPB11 | YKL071W  |        | YLR057W  |        | YLR445W   |       |
| YJL092W | HPR5  | YKL072W  | STB6   | YLR062C  |        | YLR446W   |       |
| YJL093C | TOK1  | YKL073W  | LHS1   | YLR063W  |        | YLR450W   | HMG2  |
| YJL094C |       | YKL074C  | MUD2   | YLR067C  | PET309 | YLR451W   | LEU3  |
| YJL095W | BCK1  | YKL075C  |        | YLR068W  |        | YLR452C   | SST2  |
| YJL096W |       | YKL076C  |        | YLR070C  |        | YLR453C   | RIF2  |
| YJL098W |       | YKL078W  |        | YLR071C  | RGR1   | YLR454W   |       |
| YJL099W | CHS6  | YKL079W  | SMY1   | YLR072W  |        | YLR455W   |       |
| YJL100W |       | YKL082C  |        | YLR077W  |        | YLR456W   |       |
| YJL101C | GSH1  | YKL083W  |        | YLR080W  |        | YLR457C   | NBP1  |
| YJL102W | MEF2  | YKL088W  |        | YLR082C  |        | YLR458W   |       |
| YJL103C |       | YKL089W  | MIF2   | YLR084C  |        | YLR460C   |       |
| YJL104W |       | YKL090W  |        | YLR085C  | ARP6   | YLR462W   |       |
| YJL105W |       | YKL092C  | BUD2   | YLR086W  | SMC4   | YLR463C   |       |
| YJL106W | IME2  | YKL093W  | MBR1   | YLR087C  |        | YLR464W   |       |
| YJL107C |       | YKL095W  | YJU2   | YLR090W  | XDJ1   | YLR465C   |       |
| YJL108C |       | YKL097C  |        | YLR091W  |        | YML002W   |       |
| YJL109C |       | YKL098W  |        | YLR092W  | SUL2   | YML003W   |       |
| YJL110C | GZF3  | YKL099C  |        | YLR094C  |        | YML005W   |       |
| YJL112W |       | YKL101W  | HSL1   | YLR096W  | KIN2   | YML006C   |       |
| YJL113W |       | YKL102C  |        | YLR097C  |        | YML007W   | YAP1  |
| YJL114W |       | YKL105C  |        | YLR098C  | CHA4   | YML011C   |       |
| YJL115W | ASF1  | YKL106W  | AAT1   | YLR101C  |        | YML013C-A |       |
| YJL118W |       | YKL107W  |        | YLR102C  | APC9   | YML013W   |       |
| YJL119C |       | YKL108W  |        | YLR103C  | CDC45  | YML015C   | TAF40 |
| YJL120W |       | YKL109W  | HAP4   | YLR105C  | SEN2   | YML016C   | PPZ1  |
| YJL122W |       | YKL110C  | KTI12  | YLR106C  |        | YML017W   | PSP2  |
| YJL123C |       | YKL111C  |        | YLR107W  |        | YML020W   |       |
| YJL125C | GCD14 | YKL112W  | ABF1   | YLR108C  |        | YML021C   | UNG1  |
| YJL126W | NIT2  | YKL113C  | RAD27  | YLR111W  |        | YML023C   |       |
| YJL127C | SPT10 | YKL114C  | APN1   | YLR114C  |        | YML032C   | RAD52 |
| YJL128C | PBS2  | YKL115C  |        | YLR115W  | CFT2   | YML032C-A |       |
| YJL129C | TRK1  | YKL116C  |        | YLR116W  | MSL5   | YML033W   |       |
| YJL131C |       | YKL118W  |        | YLR117C  | CDM    | YML034W   | 11001 |
| YJL132W |       | YKL119C  | VPH2   | YLR119W  | SRN2   | YML035C   | AMD1  |
| YJL135W |       | YKL121W  |        | YLR122C  |        | YML035C-A |       |
| YJL13/C | GLG2  | YKL123W  | COLLA  | YLR123C  |        | YML036W   |       |
| YJL139C | YURI  | YKL124W  | SSH4   | YLR124W  |        | YML037C   |       |
| YJL140W | RPB4  | YKL125W  | RRN3   | YLR125W  |        | YML038C   |       |
| YJL14IC | YAKI  | YKL129C  | MYO3   | YLR126C  | 4.0.02 | YML041C   |       |
| YJL142C |       | YKL130C  |        | YLKIZ/C  | APC2   | YML042W   | CAT2  |
| YJL144W |       | YKL131W  |        | YLKI28W  |        | YML043C   | KKN11 |
| YJL145W | IDCO  | YKL132C  |        | YLRI3IC  | ACE2   | YML046W   | PRP39 |
| 1JL146W | 1D82  | 1 KL133C |        | 1 LK135W | TIC11  | I MLU4/C  |       |
| YJL14/C |       | YKL134C  | A DL C | YLK136C  | 11511  | YML048W-A | DOD1  |
| 1JL148W | KPA34 | 1 KL135C | APL2   | 1 LK13/W |        | 1 MILU49C | KSEI  |

| YJL149W  |       | YKL136W |         | YLR138W | NHA1  | YML050W   |        |
|----------|-------|---------|---------|---------|-------|-----------|--------|
| YJL150W  |       | YKL137W |         | YLR139C | SLS1  | YML053C   |        |
| YJL154C  | VPS35 | YKL138C | MRPL31  | YLR140W |       | YML054C   | CYB2   |
| YJL155C  | FBP26 | YKL139W | CTK1    | YLR141W | RRN5  | YML058C-A |        |
| YJL156C  | SSY5  | YKL143W | LTV1    | YLR142W | PUT1  | YML059C   |        |
| YJL160C  |       | YKL147C |         | YLR143W |       | YML060W   | OGG1   |
| YJL161W  |       | YKL149C | DBR1    | YLR144C | ACF2  | YML061C   | PIF1   |
| YJL162C  |       | YKL153W |         | YLR145W |       | YML062C   | MFT1   |
| YJL163C  |       | YKL154W |         | YLR147C | SMD3  | YML065W   | ORC1   |
| YJL165C  | HAL5  | YKL155C |         | YLR148W | PEP3  | YML066C   |        |
| YJL168C  | SET2  | YKL158W |         | YLR149C |       | YML068W   |        |
| YJL169W  |       | YKL159C |         | YLR151C |       | YML069W   | POB3   |
| YJL170C  | ASG7  | YKL161C |         | YLR152C |       | YML071C   |        |
| YJL172W  | CPS1  | YKL162C |         | YLR156W |       | YML076C   |        |
| YJL175W  |       | YKL166C | TPK3    | YLR158C | ASP3  | YML077W   |        |
| YJL176C  | SWI3  | YKL168C | KKQ8    | YLR159W |       | YML080W   |        |
| YJL179W  | PFD1  | YKL169C |         | YLR161W |       | YML081W   |        |
| YJL180C  | ATP12 | YKL171W |         | YLR162W |       | YML082W   |        |
| YJL181W  |       | YKL173W | SNU114  | YLR163C | MAS1  | YML083C   |        |
| YJL182C  |       | YKL176C |         | YLR164W |       | YML084W   |        |
| YJL183W  | MNN11 | YKL177W |         | YLR165C |       | YML087C   |        |
| YJL184W  |       | YKL179C |         | YLR166C | SEC10 | YML088W   |        |
| YJL185C  |       | YKL183W |         | YLR168C | MSF1' | YML089C   |        |
| YJL186W  |       | YKL187C |         | YLR169W |       | YML090W   |        |
| YJL187C  | SWE1  | YKL188C | PXA2    | YLR170C | APS1  | YML091C   | RPM2   |
| YJL188C  |       | YKL189W | HYM1    | YLR171W |       | YML093W   |        |
| YJL193W  |       | YKL193C | SDS22   | YLR173W |       | YML094W   | PFD5   |
| YJL194W  | CDC6  | YKL194C | MST1    | YLR174W | IDP2  | YML095C   | RAD10  |
| YJL195C  |       | YKL195W |         | YLR176C | RFX1  | YML095C-A |        |
| YJL197W  | UBP12 | YKL197C | PEX1    | YLR181C |       | YML096W   |        |
| YJL198W  |       | YKL198C | PTK1    | YLR182W | SWI6  | YML097C   | VPS9   |
| YJL200C  |       | YKL200C |         | YLR183C |       | YML098W   | TAF19  |
| YJL201W  | ECM25 | YKL201C |         | YLR184W |       | YML099C   | ARG81  |
| YJL202C  |       | YKL202W |         | YLR187W |       | YML100W-A |        |
| YJL203W  | PRP21 | YKL203C | TOR2    | YLR188W | MDL1  | YML102C-A |        |
| YJL204C  |       | YKL204W |         | YLR189C |       | YML102W   | CAC2   |
| YJL206C  |       | YKL205W | LOS1    | YLR190W |       | YML103C   | NUP188 |
| YJL207C  |       | YKL206C |         | YLR191W | PEX13 | YML104C   | MDM1   |
| YJL208C  | NUC1  | YKL208W | CBT1    | YLR193C |       | YML107C   |        |
| YJL209W  | CBP1  | YKL209C | STE6    | YLR196W | PWP1  | YML108W   |        |
| YJL211C  |       | YKL215C | ~       | YLR198C |       | YML109W   | ZDS2   |
| YIL212C  |       | YKL217W | JEN1    | YLR200W | YKE2  | YML111W   |        |
| YIL213W  |       | YKL218C | U LI VI | YLR205C |       | YML115C   | VAN1   |
| YIL214W  | HXT8  | YKL219W | COS9    | YLR207W | HRD3  | YML117W   |        |
| YIL215C  |       | YKL220C | FRE2    | YLR210W | CLB4  | YML118W   |        |
| YJL216C  |       | YKL221W |         | YLR211C |       | YML119W   |        |
| YIL 218W |       | YKL222C |         | YLR213C |       | YML120C   | NDI1   |
| YJL219W  | НХТ9  | YKL223W |         | YLR214W | FRE1  | YML122C   |        |
| YJL220W  |       | YKL224C |         | YLR215C |       | YMR001C   | CDC5   |
| YJL221C  | FSP2  | YKL225W |         | YLR217W |       | YMR004W   | MVP1   |
|          |       |         |         |         |       |           | ·      |

| YJL222W |               | YKR001C | VPS1   | YLR218C |       | YMR007W   |       |
|---------|---------------|---------|--------|---------|-------|-----------|-------|
| YJL223C |               | YKR002W | PAP1   | YLR219W |       | YMR013C   | SEC59 |
| YJL225C |               | YKR003W |        | YLR221C |       | YMR014W   |       |
| YJR002W | MPP10         | YKR005C |        | YLR223C | IFH1  | YMR016C   | SOK2  |
| YJR003C |               | YKR007W |        | YLR225C |       | YMR017W   | DBI9  |
| YJR005W | APL1          | YKR008W | RSC4   | YLR226W |       | YMR018W   |       |
| YJR006W |               | YKR009C | FOX2   | YLR227C |       | YMR019W   | STB4  |
| YJR010W | MET3          | YKR010C | TOF2   | YLR228C | ECM22 | YMR020W   | FMS1  |
| YJR011C |               | YKR011C |        | YLR230W |       | YMR021C   | MAC1  |
| YJR012C |               | YKR012C |        | YLR232W |       | YMR023C   | MSS1  |
| YJR013W |               | YKR014C | YPT52  | YLR233C | EST1  | YMR025W   |       |
| YJR018W |               | YKR015C |        | YLR234W | TOP3  | YMR026C   | PEX12 |
| YJR020W |               | YKR016W |        | YLR235C |       | YMR028W   | TAP42 |
| YJR021C | <b>REC107</b> | YKR017C |        | YLR236C |       | YMR029C   |       |
| YJR022W |               | YKR019C | IRS4   | YLR238W |       | YMR030W   |       |
| YJR023C |               | YKR020W |        | YLR239C |       | YMR031C   |       |
| YJR030C |               | YKR021W |        | YLR240W | VPS34 | YMR031W-A |       |
| YJR031C | GEA1          | YKR022C |        | YLR242C | ARV1  | YMR032W   | CYK2  |
| YJR032W | CPR7          | YKR023W |        | YLR243W |       | YMR033W   | ARP9  |
| YJR033C |               | YKR024C | DBP7   | YLR245C |       | YMR034C   |       |
| YJR034W | PET191        | YKR027W |        | YLR246W |       | YMR036C   | MIH1  |
| YJR035W | RAD26         | YKR028W | SAP190 | YLR247C |       | YMR037C   | MSN2  |
| YJR036C |               | YKR029C |        | YLR254C |       | YMR039C   | SUB1  |
| YJR037W |               | YKR031C | SPO14  | YLR255C |       | YMR040W   |       |
| YJR038C |               | YKR032W |        | YLR260W | LCB5  | YMR041C   |       |
| YJR039W |               | YKR033C |        | YLR261C |       | YMR044W   |       |
| YJR040W | GEF1          | YKR034W | DAL80  | YLR262C | YPT6  | YMR045C   |       |
| YJR041C |               | YKR035C |        | YLR263W | RED1  | YMR046C   |       |
| YJR042W | NUP85         | YKR036C | CAF4   | YLR265C |       | YMR048W   |       |
| YJR043C | POL32         | YKR037C |        | YLR266C |       | YMR052C-A |       |
| YJR046W |               | YKR040C |        | YLR267W |       | YMR052W   | FAR3  |
| YJR047C | ANB1          | YKR041W |        | YLR269C |       | YMR053C   | STB2  |
| YJR049C | UTR1          | YKR044W |        | YLR271W |       | YMR057C   |       |
| YJR050W | UTR3          | YKR045C |        | YLR272C |       | YMR059W   | SEN15 |
| YJR051W | OSM1          | YKR047W |        | YLR273C | PIG1  | YMR060C   | TOM37 |
| YJR052W | RAD7          | YKR050W | TRK2   | YLR274W | CDC46 | YMR061W   | RNA14 |
| YJR053W |               | YKR051W |        | YLR275W | SMD2  | YMR063W   | RIM9  |
| YJR054W |               | YKR052C | MRS4   | YLR276C | DBP9  | YMR064W   | AEP1  |
| YJR055W | HIT1          | YKR053C | YSR3   | YLR277C | YSH1  | YMR065W   | KAR5  |
| YJR056C |               | YKR054C | DYN1   | YLR278C |       | YMR066W   |       |
| YJR057W | CDC8          | YKR055W | RHO4   | YLR279W |       | YMR068W   |       |
| YJR060W | CBF1          | YKR058W | GLG1   | YLR280C |       | YMR069W   |       |
| YJR061W |               | YKR060W |        | YLR281C |       | YMR070W   | MOT3  |
| YJR062C | NTA1          | YKR061W | KTR2   | YLR282C |       | YMR075C-A |       |
| YJR066W | TOR1          | YKR063C | LAS1   | YLR283W |       | YMR075W   |       |
| YJR067C | YAE1          | YKR064W |        | YLR284C | EHD1  | YMR076C   | PDS5  |
| YJR068W | RFC2          | YKR069W | MET1   | YLR287C |       | YMR077C   |       |
| YJR071W |               | YKR072C | SIS2   | YLR288C | MEC3  | YMR078C   | CTF18 |
| YJR072C |               | YKR073C |        | YLR289W | GUF1  | YMR080C   | NAM7  |
| YJR078W |               | YKR075C |        | YLR296W |       | YMR082C   |       |

| YJR079W |        | YKR077W |        | YLR298C | YHC1   | YMR084W   |        |
|---------|--------|---------|--------|---------|--------|-----------|--------|
| YJR082C |        | YKR078W |        | YLR299W | ECM38  | YMR085W   |        |
| YJR083C |        | YKR079C |        | YLR302C |        | YMR086C-A |        |
| YJR087W |        | YKR081C |        | YLR305C | STT4   | YMR086W   |        |
| YJR088C |        | YKR082W | NUP133 | YLR306W | UBC12  | YMR093W   |        |
| YJR089W |        | YKR083C |        | YLR307W | CDA1   | YMR094W   | CTF13  |
| YJR090C | GRR1   | YKR084C | HBS1   | YLR308W | CDA2   | YMR095C   | SNO1   |
| YJR091C | JSN1   | YKR085C | MRPL20 | YLR309C | IMH1   | YMR096W   | SNZ1   |
| YJR092W | BUD4   | YKR086W | PRP16  | YLR310C | CDC25  | YMR097C   |        |
| YJR093C | FIP1   | YKR087C |        | YLR311C |        | YMR098C   |        |
| YJR094C | IME1   | YKR089C |        | YLR312C |        | YMR100W   | MUB1   |
| YJR095W | ACR1   | YKR090W |        | YLR313C | SPH1   | YMR101C   |        |
| YJR097W |        | YKR091W |        | YLR314C | CDC3   | YMR102C   |        |
| YJR098C |        | YKR092C | SRP40  | YLR315W |        | YMR103C   |        |
| YJR099W | YUH1   | YKR095W | MLP1   | YLR316C |        | YMR104C   | YPK2   |
| YJR100C |        | YKR096W |        | YLR318W | EST2   | YMR106C   | HDF2   |
| YJR102C |        | YKR097W | PCK1   | YLR319C | BUD6   | YMR107W   |        |
| YJR106W | ECM27  | YKR098C | UBP11  | YLR320W |        | YMR109W   | MYO5   |
| YJR107W |        | YKR099W | BAS1   | YLR321C | SFH1   | YMR111C   |        |
| YJR108W |        | YKR101W | SIR1   | YLR322W |        | YMR112C   |        |
| YJR109C | CPA2   | YKR102W | FLO10  | YLR323C |        | YMR114C   |        |
| YJR110W |        | YKR103W |        | YLR324W |        | YMR115W   |        |
| YJR111C |        | YKR104W |        | YLR326W |        | YMR117C   |        |
| YJR112W | NNF1   | YKR105C |        | YLR329W | REC102 | YMR118C   |        |
| YJR114W |        | YKR106W |        | YLR331C |        | YMR122C   |        |
| YJR119C |        | YLL001W | DNM1   | YLR332W | MID2   | YMR124W   |        |
| YJR120W |        | YLL002W | KIM2   | YLR334C |        | YMR125W   | STO1   |
| YJR122W | CAF17  | YLL003W | SFI1   | YLR336C | SGD1   | YMR126C   |        |
| YJR124C |        | YLL004W | ORC3   | YLR337W |        | YMR127C   | SAS2   |
| YJR128W |        | YLL005C |        | YLR338W |        | YMR129W   | POM152 |
| YJR129C |        | YLL006W | MMM1   | YLR339C |        | YMR130W   |        |
| YJR130C |        | YLL007C |        | YLR341W |        | YMR132C   |        |
| YJR131W | MNS1   | YLL008W | DRS1   | YLR343W |        | YMR133W   | REC114 |
| YJR132W | NMD5   | YLL011W | SOF1   | YLR345W |        | YMR134W   |        |
| YJR134C |        | YLL012W |        | YLR346C |        | YMR135W-A |        |
| YJR135C | MCM22  | YLL013C |        | YLR349W |        | YMR137C   | SNM1   |
| YJR136C |        | YLL015W |        | YLR352W |        | YMR138W   | CIN4   |
| YJR137C | ECM17  | YLL016W | SDC25  | YLR353W | BUD8   | YMR139W   | RIM11  |
| YJR138W |        | YLL017W |        | YLR357W | RSC2   | YMR140W   |        |
| YJR140C | HIR3   | YLL019C | KNS1   | YLR358C |        | YMR141C   |        |
| YJR141W |        | YLL021W | SPA2   | YLR360W | VPS38  | YMR144W   |        |
| YJR142W |        | YLL029W |        | YLR361C |        | YMR147W   |        |
| YJR144W | MGM101 | YLL030C |        | YLR362W | STE11  | YMR151W   |        |
| YJR146W |        | YLL032C |        | YLR363C | NMD4   | YMR153C-A |        |
| YJR147W | HMS2   | YLL033W |        | YLR365W |        | YMR153W   |        |
| YJR149W | -      | YLL034C |        | YLR366W |        | YMR154C   | RIM13  |
| YJR150C | DAN1   | YLL035W |        | YLR368W |        | YMR155W   | -      |
| YJR151C |        | YLL036C | PRP19  | YLR369W |        | YMR156C   |        |
| YJR152W | DAL5   | YLL037W |        | YLR371W |        | YMR158W   |        |
| YJR153W | PGU1   | YLL038C |        | YLR373C |        | YMR158W-A |        |

| YJR154W   |        | YLL042C |       | YLR374C |       | YMR159C   | SAP18  |
|-----------|--------|---------|-------|---------|-------|-----------|--------|
| YJR155W   |        | YLL046C | RNP1  | YLR376C |       | YMR160W   |        |
| YJR156C   | THI11  | YLL047W |       | YLR377C | FBP1  | YMR162C   |        |
| YJR157W   |        | YLL052C |       | YLR379W |       | YMR163C   |        |
| YJR158W   | HXT16  | YLL054C |       | YLR381W |       | YMR164C   | MSS11  |
| YJR159W   | SOR1   | YLL055W |       | YLR382C | NAM2  | YMR165C   | SMP2   |
| YJR160C   |        | YLL057C |       | YLR383W | RHC18 | YMR166C   |        |
| YJR162C   |        | YLL059C |       | YLR385C |       | YMR167W   | MLH1   |
| YKL005C   |        | YLL060C |       | YLR386W |       | YMR168C   | CEP3   |
| YKL006C-A | SFT1   | YLL061W |       | YLR387C |       | YMR170C   | ALD2   |
| YKL011C   | CCE1   | YLL062C |       | YLR389C | STE23 | YMR172C-A |        |
| YKL012W   | PRP40  | YLL063C |       | YLR392C |       | YMR172W   |        |
| YKL014C   |        | YLL065W | GIN11 | YLR393W | ATP10 | YMR176W   | ECM5   |
| YKL015W   | PUT3   | YLR002C |       | YLR394W |       | YMR178W   |        |
| YKL017C   | HCS1   | YLR003C |       | YLR396C | VPS33 | YMR179W   | SPT21  |
| YKL020C   | SPT23  | YLR004C |       | YLR397C | AFG2  | YMR180C   |        |
| YKL021C   | MAK11  | YLR006C | SSK1  | YLR398C | SKI2  | YMR182C   | RGM1   |
| YKL022C   | CDC16  | YLR007W |       | YLR399C | BDF1  | YMR183C   | SSO2   |
| YKL023W   |        | YLR009W |       | YLR400W |       | YMR185W   |        |
| YKL025C   | PAN3   | YLR010C |       | YLR401C |       | YMR187C   |        |
| YKL026C   |        | YLR011W |       | YLR402W |       | YMR188C   |        |
| YKL027W   |        | YLR012C |       | YLR403W | SFP1  | YMR190C   | SGS1   |
| YKL030W   |        | YLR013W |       | YLR407W |       | YMR192W   |        |
| YKL031W   |        | YLR014C | PPR1  | YLR408C |       | YMR193C-A |        |
| YKL032C   | IXR1   | YLR015W |       | YLR409C |       | YMR193W   |        |
| YKL033W   |        | YLR016C |       | YLR410W |       | YMR196W   |        |
| YKL036C   |        | YLR020C |       | YLR411W | CTR3  | YMR197C   | VTI1   |
| YKL037W   |        | YLR021W |       | YLR415C |       | YMR198W   | CIK1   |
| YKL038W   | RGT1   | YLR022C |       | YLR416C |       | YMR199W   | CLN1   |
| YKL040C   |        | YLR024C |       | YLR417W | VPS36 | YMR201C   | RAD14  |
| YKL041W   | VPS24  | YLR026C | SED5  | YLR418C | CDC73 | YMR204C   |        |
| YKL042W   | SPC42  | YLR030W |       | YLR419W |       | YMR206W   |        |
| YKL044W   |        | YLR031W |       | YLR422W |       | YMR207C   | HFA1   |
| YKL045W   | PRI2   | YLR032W | RAD5  | YLR423C |       | YMR209C   |        |
| YKL047W   |        | YLR033W |       | YLR424W |       | YMR210W   |        |
| YKL048C   | ELM1   | YLR035C |       | YLR425W |       | YMR212C   |        |
| YKL049C   | CSE4   | YLR036C |       | YLR427W |       | YMR213W   | CEF1   |
| YKL050C   |        | YLR039C | RIC1  | YLR428C |       | YMR214W   | SCJ1   |
| YKL052C   |        | YLR041W |       | YLR430W | SEN1  | YMR218C   |        |
| YKL055C   |        | YLR045C | STU2  | YLR431C |       | YMR219W   | ESC1   |
| YKL057C   | NUP120 | YLR046C |       | YLR433C | CNA1  | YMR220W   | ERG8   |
| YKL059C   |        | YLR047C |       | YLR434C |       | YMR223W   |        |
| YKL061W   |        | YLR049C |       | YLR435W |       | YMR225C   | MRPL44 |
| YKL063C   |        | YLR051C |       | YLR436C | ECM30 | YMR227C   | TAF67  |
| YKL064W   | MNR2   | YLR052W |       | YLR440C |       | YMR228W   | MTF1   |
| YKL068W   | NUP100 | YLR053C |       | YLR442C | SIR3  | YMR229C   | FMI1   |
| YKL069W   |        | YLR054C |       | YLR443W | ECM7  |           |        |

#### ORFs not detected in any of four cultures on microarray 'D'.

| YMR231W   | PEP5  | YNL318C |        | YOR118W |        | YPL151C |        |
|-----------|-------|---------|--------|---------|--------|---------|--------|
| YMR232W   | FUS2  | YNL319W |        | YOR127W | RGA1   | YPL153C | RAD53  |
| YMR233W   |       | YNL324W |        | YOR139C |        | YPL155C | KIP2   |
| YMR251W   |       | YNL325C | FIG4   | YOR144C |        | YPL158C |        |
| YMR254C   |       | YNL335W |        | YOR146W |        | YPL161C | BEM4   |
| YMR265C   |       | YNR003C | RPC34  | YOR148C | SPP2   | YPL164C |        |
| YMR268C   | PRP24 | YNR004W |        | YOR156C | NFI1   | YPL165C |        |
| YMR270C   | RRN9  | YNR005C |        | YOR162C | YRR1   | YPL166W |        |
| YMR273C   | ZDS1  | YNR008W |        | YOR169C |        | YPL167C | REV3   |
| YMR277W   | FCP1  | YNR023W | SNF12  | YOR170W |        | YPL174C | NIP100 |
| YMR279C   |       | YNR024W |        | YOR171C | LCB4   | YPL181W |        |
| YMR280C   | CAT8  | YNR042W |        | YOR177C |        | YPL185W |        |
| YMR282C   | AEP2  | YNR045W | PET494 | YOR183W |        | YPL189W |        |
| YMR284W   | HDF1  | YNR056C | BIO5   | YOR186W |        | YPL191C |        |
| YMR285C   |       | YNR059W |        | YOR188W | MSB1   | YPL192C |        |
| YMR287C   | MSU1  | YNR060W | FRE4   | YOR190W | SPR1   | YPL193W |        |
| YMR288W   |       | YNR062C |        | YOR192C |        | YPL194W | DDC1   |
| YMR294W   | JNM1  | YNR063W |        | YOR193W |        | YPL200W |        |
| YMR306C-A |       | YNR064C |        | YOR195W | SLK19  | YPL201C |        |
| YMR306W   | FKS3  | YNR066C |        | YOR199W |        | YPL202C |        |
| YMR313C   |       | YNR069C |        | YOR211C | MGM1   | YPL205C |        |
| YMR316C-B |       | YNR070W |        | YOR214C |        | YPL209C | IPL1   |
| YMR317W   |       | YNR072W | HXT17  | YOR216C | RUD3   | YPL213W |        |
| YMR320W   |       | YNR073C |        | YOR221C |        | YPL216W |        |
| YMR324C   |       | YNR077C |        | YOR225W |        | YPL217C |        |
| YMR326C   |       | YOL006C | TOP1   | YOR235W | SNR17A | YPL228W | CET1   |
| YNL012W   | SPO1  | YOL015W |        | YOR237W | HES1   | YPL233W |        |
| YNL014W   |       | YOL017W |        | YOR242C |        | YPL241C | CIN2   |
| YNL017C   |       | YOL018C | TLG2   | YOR252W |        | YPL242C | IQG1   |
| YNL018C   |       | YOL023W | IFM1   | YOR255W |        | YPL243W | SRP68  |
| YNL019C   |       | YOL024W |        | YOR256C |        | YPL248C | GAL4   |
| YNL020C   | ARK1  | YOL025W | LAG2   | YOR263C |        | YPL249C |        |
| YNL024C   |       | YOL028C | YAP7   | YOR268C |        | YPL251W |        |
| YNL027W   | CRZ1  | YOL029C |        | YOR274W | MOD5   | YPL253C | VIK1   |
| YNL028W   |       | YOL034W |        | YOR277C |        | YPL254W | HFI1   |
| YNL033W   |       | YOL037C |        | YOR279C |        | YPL255W | BBP1   |
| YNL034W   |       | YOL041C |        | YOR282W |        | YPL257W |        |
| YNL041C   |       | YOL044W | PEX15  | YOR287C |        | YPL261C |        |
| YNL047C   |       | YOL045W |        | YOR295W |        | YPL267W |        |
| YNL049C   |       | YOL046C |        | YOR296W |        | YPL269W | KAR9   |
| YNL057W   |       | YOL047C |        | YOR298W |        | YPL272C |        |
| YNL059C   | ARP5  | YOL050C |        | YOR300W |        | YPL277C |        |
| YNL068C   | FKH2  | YOL054W |        | YOR308C |        | YPL281C | ERR2   |
| YNL077W   |       | YOL067C | RTG1   | YOR313C | SPS4   | YPR001W | CIT3   |
| YNL082W   | PMS1  | YOL069W | NUF2   | YOR314W |        | YPR002W |        |
| YNL083W   |       | YOL076W | DEC1   | YOR324C |        | YPR003C |        |
| YNL089C   |       | YOL078W |        | YOR325W |        | YPR007C |        |

| YNL095C  |          | YOL079W  |        | YOR330C     | MIP1   | YPR014C  |       |
|----------|----------|----------|--------|-------------|--------|----------|-------|
| YNL102W  | POL1     | YOL085C  |        | YOR333C     |        | YPR015C  |       |
| YNL105W  |          | YOL089C  |        | YOR334W     | MRS2   | YPR018W  | RLF2  |
| YNL106C  | INP52    | YOL091W  |        | YOR339C     |        | YPR025C  | CCL1  |
| YNL109W  |          | YOL093W  |        | YOR345C     |        | YPR026W  | ATH1  |
| YNL119W  |          | YOL095C  |        | YOR350C     | MNE1   | YPR027C  |       |
| YNL120C  |          | YOL099C  |        | YOR351C     | MEK1   | YPR031W  |       |
| YNL126W  | SPC98    | YOL100W  |        | YOR353C     |        | YPR032W  | SRO7  |
| YNL127W  |          | YOL104C  | NDJ1   | YOR364W     |        | YPR038W  |       |
| YNL128W  | TEP1     | YOL105C  | WSC3   | YOR365C     |        | YPR039W  |       |
| YNL139C  | RLR1     | YOL113W  | SKM1   | YOR366W     |        | YPR045C  |       |
| YNL140C  |          | YOL114C  |        | YOR368W     | RAD17  | YPR046W  | MCM16 |
| YNL143C  |          | YOL115W  | TRF4   | YOR371C     |        | YPR049C  |       |
| YNL146W  |          | YOL116W  | MSN1   | YOR372C     |        | YPR050C  |       |
| YNL148C  | ALF1     | YOL117W  |        | YOR376W     |        | YPR054W  | SMK1  |
| YNL152W  |          | YOL118C  |        | YOR378W     |        | YPR055W  | SEC8  |
| YNL161W  |          | YOL131W  |        | YOR379C     |        | YPR056W  | TFB4  |
| YNL164C  |          | YOL132W  |        | YOR381W     | FRE3   | YPR059C  |       |
| YNL171C  |          | YOL134C  |        | YOR384W     | FRE5   | YPR064W  |       |
| YNL172W  | APC1     | YOL138C  |        | YOR 386W    | PHR1   | YPR068C  | HOS1  |
| YNL179C  | 711 01   | YOL141W  |        | YOR387C     | 1111(1 | YPR070W  | 11051 |
| YNL182C  |          | YOL144W  |        | YOR 392W    |        | YPR071W  |       |
| YNL187W  |          | YOL145C  | CTR9   | YPL005W     |        | YPR076W  |       |
| VNI 188W | KAR1     | YOL 150C | eno    | YPI 008W    | CHI 1  | YPR077C  |       |
| VNI 196C | SI 71    | YOL 152W | FRF7   | YPI 016W    | SWI1   | YPR078C  |       |
| VNI 197C | WHI3     | YOL 156W | HXT11  | VPI 021W    | ECM23  | VPR083W  |       |
| VNI 198C | W1115    | YOL 157C | 11/111 | VPI 022W    |        | VPR087W  |       |
| VNI 203C |          | VOI 160W |        | VPL 025C    | KADI   | VPR089W  |       |
| VNI 204C | SPS18    | YOL 161C |        | VPI 027W    |        | VPROOOW  |       |
| VNI 205C | 51510    | VOL 163W |        | VPI 020W    | SUV3   | VPR002W  |       |
| VNI 207W |          | YOL 166C |        | VDL 022C    | 30 13  | VDD005C  |       |
| VNI 210W | MED 1    | VOP003W  | VSD2   | VPL 035C    |        | VPP006C  |       |
| VNI 212W | MERI     | YOR005C  | DNI 4  | VDL 029W    |        | VDD007W  |       |
| VNI 214W | DEV17    | YOR011W  | DINL4  | VDL 040C    | ISM1   | VDP000C  |       |
| VNI 215W | FLAI/    | YOR012W  |        | VDL041C     | 151/11 | VDP 104C | EUI 1 |
| VNI 219W |          | YOR012W  | DET107 | VDL 042W    | NODA   | VDD105C  | ΓΠLΙ  |
| VNI 224C |          | YOR010W  | FEI12/ | 1  FL043  W | NOF4   | VDD111W  | DDEO  |
| INL224C  | CNIMCT   | YOR024W  |        | VDL 045W    | VDC16  | VDD112C  | DBF20 |
| INL225C  | CINIMO/  | I OR024W | 11072  | IPL043W     | VP510  | IPRII2C  |       |
| YNL220W  |          | YOR025W  | H313   | YPL060W     |        | YPR110W  | AVI 1 |
| YNL22/C  |          | YOR026W  | BUB3   | YPL062W     |        | YPR122W  | AXLI  |
| YNL228W  | DNUA     | YOR028C  | CIN5   | YPL070W     |        | YPR123C  |       |
| YNL233W  | BNI4     | YOR029W  | DECL   | YPL072W     |        | YPR130C  |       |
| YNL235C  |          | YOR030W  | DFG16  | YPL073C     |        | YPR136C  |       |
| YNL242W  | D 4 D 50 | YOR032C  | HMSI   | YPL0/4W     | NOT1   | YPR13/W  | TA DO |
| YNL250W  | RAD50    | YOR033C  | DHSI   | YPL082C     | MOTT   | YPR141C  | KAR3  |
| YNL253W  |          | YOR037W  | CYC2   | YPL083C     | SEN54  | YPR142C  |       |
| YNL254C  | area     | YOR038C  | HIR2   | YPL096W     |        | YPR150W  |       |
| YNL257C  | SIP3     | YOR041C  |        | YPL099C     |        | YPR152C  |       |
| YNL258C  |          | YOR048C  | RAT1   | YPL102C     |        | YPR164W  | KIM3  |
| YNL260C  |          | YOR049C  |        | YPL103C     |        | YPR168W  | NUT2  |

|      | YOR050C                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                              | YPL108W                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                              | YPR170C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PIK1 | YOR055W                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                              | YPL109C                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                              | YPR171W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | YOR058C                                                              | ASE1                                                                                                                                                                                                                                                                                                                                                                                                                         | YPL110C                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                              | YPR175W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DPB2                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ALP1 | YOR060C                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                              | YPL114W                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                              | YPR177C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SEC2 | YOR068C                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                              | YPL116W                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HOS3                                                                                                                                                                                                                                                                         | YPR179C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TOF1 | YOR070C                                                              | GYP1                                                                                                                                                                                                                                                                                                                                                                                                                         | YPL119C                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DBP1                                                                                                                                                                                                                                                                         | YPR180W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AOS1                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | YOR073W                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                              | YPL120W                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VPS30                                                                                                                                                                                                                                                                        | YPR186C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PZF1                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | YOR075W                                                              | UFE1                                                                                                                                                                                                                                                                                                                                                                                                                         | YPL121C                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MEI5                                                                                                                                                                                                                                                                         | YPR189W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SKI3                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | YOR076C                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                              | YPL124W                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NIP29                                                                                                                                                                                                                                                                        | YPR190C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RPC82                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| POP3 | YOR077W                                                              | RTS2                                                                                                                                                                                                                                                                                                                                                                                                                         | YPL126W                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                              | YPR192W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | YOR080W                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                              | YPL130W                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                              | YPR193C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HPA2                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CUS2 | YOR082C                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                              | YPL133C                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                              | YPR195C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | YOR083W                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                              | YPL136W                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                              | YPR196W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | YOR093C                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                              | YPL137C                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                              | YPR197C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | YOR100C                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                              | YPL140C                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MKK2                                                                                                                                                                                                                                                                         | YPR200C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ARR2                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CLA4 | YOR105W                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                              | YPL141C                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                              | YPR201W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ARR3                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TRF5 | YOR111W                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                              | YPL146C                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                              | YPR202W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| STB1 | YOR113W                                                              | AZF1                                                                                                                                                                                                                                                                                                                                                                                                                         | YPL147W                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PXA1                                                                                                                                                                                                                                                                         | YPR203W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | YOR114W                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                              | YPL150W                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | PIK1<br>ALP1<br>SEC2<br>TOF1<br>POP3<br>CUS2<br>CLA4<br>TRF5<br>STB1 | YOR050C           PIK1         YOR055W           YOR058C           ALP1         YOR060C           SEC2         YOR068C           TOF1         YOR070C           YOR073W         YOR073W           YOR075W         YOR076C           POP3         YOR077W           YOR080W         YOR082C           YOR083W         YOR093C           YOR100C         CLA4           YOR111W         STB1           YOR114W         YOR114W | YOR050C           PIK1         YOR055W           YOR058C         ASE1           ALP1         YOR060C           SEC2         YOR068C           TOF1         YOR070C         GYP1           YOR073W         YOR073W           YOR075W         UFE1           YOR076C         YOR076C           POP3         YOR077W         RTS2           YOR080W         YOR083W         YOR093C           YOR100C         YOR111W         YOR113W           STB1         YOR113W         AZF1 | YOR050CYPL108WPIK1YOR055WYPL109CYOR058CASE1YPL110CALP1YOR060CYPL114WSEC2YOR068CYPL116WTOF1YOR070CGYP1YPL120WYOR073WYPL120WYOR075WUFE1YOR076CYPL124WPOP3YOR077WRTS2YPL126WYOR080WYPL130WYOR080WYPL130WCUS2YOR082CYPL133CYOR093CYPL136WYOR114WYOR113WAZF1YPL147WYOR114WYPL150W | YOR050C       YPL108W         PIK1       YOR055W       YPL109C         YOR058C       ASE1       YPL110C         ALP1       YOR060C       YPL114W         SEC2       YOR068C       YPL116W       HOS3         TOF1       YOR070C       GYP1       YPL109C       DBP1         YOR073W       YPL120W       VPS30         YOR075W       UFE1       YPL120W       VPS30         YOR076C       YPL124W       NIP29         POP3       YOR077W       RTS2       YPL136W         YOR080W       YPL130W       YOR083W       YPL136W         YOR093C       YPL136W       YOR093C       YPL136W         YOR100C       YPL140C       MKK2         CLA4       YOR105W       YPL146C       MKK2         TRF5       YOR111W       YPL146C       YA1         YOR114W       YPL150W       YA1 | YOR050CYPL108WYPR170CPIK1YOR055WYPL109CYPR171WYOR058CASE1YPL109CYPR175WALP1YOR060CYPL114WYPR177CSEC2YOR068CYPL116WHOS3YPR179CTOF1YOR070CGYP1YPL19CDBP1YPR180WYOR073WYPL120WVPS30YPR186CYOR075WUFE1YPL121CMEI5YPR189WYOR076CYPL124WNIP29YPR190CPOP3YOR077WRTS2YPL130WYPR192WYOR080WYPL130WYPR193CYPR195CCUS2YOR082CYPL136WYPR195CYOR093CYPL137CYPR197CYOR100CYPL140CMKK2YPR200CCLA4YOR105WYPL141CYPR201WTRF5YOR111WYPL146CYPR202WYOR14WYPL150WYPL150WYPR203W |

Appendix E

## Transcripts with the Highest Average Abundance

among Four Saccharomyces cerevisiae Cultures

This appendix contains a table of the 500 ORFs with the most abundant transcripts.

Ranking of abundance in this table is by the mean of absolute abundance across the four cultures measured, with absolute abundance calculated as described in Chapter 2.

It was interesting to find that eleven of the one hundred most abundant transcripts measured derive from ORFs which have not been assigned a gene name. A cursory examination of these ORFs showed that YDR154C (rank 1) overlaps YDR155C (gene CPH1, ranked 33), and the ORFs YDR134C (rank 16) and YDR133C (rank 44) overlap each other. This effectively reduces the number of abundant unnamed transcripts to 9 of the top 100.

| Unnamed t | ranscripts | in the | 100 most | abundant | <b>ORFs</b> |
|-----------|------------|--------|----------|----------|-------------|
|-----------|------------|--------|----------|----------|-------------|

| Rank | ID       | Notes              | Homology (BLAST GenEMBL)                            |
|------|----------|--------------------|-----------------------------------------------------|
| 1    | YDR154C  | overlaps YDR155C   | CPH1, C. albicans CYP1,                             |
|      |          | (CPH1; rank 33)    | S. Pombe ISP4                                       |
| 3    | YLR110C  | converegent with   | YAR050W (FLO1), YKR102W (FLO10), YNR044W            |
|      |          | YLR109W (rank 69)  | (AGA1)                                              |
| 16   | YDR134C  | overlaps YDR133C   | YLR110C, YAR050W (FLO1), YKR102W (FLO10),           |
|      |          | (unnamed; rank 44) | YNR044W (AGA1)                                      |
| 30   | YMR173WA | overlaps YMR173W   | DDR48                                               |
|      |          | (DDR48; rank 1362) |                                                     |
| 37   | YKL056C  |                    | translationally controlled tumor protein (TCTP)     |
|      |          |                    | conserved in animals and higher plants.             |
| 44   | YDR133C  | overlaps YDR134C   | YLR110C                                             |
|      |          | (unnamed; rank 16) |                                                     |
| 52   | YDR033W  |                    | YBR054W (YRO2), YCR021C (YRO1/HSP30)                |
| 55   | YDR276C  |                    | H. vulgare blt101, L. elongatum salt-stress induced |
|      |          |                    | ESI3, YJL152W, YJL153C (APR1/INO1)                  |
| 69   | YLR109W  | convergent with    | L. kononenkoae putative peroxisomal protein,        |
|      |          | YLR110C (rank 3)   | C.boidinii peroxisomal membrane protein A and B,    |
| 76   | YER150W  |                    | YDR077W (SED1)                                      |
| 96   | YNL208W  |                    | -                                                   |

Homology searches were performed using TBLASTN against the non-redundant GenBank+EMBL+DDBJ+PDB databases (April 1997) using a web interface provided by the Saccharomyces Genome Database [Altschul, 1990 #340]. Guide to abundance table. The columns labeled 'R' refer to the rank of the transcript according to average abundance. 'Avg' is the average of four absolute abundances (which can be found for each ORF in Appendix C). 'ID' refers to the ORF identifier as assigned by the Saccharomyces Genome Database (SGD). An ORF identifier printed in italics indicates that the sequence of some of the mismatch probes for this ORF were not unique in the *cerevisiae* genome. In this case PM values were substituted for  $\Delta$  values in calculating absolute and relative abundance, so that the quantitation for these ORFs should be viewed more critically. The gene names were taken from the current (10 April 98) SGD table of gene names.

#### ORFs with the highest average absolute abundance across four cultures assayed.

| R  | Avg  | ID       | Gene   | R   | Avg | ID      | Gene   | R   | Avg | ID      | Gene   |
|----|------|----------|--------|-----|-----|---------|--------|-----|-----|---------|--------|
| 1  | 36.0 | YDR154C  |        | 168 | 2.9 | YPL037C | EGD1   | 335 | 1.3 | YBR106W | PHO88  |
| 2  | 28.7 | YKL097WA | CWP2   | 169 | 2.9 | YPL028W | ERG10  | 336 | 1.3 | YHR018C | ARG4   |
| 3  | 25.1 | YLR110C  |        | 170 | 2.8 | YDR447C | RPS17B | 337 | 1.3 | YLR354C | TAL1   |
| 4  | 22.0 | YGR192C  | TDH3   | 171 | 2.8 | YBR067C | TIP1   | 338 | 1.2 | YGL202W | ARO8   |
| 5  | 21.1 | YDR382W  | RPP2B  | 172 | 2.8 | YDR178W | SDH4   | 339 | 1.2 | YLR395C | COX8   |
| 6  | 21.0 | YBR191W  | RPL21A | 173 | 2.7 | YML073C | RPL6A  | 340 | 1.2 | YLL041C | SDH2   |
| 7  | 18.9 | YHR174W  | ENO2   | 174 | 2.7 | YOR167C | RPS28A | 341 | 1.2 | YPR063C |        |
| 8  | 17.8 | YDL130W  | RPP1B  | 175 | 2.7 | YLR441C | RPS1A  | 342 | 1.2 | YDR404C | RPB7   |
| 9  | 17.0 | YKL060C  | FBA1   | 176 | 2.7 | YNR050C | LYS9   | 343 | 1.2 | YBR109C | CMD1   |
| 10 | 16.6 | YDR050C  | TPI1   | 177 | 2.7 | YLL024C | SSA2   | 344 | 1.2 | YDR025W | RPS11A |
| 11 | 16.3 | YBL072C  | RPS8A  | 178 | 2.6 | YER091C | MET6   | 345 | 1.2 | YLR150W | MPT4   |
| 12 | 14.2 | YBR031W  | RPL4A  | 179 | 2.6 | YNL302C | RPS19B | 346 | 1.2 | YPL098C |        |
| 13 | 13.4 | YPL079W  | RPL21B | 180 | 2.6 | YDR055W |        | 347 | 1.2 | YNL096C | RPS7B  |
| 14 | 13.4 | YGL189C  | RPS26A | 181 | 2.6 | YPL090C | RPS6A  | 348 | 1.2 | YLR303W | MET17  |
| 15 | 13.2 | YOL040C  | RPS15  | 182 | 2.6 | YBL092W | RPL32  | 349 | 1.2 | YMR195W |        |
| 16 | 12.1 | YDR134C  |        | 183 | 2.6 | YNL134C |        | 350 | 1.2 | YDR471W | RPL27B |
| 17 | 11.8 | YLR044C  | PDC1   | 184 | 2.5 | YDR353W | TRR1   | 351 | 1.2 | YGL187C | COX4   |
| 18 | 11.7 | YCR012W  | PGK1   | 185 | 2.5 | YNL209W | SSB2   | 352 | 1.2 | YKL085W | MDH1   |
| 19 | 11.5 | YHR021C  | RPS27B | 186 | 2.5 | YJR145C | RPS4A  | 353 | 1.2 | YKR094C | RPL40B |
| 20 | 11.4 | YIL018W  | RPL2B  | 187 | 2.5 | YMR083W | ADH3   | 354 | 1.2 | YPL048W | CAM1   |
| 21 | 11.4 | YPL131W  | RPL5   | 188 | 2.5 | YJL151C |        | 355 | 1.2 | YBR009C | HHF1   |
| 22 | 11.4 | YHR053C  | CUP1   | 189 | 2.5 | YEL026W |        | 356 | 1.2 | YOR187W |        |
| 23 | 10.7 | YOL039W  | RPP2A  | 190 | 2.5 | YJL138C | TIF2   | 357 | 1.2 | YLR286C | CTS1   |
| 24 | 10.7 | YMR251WA | A HOR7 | 191 | 2.5 | YPL271W | ATP15  | 358 | 1.2 | YOL139C | CDC33  |
| 25 | 10.6 | YPR043W  | RPL43A | 192 | 2.4 | YDL137W | ARF2   | 359 | 1.2 | YJR139C | HOM6   |
| 26 | 10.4 | YBR118W  | TEF2   | 193 | 2.4 | YER011W | TIR1   | 360 | 1.2 | YDL128W | VCX1   |
| 27 | 10.3 | YKL180W  | RPL17A | 194 | 2.4 | YMR297W | PRC1   | 361 | 1.2 | YER009W | NTF2   |
| 28 | 10.3 | YJR073C  | OPI3   | 195 | 2.4 | YBR189W | RPS9B  | 362 | 1.2 | YIL094C |        |
| 29 | 10.2 | YOL086C  | ADH1   | 196 | 2.4 | YDR450W | RPS18A | 363 | 1.2 | YDL232W | OST4   |
| 30 | 9.9  | YMR173WA | A      | 197 | 2.4 | YHR183W | GND1   | 364 | 1.2 | YGR285C | ZUO1   |
| 31 | 9.3  | YJL190C  | RPS22A | 198 | 2.4 | YIL043C | CBR1   | 365 | 1.2 | YLR229C | CDC42  |
| 32 | 9.1  | YGR254W  | ENO1   | 199 | 2.4 | YKL156W | RPS27A | 366 | 1.2 | YBL099W | ATP1   |
| 33 | 9.1  | YDR155C  | CPH1   | 200 | 2.4 | YLL050C | COF1   | 367 | 1.2 | YLR375W | STP3   |
| 34 | 8.9  | YPL143W  | RPL33A | 201 | 2.3 | YKR059W | TIF1   | 368 | 1.1 | YDR304C | CYP5   |
| 35 | 8.9  | YOL053CA | DDR2   | 202 | 2.3 | YDR233C |        | 369 | 1.1 | YPR052C | NHP6A  |
| 36 | 8.7  | YPR080W  | TEF1   | 203 | 2.3 | YGL037C |        | 370 | 1.1 | YPL198W | RPL7B  |
| 37 | 8.7  | YKL056C  |        | 204 | 2.3 | YGR060W | ERG25  | 371 | 1.1 | YOR374W | ALD7   |
| 38 | 8.6  | YHR055C  | CUP1   | 205 | 2.3 | YOL127W | RPL25  | 372 | 1.1 | YLR178C | TFS1   |
| 39 | 8.5  | YGL135W  | RPL1B  | 206 | 2.3 | YJL159W |        | 373 | 1.1 | YFL045C | SEC53  |
| 40 | 8.3  | YOR182C  | RPS30B | 207 | 2.3 | YOR234C |        | 374 | 1.1 | YPR098C |        |
| 41 | 8.2  | YJR009C  | TDH2   | 208 | 2.3 | YJL191W | RPS14B | 375 | 1.1 | YFL010C |        |
| 42 | 7.9  | YPL220W  | RPL1A  | 209 | 2.3 | YPR074C | TKL1   | 376 | 1.1 | YKL080W | VMA5   |
| 43 | 7.6  | YKL152C  | GPM1   | 210 | 2.2 | YLR048W | RPS0B  | 377 | 1.1 | YLR179C |        |
| 44 | 7.5  | YDR133C  |        | 211 | 2.2 | YPL218W | SAR1   | 378 | 1.1 | YMR256C | COX7   |
| 45 | 7.5  | YOL120C  | RPL18A | 212 | 2.2 | YDR345C | HXT3   | 379 | 1.1 | YIL062C | ARC15  |
| 46 | 7.4  | YNL031C  | HHT2   | 213 | 2.2 | YER117W | RPL23B | 380 | 1.1 | YCL035C |        |

| 47 | 7.2 | YMR116C | BEL1   | 214 | 2.2 | YNL030W  | HHF2   | 381 | 1.1 | YLR056W  | ERG3    |
|----|-----|---------|--------|-----|-----|----------|--------|-----|-----|----------|---------|
| 48 | 7.2 | YNL055C | POR1   | 215 | 2.2 | YNR018W  |        | 382 | 1.1 | YKL067W  | YNK1    |
| 49 | 7.1 | YNL135C | FPR1   | 216 | 2.2 | YKL035W  |        | 383 | 1.1 | YPR103W  | PRE2    |
| 50 | 7.0 | YGL008C | PMA1   | 217 | 2.2 | YDR502C  | SAM2   | 384 | 1.1 | YGL026C  | TRP5    |
| 51 | 7.0 | YNL178W | RPS3   | 218 | 2.2 | YDR298C  | ATP5   | 385 | 1.1 | YIR022W  | SEC11   |
| 52 | 6.8 | YDR033W |        | 219 | 2.1 | YBL030C  | PET9   | 386 | 1.1 | YLR027C  | AAT2    |
| 53 | 6.7 | YCR031C | RPS14A | 220 | 2.1 | YDL191W  | RPL35A | 387 | 1.1 | YDL131W  | LYS21   |
| 54 | 6.6 | YLR061W | RPL22A | 221 | 2.1 | YGR209C  | TRX2   | 388 | 1.1 | YOR303W  | CPA1    |
| 55 | 6.6 | YDR276C |        | 222 | 2.1 | YDR158W  | HOM2   | 389 | 1.1 | YBL003C  | HTA2    |
| 56 | 6.6 | YDR500C | RPL37B | 223 | 2.1 | YNL327W  | EGT2   | 390 | 1.1 | YNL268W  | LYP1    |
| 57 | 6.5 | YEL027W | CUP5   | 224 | 2.1 | YHR193C  | EGD2   | 391 | 1.1 | YCL018W  | LEU2    |
| 58 | 6.5 | YDR077W | SED1   | 225 | 2.1 | YOL109W  | ZEO1   | 392 | 1.1 | YHR001WA | A QCR10 |
| 59 | 6.5 | YLR340W | RPP0   | 226 | 2.1 | YPL154C  | PEP4   | 393 | 1.1 | YOR007C  | SGT2    |
| 60 | 6.4 | YDR012W | RPL4B  | 227 | 2.0 | YOR045W  | TOM6   | 394 | 1.0 | YCR024CA | PMP1    |
| 61 | 6.4 | YHR203C | RPS4B  | 228 | 2.0 | YLR264W  | RPS28B | 395 | 1.0 | YOL030W  |         |
| 62 | 6.3 | YHR026W | PPA1   | 229 | 2.0 | YNL300W  |        | 396 | 1.0 | YFR044C  |         |
| 63 | 6.3 | YGL123W | RPS2   | 230 | 2.0 | YMR202W  | ERG2   | 397 | 1.0 | YOR120W  | GCY1    |
| 64 | 6.2 | YML028W | TSA1   | 231 | 2.0 | YGR282C  | BGL2   | 398 | 1.0 | YKL182W  | FAS1    |
| 65 | 6.2 | YLR388W | RPS29A | 232 | 2.0 | YBL002W  | HTB2   | 399 | 1.0 | YMR241W  |         |
| 66 | 6.1 | YNL145W | MFA2   | 233 | 2.0 | YLR406C  | RPL31B | 400 | 1.0 | YML092C  | PRE8    |
| 67 | 6.1 | YLR075W | RPL10  | 234 | 2.0 | YNL044W  |        | 401 | 1.0 | YGR180C  | RNR4    |
| 68 | 6.0 | YJL158C | CIS3   | 235 | 2.0 | YPL234C  | TFP3   | 402 | 1.0 | YER072W  |         |
| 69 | 5.9 | YLR109W |        | 236 | 2.0 | YMR295C  |        | 403 | 1.0 | YDR328C  | SKP1    |
| 70 | 5.9 | YJL052W | TDH1   | 237 | 2.0 | YOR270C  | VPH1   | 404 | 1.0 | YBR115C  | LYS2    |
| 71 | 5.9 | YFL014W | HSP12  | 238 | 1.9 | YOR136W  | IDH2   | 405 | 1.0 | YHR051W  | COX6    |
| 72 | 5.7 | YDR064W | RPS13  | 239 | 1.9 | YLR355C  | ILV5   | 406 | 1.0 | YMR305C  |         |
| 73 | 5.6 | YIL133C | RPL16A | 240 | 1.9 | YCL043C  | PDI1   | 407 | 1.0 | YGL220W  |         |
| 74 | 5.6 | YLR300W | EXG1   | 241 | 1.9 | YNL190W  |        | 408 | 1.0 | YJR105W  |         |
| 75 | 5.6 | YJL136C | RPS21B | 242 | 1.9 | YPR113W  | PIS1   | 409 | 1.0 | YMR315W  |         |
| 76 | 5.5 | YER150W |        | 243 | 1.9 | YMR142C  | RPL13B | 410 | 1.0 | YMR008C  | PLB1    |
| 77 | 5.4 | YGR085C | RPL11B | 244 | 1.9 | YGL256W  | ADH4   | 411 | 1.0 | YDL048C  | STP4    |
| 78 | 5.3 | YAL038W | CDC19  | 245 | 1.9 | YLL045C  | RPL8B  | 412 | 1.0 | YNL305C  |         |
| 79 | 5.3 | YDL081C | RPP1A  | 246 | 1.9 | YDR388W  | RVS167 | 413 | 1.0 | YHR064C  | PDR13   |
| 80 | 5.3 | YKR042W | UTH1   | 247 | 1.9 | YEL054C  | RPL12A | 414 | 1.0 | YLR208W  | SEC13   |
| 81 | 5.3 | YOR063W | RPL3   | 248 | 1.9 | YDR032C  |        | 415 | 1.0 | YPL106C  | SSE1    |
| 82 | 5.2 | YGL030W | RPL30  | 249 | 1.9 | YHR025W  | THR1   | 416 | 1.0 | YER057C  | HIG1    |
| 83 | 5.2 | YER102W | RPS8B  | 250 | 1.9 | YNL067W  | RPL9B  | 417 | 1.0 | YIL123W  | SIM1    |
| 84 | 5.2 | YKL164C | PIR1   | 251 | 1.9 | YLR350W  |        | 418 | 1.0 | YCL009C  | ILV6    |
| 85 | 5.2 | YER177W | RPL23B | 252 | 1.8 | YGL055W  | OLE1   | 419 | 1.0 | YHR179W  | OYE2    |
| 86 | 5.1 | YDL125C | HNT1   | 253 | 1.8 | YBR020W  | GAL1   | 420 | 1.0 | YJR121W  | ATP2    |
| 87 | 5.1 | YKL096W | CWP1   | 254 | 1.8 | YML012W  | ERV25  | 421 | 1.0 | YNL244C  | SUI1    |
| 88 | 5.1 | YKR057W | RPS21A | 255 | 1.8 | YER056CA | RPL34A | 422 | 1.0 | YHR039BC | VMA10   |
| 89 | 5.0 | YNL069C | RPL16B | 256 | 1.8 | YBR082C  | UBC4   | 423 | 1.0 | YBR029C  | CDS1    |
| 90 | 5.0 | YJR104C | SOD1   | 257 | 1.8 | YHR141C  | RPL42B | 424 | 1.0 | YIL041W  |         |
| 91 | 4.9 | YDL192W | ARF1   | 258 | 1.8 | YBR249C  | ARO4   | 425 | 1.0 | YML100W  | TSL1    |
| 92 | 4.9 | YLR167W | RPS31  | 259 | 1.8 | YGL200C  | EMP24  | 426 | 1.0 | YER023W  | PRO3    |
| 93 | 4.7 | YMR194W | RPL36A | 260 | 1.8 | YJR085C  |        | 427 | 1.0 | YDR519W  | FKB2    |
| 94 | 4.6 | YNL160W | YGP1   | 261 | 1.8 | YNL015W  | PBI2   | 428 | 1.0 | YGL089C  | MFa2    |
| 95 | 4.6 | YLR185W | RPL37A | 262 | 1.8 | YNL301C  | RPL18B | 429 | 1.0 | YIL078W  | THS1    |
| 96 | 4.5 | YNL208W |        | 263 | 1.7 | YBR196C  | PGI1   | 430 | 1.0 | YNR036C  |         |
|    |     |         |        |     |     |          |        |     |     |          |         |

| 97  | 4.5        | YGL103W   | RPL28      | 264        | 1.7 | YOR248W   |                 | 431 | 1.0 | YHR094C  | HXT1     |
|-----|------------|-----------|------------|------------|-----|-----------|-----------------|-----|-----|----------|----------|
| 98  | 4.4        | YDR342C   | HXT7       | 265        | 1.7 | YKR013W   | PRY2            | 432 | 1.0 | YBR018C  | GAL7     |
| 99  | 4.4        | YDL182W   | LYS20      | 266        | 1.7 | YDL055C   | PSA1            | 433 | 1.0 | YGL077C  | HNM1     |
| 100 | 4.4        | YEL017CA  | PMP2       | 267        | 1.7 | YLR325C   | RPL38           | 434 | 0.9 | YDR513W  | TTR1     |
| 101 | 4.4        | YOR247W   |            | 268        | 1.7 | YFL031W   | HAC1            | 435 | 0.9 | YLL023C  |          |
| 102 | 4.4        | YFR053C   | HXK1       | 269        | 1.7 | YOL129W   |                 | 436 | 0.9 | YOR185C  | GSP2     |
| 103 | 4.4        | YDL083C   | RPS16B     | 270        | 1.7 | YDR224C   | HTB1            | 437 | 0.9 | YDR368W  | YPR1     |
| 104 | 4.4        | YJR123W   | RPS5       | 271        | 1.7 | YHR162W   |                 | 438 | 0.9 | YMR318C  |          |
| 105 | 4.4        | YDL229W   | SSB1       | 272        | 1.7 | YBL087C   | RPL23A          | 439 | 0.9 | 25SRRNAA | L        |
| 106 | 4.3        | YLR448W   | RPL6B      | 273        | 1.7 | YMR002W   |                 | 440 | 0.9 | YPL252C  |          |
| 107 | 4.3        | YDR497C   | ITR1       | 274        | 1.7 | YML058W   |                 | 441 | 0.9 | YBR086C  |          |
| 108 | 4.2        | YDR343C   | HXT6       | 275        | 1.7 | YLR333C   | RPS25B          | 442 | 0.9 | YBR126C  | TPS1     |
| 109 | 4.2        | YCL040W   | GLK1       | 276        | 1.6 | YGR214W   | <b>RPS0A</b>    | 443 | 0.9 | YER094C  | PUP3     |
| 110 | 4.1        | YJR094WA  | RPL43B     | 277        | 1.6 | YMR143W   | RPS16A          | 444 | 0.9 | YLL039C  | UBI4     |
| 111 | 4.1        | YJL189W   | RPL39      | 278        | 1.6 | YER178W   | PDA1            | 445 | 0.9 | YER062C  | HOR2     |
| 112 | 4.1        | YOR285W   |            | 279        | 1.6 | YOR099W   | KTR1            | 446 | 0.9 | YPL087W  |          |
| 113 | 4.1        | YLR391W   |            | 280        | 1.6 | YLR259C   | HSP60           | 447 | 0.9 | YFL038C  | YPT1     |
| 114 | 4.1        | YEL034W   | HYP2       | 281        | 1.6 | YGR183C   | OCR9            | 448 | 0.9 | YBR181C  | RPS6B    |
| 115 | 4.1        | YDR418W   | RPL12B     | 282        | 1.6 | YGL253W   | HXK2            | 449 | 0.9 | YNL130C  | CPT1     |
| 116 | 4.0        | YOR369C   | RPS12      | 283        | 1.6 | YMR226C   |                 | 450 | 0.9 | YBR011C  | IPP1     |
| 117 | 4.0        | YHL015W   | RPS20      | 284        | 1.6 | YGR118W   | RPS23A          | 451 | 0.9 | YER056C  | FCY2     |
| 118 | 4.0        | YPR132W   | RPS23B     | 285        | 1.6 | YOR020C   | HSP10           | 452 | 0.9 | YLR294C  |          |
| 119 | 4.0        | YEL009C   | GCN4       | 286        | 1.6 | YLR293C   | GSP1            | 453 | 0.9 | YPR016C  | CDC95    |
| 120 | 4.0        | YCR021C   | HSP30      | 287        | 1.6 | YHL033C   | RPL8A           | 454 | 0.9 | YIR038C  |          |
| 121 | 3.9        | YBR010W   | HHT1       | 288        | 1.5 | YAL005C   | SSA1            | 455 | 0.9 | YKR065C  |          |
| 122 | 3.9        | YGL255W   | ZRT1       | 289        | 1.5 | YPR035W   | GLN1            | 456 | 0.9 | YCR053W  | THR4     |
| 123 | 3.8        | YLR043C   | TRX1       | 290        | 15  | YPL262W   | FUM1            | 457 | 0.9 | YLR180W  | SAM1     |
| 124 | 3.8        | YKL006W   | RPL14A     | 291        | 1.5 | YNL322C   | KRE1            | 458 | 0.9 | YOL154W  | 57 11/11 |
| 125 | 3.8        | YFR031CA  | RPL2A      | 292        | 1.5 | YDL067C   | COX9            | 459 | 0.9 | YNL064C  | YDI1     |
| 126 | 3.8        | YOR122C   | PFY1       | 293        | 1.5 | YNL162W   | RPI 42A         | 460 | 0.9 | YLR378C  | SEC61    |
| 127 | 3.8        | YGL076C   | RPL7A      | 294        | 1.5 | YPL004C   | 10 2 2 1        | 461 | 0.9 | CONTROL2 | BLCOI    |
| 128 | 37         | YIL177W   | RPL17B     | 295        | 1.5 | YER120W   | SCS2            | 462 | 0.9 | YPL094C  | SEC62    |
| 129 | 37         | YDR533C   | III EI / D | 296        | 1.5 | YKR066C   | CCP1            | 463 | 0.9 | YMR145C  | 5LC02    |
| 130 | 37         | YOR230W   | WTM1       | 297        | 1.5 | YDL181W   | INH1            | 464 | 0.9 | YLR081W  | GAL2     |
| 131 | 37         | YFL039C   | ACT1       | 298        | 1.5 | YML078W   | CPR3            | 465 | 0.9 | YPL010W  | RET3     |
| 132 | 37         | YKL192C   |            | 299        | 1.5 | YIL079C   | PRY1            | 466 | 0.9 | YBR019C  | GAL10    |
| 133 | 3.6        | YOL121C   | RPS19A     | 300        | 1.5 | YLR029C   | RPL15A          | 467 | 0.9 | CONTROLI | 0        |
| 134 | 3.6        | YPR149W   | NCE102     | 301        | 1.5 | YDL004W   | ATP16           | 468 | 0.9 | YGR181W  | 0        |
| 135 | 3.6        | YII 148W  | RPI 404    | 302        | 1.5 | YNI 104C  | I FU4           | 469 | 0.9 | YGR027C  | RPS25A   |
| 136 | 3.6        | VDR461W   | MFA1       | 302        | 1.5 | VAL 012W  | CVS3            | 470 | 0.9 | VBR159W  | KI 5257  |
| 137 | 3.6        | VI R287CA | RPS30A     | 304        | 1.5 | VDI 124W  | C155            | 471 | 0.0 | YMI 052W | SUR7     |
| 138 | 3.5        | VIR034C   | I VS1      | 305        | 1.5 | VDL075W   | <b>DDI 31</b> A | 472 | 0.0 | VOR332W  | VMA4     |
| 130 | 3.5        | VHP010W   |            | 305        | 1.5 | VPR036W   | VMA13           | 472 | 0.8 | VNI 071W |          |
| 137 | 2.5        | VDL 022W  | CDD1       | 207        | 1.5 | VI P272W  |                 | 473 | 0.8 | VMD215W  | LAII     |
| 140 | 3.5<br>25  | I DL022W  |            | 200        | 1.4 | ILK5/2W   | SUK4            | 474 | 0.0 | VCL 149W | 4002     |
| 141 | 3.3<br>25  | 1 DK220W  |            | 200        | 1.4 | INLUU/C   | SISI            | 475 | 0.0 | I GL148W | AKU2     |
| 142 | 5.5<br>2 4 | I ILUSS W |            | 210        | 1.4 | 1 INLUJZW | VDO2            | 4/0 | 0.8 | I MK203C | FFKZ     |
| 145 | 3.4<br>2.4 | 1 GK03/C  |            | 310<br>211 | 1.4 | I BKU34W  |                 | 4// | 0.8 | I HKUU8C | SUD2     |
| 144 | 3.4<br>2.2 | TILUSIC   |            | 212        | 1.4 | IUL14/C   | KPL9A           | 4/8 | 0.8 | IDLI88C  | rrn22    |
| 145 | 3.3        | YML024W   | KPST/A     | 312        | 1.4 | YBR0/2W   | HSP26           | 4/9 | 0.8 | YBR025C  |          |
| 146 | 5.3        | ¥1L052C   | KPL34B     | 513        | 1.4 | YOR224C   | крвя            | 480 | 0.8 | YDR0/0C  |          |

| 147 | 3.3 | YER043C | SAH1   | 314 | 1.4 | YOR383C |        | 481 | 0.8 | YJR065C | ARP3   |
|-----|-----|---------|--------|-----|-----|---------|--------|-----|-----|---------|--------|
| 148 | 3.3 | YGR279C |        | 315 | 1.4 | YHR007C | ERG11  | 482 | 0.8 | YGR240C | PFK1   |
| 149 | 3.3 | YIR037W | HYR1   | 316 | 1.4 | YPL231W | FAS2   | 483 | 0.8 | YMR242C | RPL20A |
| 150 | 3.2 | YLR058C | SHM2   | 317 | 1.4 | YNR001C | CIT1   | 484 | 0.8 | YGR155W | CYS4   |
| 151 | 3.2 | YHL001W | RPL14B | 318 | 1.4 | YML026C | RPS18B | 485 | 0.8 | YGR106C |        |
| 152 | 3.2 | YKL163W | PIR3   | 319 | 1.4 | YDR433W |        | 486 | 0.8 | YJL153C | INO1   |
| 153 | 3.2 | YPR102C | RPL11A | 320 | 1.4 | YGL225W | GOG5   | 487 | 0.8 | YOL058W | ARG1   |
| 154 | 3.2 | YOR133W | EFT1   | 321 | 1.3 | YJL034W | KAR2   | 488 | 0.8 | YDR234W | LYS4   |
| 155 | 3.2 | YBR286W | APE3   | 322 | 1.3 | YLR249W | YEF3   | 489 | 0.8 | YDR483W | KRE2   |
| 156 | 3.1 | YOR096W | RPS7A  | 323 | 1.3 | YAL003W | EFB1   | 490 | 0.8 | YLL014W |        |
| 157 | 3.1 | YDL061C | RPS29B | 324 | 1.3 | YDR297W | SUR2   | 491 | 0.8 | YER055C | HIS1   |
| 158 | 3.1 | YDR225W | HTA1   | 325 | 1.3 | YOR375C | GDH1   | 492 | 0.8 | YGR295C | COS6   |
| 159 | 3.1 | YDR385W | EFT2   | 326 | 1.3 | YML126C | HMGS   | 493 | 0.8 | YAL044C | GCV3   |
| 160 | 3.1 | YPR028W |        | 327 | 1.3 | YOR010C | TIR2   | 494 | 0.8 | YFR047C |        |
| 161 | 3.0 | YJR077C | MIR1   | 328 | 1.3 | YGR148C | RPL24B | 495 | 0.8 | YPL246C |        |
| 162 | 3.0 | YML106W | URA5   | 329 | 1.3 | YPR165W | RHO1   | 496 | 0.8 | YML132W | COS3   |
| 163 | 2.9 | YOR293W | RPS10A | 330 | 1.3 | YDL136W | RPL35B | 497 | 0.8 | YBR127C | VMA2   |
| 164 | 2.9 | YGR034W | RPL26B | 331 | 1.3 | YPL061W | ALD6   | 498 | 0.8 | YGL012W | ERG4   |
| 165 | 2.9 | YGL031C | RPL24A | 332 | 1.3 | YDL072C |        | 499 | 0.8 | YLR367W | RPS22B |
| 166 | 2.9 | YDR454C | GUK1   | 333 | 1.3 | YGR008C | STF2   | 500 | 0.8 | YMR272C | SCS7   |
| 167 | 2.9 | YDL082W | RPL13A | 334 | 1.3 | YOR312C | RPL20B |     |     |         |        |

### References

Appendix F

# Transcripts Most Changed in Abundance

among Four Cultures Assayed

The four cultures examined in Chapter 3 consisted of a 'baseline' condition, and three 'experimental' conditions, where only one variable (either genotypic or environmental) was changed relative to baseline. This allows for three whole-genome scale comparisons of transcript abundance. The following table contains those genes most changed in these comparisons. Since there are three comparisons, there are six sets of extrema—a set of ORFs most increased and most decreased for each comparison.



<u>Guide to relative abundance table</u>. The first column ("ID") contains the ORF identifier as issued by the Saccharomyces Genome Database. An ORF identifier printed in italics indicates that the sequence of some of the mismatch probes for this ORF were not unique in the *cerevisiae* genome. In this case PM values were substituted for  $\Delta$  values in calculating absolute and relative abundance, so that the quantitation for these ORFs should be viewed more critically.

The second column ("Gene") contains the common gene names corresponding to each ORF identifier. The gene names were taken from the current (10 April 98) SGD table of gene names. The fourth and fifth columns contain absolute abundances of the ORF's transcript in the two conditions being compared. Transcripts which fell below the detection threshold of the corresponding hybridization experiment are indicated by abundance values in italics. In this case,  $\Delta$  values used to calculate the abundance value were adjusted to the detection threshold if they fell below it. The sixth column contains the logarithm (base 10) of the median  $\Delta$ -ratio value for this comparison. Transcripts considered below detection threshold in one or both conditions being compared are indicated by median log  $\Delta$ -ratio values in italics. If a transcript is below detection threshold in both conditions being compared, the median log  $\Delta$ -ratio is set to zero. For each of the relative abundance values, a measure of significance is calculated by dividing the median log  $\Delta$ -ratio by the median deviation of log  $\Delta$ -ratios. If this measure of significance is one or greater, and the median log  $\Delta$ -ratio is 0.2 or greater, the median log  $\Delta$ -ratio value is in bold type. Absolute and relative abundance calculations are described in Chapters 2 and 3.

### ORFs most abundant in mating type **a** relative to mating type a culture.

| 1         YPL187W         MF(α)         0.11         2.88         1.28         mating factor $\alpha$ 2         YGL086V         MF(α)         0.07         3.67         1.22 $\alpha$ mating factor           3         YCL066W $\alpha$ 1         0.09         0.51         0.67         transcripton factor involved in the regulation of the alpha-specific genes           4         YCR040W $\alpha$ 1         0.09         0.37         0.63         transcripton factor involved in the regulation of the alpha-specific genes           5         YJR004C         SAG1         0.35         1         0.42           7         YHR053C         CUP1         5.96         17         0.4         coper-binding metallothionein           8         YHR128W         FUR1         0.44         10.90         38         UPRTase           9         YHR141C         RPL42B         1.03         1.98         0.35         Ribosomal protein L42B (YL27) (L41) (YP44)           10         YGL06W         MLC1         0.16         0.51         0.33         acetohydroxyacid reductoisomerase           13         YLR029C         RPL15A         0.77         2.84         0.32         Ribosomal protein L15A (YL10) (rp15R) (L13)           14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R  | ID        | Gene         | а     | alpha | log<br>r/a | Brief SGD Gene Description                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------|--------------|-------|-------|------------|------------------------------------------------------|
| YGL089C       MF( $\alpha$ )2       0.07       3.67       1.22       mains factor         4       YCL066W $\alpha$ 1       0.09       0.51       0.67       transcripton factor involved in the regulation of the alpha-specific genes         4       YCR040W $\alpha$ 1       0.09       0.37       0.63       transcripton factor involved in the regulation of the alpha-specific genes         5       YJR04C       SAG1       0.35       1.74       0.48 $\alpha$ -agglutinin         6       YLR040C       0.35       1.74       0.48 $\alpha$ -agglutinin         7       YHR053C       CUP1       5.96       17       0.4       copper-binding metallothionein         8       YHR128W       FUR1       0.44       1.09       0.35       Ribosomal protein L42B (YL27) (L41) (YP44)         10       YGR038W       ORM       0.17       0.3       acetohydroxyacid reductoisomerase         13       YLR029C       RPL15A       0.97       2.84       0.32       Ribosomal protein L15A (YL10) (rp15R) (L13)         14       YGL030W       RPL30       4.86       9.72       0.32       Large ribosomal subunit protein L30 (L32) (rp72) (YL38)         15       YGR159C       NSR1       0.21       0.48       0.31       nucle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1  | YPL187W   | $MF(\alpha)$ | 0.11  | 2.88  | 1.28       | mating factor $\alpha$                               |
| 2         NR02         0.01         0.05         0.07         1.12         Itamage function           3         YCL066W         ol         0.09         0.51         0.67         Itamace function         itamace function           4         YCR040W         ol         0.09         0.37         0.63         itamace function           5         YIR004C         SAG1         0.35         1         0.42         transcription factor involved in the regulation of the alpha-specific genes           6         YLR040C         0.35         1         0.42         transcription factor involved in the regulation of the alpha-specific genes           7         YHR053C         CUP1         5.96         17         0.4         copper-binding metallothionein           8         YHR128W         FUR1         0.44         1.09         0.33         motion in the alpha-specific genes           9         YHR141C         RPL4         0.10         0.33         motion in the alpha-specific genes           11         YGR038W         ORM1         0.17         0.3         0.35         motion in the alpha-specific genes           12         YHR352C         RPL30         4.86         9.72         0.32         motion in the alpha-specific genes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2  | YGL089C   | $MF(\alpha)$ | 0.07  | 3.67  | 1.20       | a mating factor                                      |
| 4       YCR040W $\alpha_1$ 0.09       0.37       0.63       transcriptor factor involved in the regulation of the alpha-specific genes         5       YJR04C       SAG1       0.35       1.74       0.48 $\alpha_{agglutnin}$ 6       YLR040C       0.35       1.74       0.44       copget-binding metallothionein         8       YHR128W       FURI       0.44       1.09       0.38       UPRTase         9       YHR141C       RPL42B       1.03       1.98       0.35       Ribosomal protein L42B (YL27) (L41) (YP44)         10       YGR038W       ORM1       0.17       0.3       0.35       ribosomal protein L15A (YL10) (rp15R) (L13)         12       YLR355C       ILV5       1.09       2.59       0.32       acetohydroxyacid reductoisomerase         13       YLR029C       RPL15A       0.97       2.84       0.32       Ribosomal protein L15A (YL10) (rp15R) (L13)         14       YGL030W       RPL30       4.86       9.72       0.32       Large ribosomal subunit protein L30 (L32) (rp2) (YL38)         15       YGR159C       NSR1       0.21       0.48       0.31       nuclear localization sequence binding protein         16       YOR309C       0.41       0.33       0.227 <td>3</td> <td>YCL066W</td> <td><math>\alpha l</math></td> <td>0.09</td> <td>0.51</td> <td>0.67</td> <td>transcripton factor involved in the regulation of</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3  | YCL066W   | $\alpha l$   | 0.09  | 0.51  | 0.67       | transcripton factor involved in the regulation of    |
| 5       YJR04C       SAG1 $0.35$ $1.74$ $0.48$ $cragglutinin$ 6       YLR040C $0.35$ $1$ $0.42$ $cragglutinin$ 7       YHR053C       CUPI $5.96$ $17$ $0.4$ copper-binding metallothionein         8       YHR128W       FUR1 $0.44$ $1.09$ $0.38$ UPRTase         9       YHR141C       RPL42B $1.03$ $1.98$ $0.35$ Ribosomal protein L42B (YL27) (L41) (YP44)         10       YGR038W       ORM1 $0.17$ $0.3$ $0.35$ myosin light chain         11       YGR038W       ORM1 $0.17$ $0.3$ $0.35$ myosin light chain         12       YLR355C       ILV5 $1.09$ $2.59$ $0.33$ acetohydroxyacid reductoisomerase         13       YIR029C       RPL15A $0.97$ $2.84$ $0.32$ Ribosomal protein L15A (YL10) (rp15R) (L13)         14       YGL030W       RPL30 $4.86$ $9.72$ $0.32$ Large ribosomal protein L15A (YL10) (rp15R) (L13)         15       YGR150C       NSR1 $0.21$ $0.48$ $0.31$ nuclear localization sequenc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4  | YCR040W   | α1           | 0.09  | 0.37  | 0.63       | transcripton factor involved in the regulation of    |
| 5       FIRON C       0.35       1       0.42         7       YHR053C       CUP1       5.96       17       0.4       copper-binding metallothionein         8       YHR128W       FUR1       0.44       1.09       0.38       UPRTase         9       YHR141C       RPL42B       1.03       1.98       0.35       Ribosomal protein L42B (YL27) (L41) (YP44)         10       YGR038W       ORM1       0.17       0.3       0.35       acetohydroxyacid reductoisomerase         11       YGR038W       ORM1       0.17       0.3       0.33       acetohydroxyacid reductoisomerase         13       YLR029C       RPL15A       0.97       2.84       0.32       kibosomal protein L15A (YL10) (rp15R) (L13)         14       YGL030W       RPL30       4.86       9.72       0.32       Large ribosomal subunit protein L30 (L32) (rp72) (YL38)         15       YGR159C       NSR1       0.21       0.48       0.31       nuclear localization sequence binding protein         16       YOR309C       0.41       0.93       0.29       1       YIL052C       RPL34B       2.34       4.11       0.28       Ribosomal protein L34B       1         18       YLR052C       RPL34B       2.34 </td <td>5</td> <td>YIR004C</td> <td>SAG1</td> <td>035</td> <td>1 74</td> <td>0.48</td> <td><math>\alpha_{-agglutinin}</math></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5  | YIR004C   | SAG1         | 035   | 1 74  | 0.48       | $\alpha_{-agglutinin}$                               |
| Number of the transmission of transmission of the transmission of transmissic transmission of transmission of transmission | 6  | YLR040C   | 51101        | 0.35  | 1     | 0.42       | w uggiutinii                                         |
| Number       Output       Output       Output       Output         9       YHR128W       FUR1       0.44       1.09       0.38       UPRTase         9       YHR141C       RPL42B       1.03       1.98       0.35       Ribosomal protein L42B (YL27) (L41) (YP44)         10       YGL06W       MLC1       0.16       0.51       0.35       myosin light chain         11       YGR038W       ORM1       0.17       0.3       0.35       acetohydroxyacid reductoisomerase         13       YLR029C       RPL15A       0.97       2.84       0.32       Ribosomal protein L15A (YL10) (rp15R) (L13)         14       YGL030W       RPL30       4.86       9.72       0.32       Large ribosomal protein L15A (YL10) (rp15R) (L13)         15       YGR159C       NSR1       0.21       0.48       0.31       nuclear localization sequence binding protein         16       YOR309C       0.41       0.93       0.29       (rp72) (YL33)       nuclear localization sequence binding protein         17       YLL052C       RPL34B       2.34       4.11       0.28       Ribosomal protein L34B         18       YLR050K       ERG3       0.65       1.53       0.26       Ribosomal protein L16A (L21) (rp22) (YL15) </td <td>7</td> <td>YHR053C</td> <td>CUP1</td> <td>5.96</td> <td>17</td> <td>0.4</td> <td>copper-binding metallothionein</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7  | YHR053C   | CUP1         | 5.96  | 17    | 0.4        | copper-binding metallothionein                       |
| 0       YHR141C       RPL42B       1.03       1.98       0.35       Ribosomal protein L42B (YL27) (L41) (YP44)         10       YGL106W       MLC1       0.16       0.51       0.35       Ribosomal protein L42B (YL27) (L41) (YP44)         10       YGL106W       MLC1       0.16       0.51       0.35       myosin light chain         11       YGR038W       ORM1       0.17       0.3       0.35       actohydroxyacid reductoisomerase         12       YLR355C       ILV5       1.09       2.59       0.32       large ribosomal protein L15A (YL10) (rp15R) (L13)         14       YGL030W       RPL30       4.86       9.72       0.32       Large ribosomal subunit protein L30 (L32) (rp72) (YL38)         15       YGR159C       NSR1       0.21       0.48       0.31       nuclear localization sequence binding protein         16       YOR309C       0.41       0.93       0.28       C-5 sterol desaturase       19         17       YIL052C       RPL34B       2.34       4.11       0.28       Ribosomal protein L16A (L21) (rp22) (YL15)         18       YLR056W       ERG3       0.65       1.53       0.26       Ribosomal protein S4A (YS6) (rp5) (S7)         20       YGR232W       0.16       0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8  | YHR128W   | FUR1         | 0.44  | 1.09  | 0.38       | UPBTase                                              |
| 1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9  | YHR141C   | RPI 42B      | 1.03  | 1.09  | 0.35       | Ribosomal protein L42B (YL27) (L41) (YP44)           |
| 10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <t< td=""><td>10</td><td>YGL 106W</td><td>MLC1</td><td>0.16</td><td>0.51</td><td>0.35</td><td>myosin light chain</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 | YGL 106W  | MLC1         | 0.16  | 0.51  | 0.35       | myosin light chain                                   |
| 11       Forestrip       61.1       61.3       61.3       acetohydroxyacid reductoisomerase         13       YLR029C       RPL15A       0.97       2.84       0.32       Ribosomal protein L15A (YL10) (rp15R) (L13)         14       YGL030W       RPL30       4.86       9.72       0.32       Large ribosomal subunit protein L30 (L32) (rp72) (YL38)         15       YGR159C       NSR1       0.21       0.48       0.31       nuclear localization sequence binding protein         16       YOR309C       0.41       0.93       0.29       (rp72) (YL38)       nuclear localization sequence binding protein         17       YIL052C       RPL34B       2.34       4.11       0.28       Ribosomal protein L34B         18       YLR056W       ERG3       0.65       1.53       0.28       C-5 sterol desaturase         19       YNL112W       DBP2       0.16       0.33       0.27       ATP-dependent RNA helicase of DEAD box family         20       YGR232W       0.19       0.54       0.26       Ribosomal protein L16A (L21) (rp22) (YL15)         21       YIL133C       RPL16A       4.77       8.84       0.26       Ribosomal protein S4A (YS6) (rp5) (S7)         23       YJR145C       RPS4A       2.08       3.91<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11 | YGR038W   | ORM1         | 0.10  | 0.31  | 0.35       | ingosin ngit chain                                   |
| 12       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12 | VI R355C  | II V5        | 1.09  | 2 59  | 0.33       | acetohydroxyacid reductoisomerase                    |
| 13FLR029CRE157A $0.37$ $2.34$ $0.32$ Ribosonial protein L15A (1110) (111A) (1115)14YGL030WRPL30 $4.86$ $9.72$ $0.32$ Large ribosomal subunit protein L30 (L32)<br>(rp72) (YL38)15YGR159CNSR1 $0.21$ $0.48$ $0.31$ nuclear localization sequence binding protein16YOR309C $0.41$ $0.93$ $0.29$ 17YIL052CRPL34B $2.34$ $4.11$ $0.28$ Ribosomal protein L34B18YLR056WERG3 $0.65$ $1.53$ $0.28$ C-5 sterol desaturase19YNL112WDBP2 $0.16$ $0.33$ $0.27$ ATP-dependent RNA helicase of DEAD box<br>family20YGR232W $0.19$ $0.54$ $0.26$ Ribosomal protein L16A (L21) (rp22) (YL15)21YIL133CRPL16A $4.77$ $8.84$ $0.26$ Ribosomal protein L16A (L21) (rp22) (YL15)22YLR229CCDC42 $0.72$ $1.6$ $0.26$ Ribosomal protein S4A (YS6) (rp5) (S7)23YJR145CRPS4A $2.08$ $3.91$ $0.26$ Ribosomal protein S4A (YS6) (rp5) (S7)24YLR150WMPT4 $0.77$ $1.74$ $0.25$ $0.24$ 25YEL026W $1.59$ $2.96$ $0.24$ $0.24$ 26YOL040CRPS15 $10.86$ $0.23$ $0.24$ 27YLR293CGSP1 $1.16$ $2.37$ $0.24$ 28YMR292W $0.48$ $0.86$ $0.23$ 29YGL055WOLE1 $0.65$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12 | VI R029C  | PDI 15A      | 0.07  | 2.57  | 0.33       | Ribosomal protein I 15A (VI 10) (rp15R) (I 13)       |
| 1416L050WIX L504.80 $2.72$ $6.32$ Large notsonal protein L50 (L52)<br>(rp72) (YL38)15YGR159CNSR10.210.480.31nuclear localization sequence binding protein16YOR309C0.410.930.290.2917YIL052CRPL34B2.344.110.28Ribosomal protein L34B18YLR056WERG30.651.530.28C-5 sterol desaturase19YNL112WDBP20.160.330.27ATP-dependent RNA helicase of DEAD box<br>family20YGR232W0.190.540.26Ribosomal protein L16A (L21) (rp22) (YL15)21YIL133CRPL16A4.778.840.26Ribosomal protein L16A (L21) (rp22) (YL15)22YLR229CCDC420.721.60.26member of the Rho subfamily of Ras-like<br>proteins23YJR145CRPS4A2.083.910.26Ribosomal protein S4A (YS6) (rp5) (S7)24YLR150WMPT40.771.740.2525YEL026W1.592.960.2426YOL040CRPS1510.8620.60.2427YLR293CGSP11.162.370.2228YMR292W0.480.860.2329YGL055WOLE10.651.190.2231YNL255C0.250.510.2232YFR031C-ARPL2A2.225.110.2234YDR471WRPL27B<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17 | VGL 030W  | RDI 30       | 4.86  | 0.72  | 0.32       | Large ribosomal subunit protein L 30 (L 32)          |
| 15       YGR159C       NSR1 $0.21$ $0.48$ $0.31$ nuclear localization sequence binding protein         16       YOR309C $0.41$ $0.93$ $0.29$ 17       YIL052C       RPL34B $2.34$ $4.11$ $0.28$ Ribosomal protein L34B         18       YLR056W       ERG3 $0.65$ $1.53$ $0.28$ C-5 sterol desaturase         19       YNL112W       DBP2 $0.16$ $0.33$ $0.27$ ATP-dependent RNA helicase of DEAD box family         20       YGR232W $0.19$ $0.54$ $0.26$ Ribosomal protein L16A (L21) (rp22) (YL15)         21       YIL133C       RPL16A $4.77$ $8.84$ $0.26$ Ribosomal protein S4A (YS6) (rp5) (S7)         24       YLR29C       CDC42 $0.72$ $1.6$ $0.26$ member of the Rho subfamily of Ras-like proteins         23       YJR145C       RPS4A $2.08$ $3.91$ $0.26$ Ribosomal protein S4A (YS6) (rp5) (S7)         24       YLR150W       MPT4 $0.77$ $1.74$ $0.25$ $0.24$ 25       YEL026W $1.59$ $2.96$ $0.24$ $40S$ ribosomal protein S15 (S21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14 | I OLOSOW  | KFL30        | 4.00  | 9.12  | 0.32       | (rp72) (YL38)                                        |
| 16       YOR309C       0.41       0.93       0.29         17       YIL052C       RPL34B       2.34       4.11       0.28       Ribosomal protein L34B         18       YLR056W       ERG3       0.65       1.53       0.28       C-5 sterol desaturase         19       YNL112W       DBP2       0.16       0.33       0.27       ATP-dependent RNA helicase of DEAD box family         20       YGR232W       0.19       0.54       0.26       Ribosomal protein L16A (L21) (rp22) (YL15)         21       YIL133C       RPL16A       4.77       8.84       0.26       Ribosomal protein L16A (L21) (rp22) (YL15)         22       YLR229C       CDC42       0.72       1.6       0.26       Ribosomal protein S4A (YS6) (rp5) (S7)         24       YLR150W       MPT4       0.77       1.74       0.25       25         25       YEL026W       1.59       2.96       0.24       40S ribosomal protein S15 (S21) (rp52) (RIG protein)         27       YLR293C       GSP1       1.16       2.37       0.24       GTP-binding protein         28       YMR292W       0.48       0.86       0.23       23       23         29       YGL055W       OLE1       0.65       1.19 </td <td>15</td> <td>YGR159C</td> <td>NSR1</td> <td>0.21</td> <td>0.48</td> <td>0.31</td> <td>nuclear localization sequence binding protein</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15 | YGR159C   | NSR1         | 0.21  | 0.48  | 0.31       | nuclear localization sequence binding protein        |
| 17       YIL052C       RPL34B       2.34       4.11 <b>0.28</b> Ribosomal protein L34B         18       YLR056W       ERG3       0.65       1.53 <b>0.28</b> C-5 sterol desaturase         19       YNL112W       DBP2       0.16       0.33 <b>0.27</b> ATP-dependent RNA helicase of DEAD box family         20       YGR232W       0.19       0.54       0.26         21       YIL133C       RPL16A       4.77       8.84 <b>0.26</b> 23       YJR229C       CDC42       0.72       1.6 <b>0.26</b> member of the Rho subfamily of Ras-like proteins         23       YJR145C       RPS4A       2.08       3.91 <b>0.26</b> Ribosomal protein S4A (YS6) (rp5) (S7)         24       YLR150W       MPT4       0.77       1.74       0.25         25       YEL026W       1.59       2.96 <b>0.24</b> 26       YOL040C       RPS15       10.86       20.6 <b>0.24</b> 27       YLR293C       GSP1       1.16       2.37       0.24         28       YMR292W       0.48       0.86 <b>0.23</b> 29       YGL055W       OLE1       0.65       1.99 <b>0.22</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16 | YOR309C   |              | 0.41  | 0.93  | 0.29       |                                                      |
| 18       YLR056W       ERG3       0.65       1.53       0.28       C-5 sterol desaturase         19       YNL112W       DBP2       0.16       0.33       0.27       ATP-dependent RNA helicase of DEAD box family         20       YGR232W       0.19       0.54       0.26       Ribosomal protein L16A (L21) (rp22) (YL15)         21       YIL133C       RPL16A       4.77       8.84       0.26       Ribosomal protein L16A (L21) (rp22) (YL15)         22       YLR229C       CDC42       0.72       1.6       0.26       Ribosomal protein L16A (L21) (rp22) (YL15)         23       YJR145C       RPS4A       2.08       3.91       0.26       Ribosomal protein S4A (YS6) (rp5) (S7)         24       YLR150W       MPT4       0.77       1.74       0.25       1.59       2.96       0.24         25       YEL026W       1.59       2.96       0.24       40S ribosomal protein S15 (S21) (rp52) (RIG protein)         27       YLR293C       GSP1       1.16       2.37       0.24       GTP-binding protein         28       YMR292W       0.48       0.86       0.23       1.75       0.22         29       YGL055W       OLE1       0.65       1.19       0.22       L-myo-inositol-1-phosp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17 | YIL052C   | RPL34B       | 2.34  | 4.11  | 0.28       | Ribosomal protein L34B                               |
| 19       YNL112W       DBP2       0.16       0.33       0.27       ATP-dependent RNA helicase of DEAD box family         20       YGR232W       0.19       0.54       0.26         21       YIL133C       RPL16A       4.77       8.84       0.26         22       YLR229C       CDC42       0.72       1.6       0.26         23       YJR145C       RPS4A       2.08       3.91       0.26       Ribosomal protein L16A (L21) (rp22) (YL15)         23       YJR145C       RPS4A       2.08       3.91       0.26       Ribosomal protein S4A (YS6) (rp5) (S7)         24       YLR150W       MPT4       0.77       1.74       0.25       2.96       0.24         25       YEL026W       1.59       2.96       0.24       40S ribosomal protein S15 (S21) (rp52) (RIG protein)         27       YLR293C       GSP1       1.16       2.37       0.24       GTP-binding protein         28       YMR292W       0.48       0.86       0.23       0.22       L-myo-inositol-1-phosphate synthase         31       YNL255C       0.25       0.51       0.22       1.99       iobsomal protein L2A (L5) (rp8) (YL6)       0.33         33       YDR471W       RPL27B       0.82 <td>18</td> <td>YLR056W</td> <td>ERG3</td> <td>0.65</td> <td>1.53</td> <td>0.28</td> <td>C-5 sterol desaturase</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18 | YLR056W   | ERG3         | 0.65  | 1.53  | 0.28       | C-5 sterol desaturase                                |
| 20YGR232W $0.19$ $0.54$ $0.26$ 21YIL133CRPL16A $4.77$ $8.84$ $0.26$ Ribosomal protein L16A (L21) (rp22) (YL15)22YLR229CCDC42 $0.72$ $1.6$ $0.26$ member of the Rho subfamily of Ras-like proteins23YJR145CRPS4A $2.08$ $3.91$ $0.26$ Ribosomal protein S4A (YS6) (rp5) (S7)24YLR150WMPT4 $0.77$ $1.74$ $0.25$ 25YEL026W $1.59$ $2.96$ $0.24$ 26YOL040CRPS15 $10.86$ $20.6$ $0.24$ 27YLR293CGSP1 $1.16$ $2.37$ $0.24$ 28YMR292W $0.48$ $0.86$ $0.23$ 29YGL055WOLE1 $0.65$ $1.19$ $0.22$ 21L-myo-inositol-1-phosphate synthase23YJR47LARPL2A $2.22$ $5.11$ 29YGR31CCNOP5 $0.42$ $0.21$ 20KFR031C-ARPL2A $2.22$ $5.11$ $0.22$ 21YFR031CCNOP5 $0.42$ $0.76$ $0.21$ 33YDR471WRPL27B $0.82$ $1.28$ $0.21$ 34YOR310CNOP5 $0.42$ $0.71$ $0.21$ 35YER086WILV1 $0.13$ $0.36$ $0.21$ 36YOL021CDIS3 $0.11$ $0.21$ $0.21$ 37YOR247W $3.99$ $5.53$ $0.21$ 38YER117WRPL23B $1.82$ $3.53$ $0.21$ <t< td=""><td>19</td><td>YNL112W</td><td>DBP2</td><td>0.16</td><td>0.33</td><td>0.27</td><td>ATP-dependent RNA helicase of DEAD box family</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19 | YNL112W   | DBP2         | 0.16  | 0.33  | 0.27       | ATP-dependent RNA helicase of DEAD box family        |
| 21       YIL133C       RPL16A       4.77       8.84       0.26       Ribosomal protein L16A (L21) (rp22) (YL15)         22       YLR229C       CDC42       0.72       1.6       0.26       member of the Rho subfamily of Ras-like proteins         23       YJR145C       RPS4A       2.08       3.91       0.26       Ribosomal protein S4A (YS6) (rp5) (S7)         24       YLR150W       MPT4       0.77       1.74       0.25         25       YEL026W       1.59       2.96       0.24         26       YOL040C       RPS15       10.86       20.6       0.24         27       YLR293C       GSP1       1.16       2.37       0.24       40S ribosomal protein S15 (S21) (rp52) (RIG protein)         27       YLR293C       GSP1       1.16       2.37       0.24       GTP-binding protein         28       YMR292W       0.48       0.86       0.23       022       L-myo-inositol-1-phosphate synthase         30       YJL153C       INO1       0.35       1.25       0.22       L-myo-inositol-1-phosphate synthase         31       YNL255C       0.25       0.51       0.22       60S ribosomal protein L2A (L5) (rp8) (YL6)         33       YDR471W       RPL27B       0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20 | YGR232W   |              | 0.19  | 0.54  | 0.26       |                                                      |
| 22       YLR229C       CDC42       0.72       1.6       0.26       member of the Rho subfamily of Ras-like proteins         23       YJR145C       RPS4A       2.08       3.91       0.26       Ribosomal protein S4A (YS6) (rp5) (S7)         24       YLR150W       MPT4       0.77       1.74       0.25         25       YEL026W       1.59       2.96       0.24       40S ribosomal protein S15 (S21) (rp52) (RIG protein)         27       YLR293C       GSP1       1.16       2.37       0.24       GTP-binding protein         28       YMR292W       0.48       0.86       0.23       0.22       elta-9-fatty acid desaturase         30       YJL153C       INO1       0.35       1.25       0.22       L-myo-inositol-1-phosphate synthase         31       YNL255C       0.25       0.51       0.22       0.27         32       YFR031C-A       RPL2A       2.22       5.11       0.22       Ribosomal protein L2A (L5) (rp8) (YL6)         33       YDR471W       RPL27B       0.82       1.28       0.21       60S ribosomal protein L27, identical to Yhr010         34       YOR310C       NOP5       0.42       0.76       0.21       nucleolar protein         35       YER086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21 | YIL133C   | RPL16A       | 4.77  | 8.84  | 0.26       | Ribosomal protein L16A (L21) (rp22) (YL15)           |
| 23       YJR145C       RPS4A       2.08       3.91 <b>0.26</b> Ribosomal protein S4A (YS6) (rp5) (S7)         24       YLR150W       MPT4       0.77       1.74       0.25         25       YEL026W       1.59       2.96 <b>0.24</b> 26       YOL040C       RPS15       10.86       20.6 <b>0.24</b> 27       YLR293C       GSP1       1.16       2.37 <b>0.24</b> GTP-binding protein         28       YMR292W       0.48       0.86 <b>0.23</b> GTP-binding protein         29       YGL055W       OLE1       0.65       1.19 <b>0.22</b> delta-9-fatty acid desaturase         30       YJL153C       INO1       0.35       1.25       0.22       L-myo-inositol-1-phosphate synthase         31       YNL255C       0.25       0.51 <b>0.22</b> Ribosomal protein L2A (L5) (rp8) (YL6)         33       YDR471W       RPL2A       2.22       5.11 <b>0.22</b> Ribosomal protein L27, identical to Yhr010         34       YOR310C       NOP5       0.42       0.76 <b>0.21</b> nucleolar protein         35       YER086W       ILV1       0.13       0.36 <b>0.21</b> threonine deaminase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22 | YLR229C   | CDC42        | 0.72  | 1.6   | 0.26       | member of the Rho subfamily of Ras-like proteins     |
| 24       YLR150W       MPT4       0.77       1.74       0.25         25       YEL026W       1.59       2.96       0.24         26       YOL040C       RPS15       10.86       20.6       0.24       40S ribosomal protein S15 (S21) (rp52) (RIG protein)         27       YLR293C       GSP1       1.16       2.37       0.24       GTP-binding protein         28       YMR292W       0.48       0.86       0.23       0.24       GTP-binding protein         29       YGL055W       OLE1       0.65       1.19       0.22       delta-9-fatty acid desaturase         30       YJL153C       INO1       0.35       1.25       0.22       L-myo-inositol-1-phosphate synthase         31       YNL255C       0.25       0.51       0.22       0.24         32       YFR031C-A       RPL2A       2.22       5.11       0.22       Ribosomal protein L2A (L5) (rp8) (YL6)       0.34         33       YDR471W       RPL27B       0.82       1.28       0.21       nucleolar protein       1.27, identical to Yhr010         34       YOR310C       NOP5       0.42       0.76       0.21       nucleolar protein         35       YER086W       ILV1       0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23 | YJR145C   | RPS4A        | 2.08  | 3.91  | 0.26       | Ribosomal protein S4A (YS6) (rp5) (S7)               |
| 25       YEL026W       1.59       2.96 <b>0.24</b> 26       YOL040C       RPS15       10.86       20.6 <b>0.24</b> 40S ribosomal protein S15 (S21) (rp52) (RIG protein)         27       YLR293C       GSP1       1.16       2.37 <b>0.24</b> GTP-binding protein         28       YMR292W       0.48       0.86 <b>0.23</b> GTP-binding protein         29       YGL055W       OLE1       0.65       1.19 <b>0.22</b> delta-9-fatty acid desaturase         30       YJL153C       INO1       0.35       1.25       0.22       L-myo-inositol-1-phosphate synthase         31       YNL255C       0.25       0.51 <b>0.22</b> Ribosomal protein L2A (L5) (rp8) (YL6)         33       YDR471W       RPL27B       0.82       1.28 <b>0.21</b> nucleolar protein L27, identical to Yhr010         34       YOR310C       NOP5       0.42       0.76 <b>0.21</b> nucleolar protein         35       YER086W       ILV1       0.13       0.36 <b>0.21</b> threonine deaminase         36       YOL021C       DIS3       0.11       0.21 <b>0.21</b> 3.99       5.53 <b>0.21</b> 38 <i>YER117W</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24 | YLR150W   | MPT4         | 0.77  | 1.74  | 0.25       |                                                      |
| 26       YOL040C       RPS15       10.86       20.6       0.24       40S ribosomal protein S15 (S21) (rp52) (RIG protein)         27       YLR293C       GSP1       1.16       2.37       0.24       GTP-binding protein         28       YMR292W       0.48       0.86       0.23       GTP-binding protein         29       YGL055W       OLE1       0.65       1.19       0.22       delta-9-fatty acid desaturase         30       YJL153C       INO1       0.35       1.25       0.22       L-myo-inositol-1-phosphate synthase         31       YNL255C       0.25       0.51       0.22       Ribosomal protein L2A (L5) (rp8) (YL6)         33       YDR471W       RPL27B       0.82       1.28       0.21       60S ribosomal protein L27, identical to Yhr010         34       YOR310C       NOP5       0.42       0.76       0.21       nucleolar protein         35       YER086W       ILV1       0.13       0.36       0.21       threonine deaminase         36       YOL021C       DIS3       0.11       0.21       0.21       3.53         38       YER117W       RPL23B       1.82       3.53       0.21       Nibosomal protein L23B (L17a) (YL32)         39       Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25 | YEL026W   |              | 1.59  | 2.96  | 0.24       |                                                      |
| 27       YLR293C       GSP1       1.16       2.37       0.24       GTP-binding protein         28       YMR292W       0.48       0.86       0.23       GTP-binding protein         29       YGL055W       OLE1       0.65       1.19       0.22       delta-9-fatty acid desaturase         30       YJL153C       INO1       0.35       1.25       0.22       L-myo-inositol-1-phosphate synthase         31       YNL255C       0.25       0.51       0.22       L-myo-inositol-1-phosphate synthase         32       YFR031C-A       RPL2A       2.22       5.11       0.22       Ribosomal protein L2A (L5) (rp8) (YL6)         33       YDR471W       RPL27B       0.82       1.28       0.21       60S ribosomal protein L27, identical to Yhr010         34       YOR310C       NOP5       0.42       0.76       0.21       nucleolar protein         35       YER086W       ILV1       0.13       0.36       0.21       threonine deaminase         36       YOL021C       DIS3       0.11       0.21       0.21       3.99       5.53         38       YER117W       RPL23B       1.82       3.53       0.21       Ribosomal protein L23B (L17a) (YL32)         39       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26 | YOL040C   | RPS15        | 10.86 | 20.6  | 0.24       | 40S ribosomal protein S15 (S21) (rp52) (RIG protein) |
| 28       YMR292W       0.48       0.86       0.23         29       YGL055W       OLE1       0.65       1.19       0.22       delta-9-fatty acid desaturase         30       YJL153C       INO1       0.35       1.25       0.22       L-myo-inositol-1-phosphate synthase         31       YNL255C       0.25       0.51       0.22       L-myo-inositol-1-phosphate synthase         32       YFR031C-A       RPL2A       2.22       5.11       0.22       Ribosomal protein L2A (L5) (rp8) (YL6)         33       YDR471W       RPL27B       0.82       1.28       0.21       60S ribosomal protein L27, identical to Yhr010         34       YOR310C       NOP5       0.42       0.76       0.21       nucleolar protein         35       YER086W       ILV1       0.13       0.36       0.21       threonine deaminase         36       YOL021C       DIS3       0.11       0.21       0.21         37       YOR247W       3.99       5.53       0.21         38       YER117W       RPL23B       1.82       3.53       0.21         39       YMR276W       DSK2       0.54       0.64       0.21       ubiquitin-like protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27 | YLR293C   | GSP1         | 1.16  | 2.37  | 0.24       | GTP-binding protein                                  |
| 29       YGL055W       OLE1       0.65       1.19 <b>0.22</b> delta-9-fatty acid desaturase         30       YJL153C       INO1       0.35       1.25       0.22       L-myo-inositol-1-phosphate synthase         31       YNL255C       0.25       0.51 <b>0.22</b> L-myo-inositol-1-phosphate synthase         32       YFR031C-A       RPL2A       2.22       5.11 <b>0.22</b> Ribosomal protein L2A (L5) (rp8) (YL6)         33       YDR471W       RPL27B       0.82       1.28 <b>0.21</b> 60S ribosomal protein L27, identical to Yhr010         34       YOR310C       NOP5       0.42       0.76 <b>0.21</b> nucleolar protein         35       YER086W       ILV1       0.13       0.36 <b>0.21</b> threonine deaminase         36       YOL021C       DIS3       0.11       0.21 <b>0.21</b> 37       YOR247W       3.99       5.53 <b>0.21</b> 38       YER117W       RPL23B       1.82       3.53 <b>0.21</b> 39       YMR276W       DSK2       0.54       0.64       0.21       ubiquitin-like protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28 | YMR292W   |              | 0.48  | 0.86  | 0.23       |                                                      |
| 30       YJL153C       INO1       0.35       1.25       0.22       L-myo-inositol-1-phosphate synthase         31       YNL255C       0.25       0.51       0.22         32       YFR031C-A       RPL2A       2.22       5.11       0.22         33       YDR471W       RPL2A       2.22       5.11       0.22         34       YOR310C       NOP5       0.42       0.76       0.21         35       YER086W       ILV1       0.13       0.36       0.21       nucleolar protein         36       YOL021C       DIS3       0.11       0.21       0.21       3.99         37       YOR247W       3.99       5.53       0.21       Ribosomal protein L23B (L17a) (YL32)         38       YER117W       RPL23B       1.82       3.53       0.21       Ribosomal protein L23B (L17a) (YL32)         39       YMR276W       DSK2       0.54       0.64       0.21       ubiquitin-like protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29 | YGL055W   | OLE1         | 0.65  | 1.19  | 0.22       | delta-9-fatty acid desaturase                        |
| 31       YNL255C       0.25       0.51       0.22         32       YFR031C-A       RPL2A       2.22       5.11       0.22         33       YDR471W       RPL27B       0.82       1.28       0.21       60S ribosomal protein L2A (L5) (rp8) (YL6)         34       YOR310C       NOP5       0.42       0.76       0.21       nucleolar protein         35       YER086W       ILV1       0.13       0.36       0.21       threonine deaminase         36       YOL021C       DIS3       0.11       0.21       0.21         37       YOR247W       3.99       5.53       0.21         38       YER117W       RPL23B       1.82       3.53       0.21         39       YMR276W       DSK2       0.54       0.64       0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30 | YJL153C   | INO1         | 0.35  | 1.25  | 0.22       | L-myo-inositol-1-phosphate synthase                  |
| 32 <i>YFR031C-A</i> RPL2A       2.22       5.11 <b>0.22</b> Ribosomal protein L2A (L5) (rp8) (YL6)         33       YDR471W       RPL27B       0.82       1.28 <b>0.21</b> 60S ribosomal protein L27, identical to Yhr010         34       YOR310C       NOP5       0.42       0.76 <b>0.21</b> nucleolar protein         35       YER086W       ILV1       0.13       0.36 <b>0.21</b> threonine deaminase         36       YOL021C       DIS3       0.11       0.21 <b>0.21</b> 37       YOR247W       3.99       5.53 <b>0.21</b> 38 <i>YER117W</i> RPL23B       1.82       3.53 <b>0.21</b> 39       YMR276W       DSK2       0.54       0.64       0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 31 | YNL255C   |              | 0.25  | 0.51  | 0.22       |                                                      |
| 33       YDR471W       RPL27B       0.82       1.28       0.21       60S ribosomal protein L27, identical to Yhr010         34       YOR310C       NOP5       0.42       0.76       0.21       nucleolar protein         35       YER086W       ILV1       0.13       0.36       0.21       threonine deaminase         36       YOL021C       DIS3       0.11       0.21       0.21         37       YOR247W       3.99       5.53       0.21         38       YER117W       RPL23B       1.82       3.53       0.21         39       YMR276W       DSK2       0.54       0.64       0.21       ubiquitin-like protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 32 | YFR031C-A | RPL2A        | 2.22  | 5.11  | 0.22       | Ribosomal protein L2A (L5) (rp8) (YL6)               |
| 34       YOR310C       NOP5       0.42       0.76 <b>0.21</b> nucleolar protein         35       YER086W       ILV1       0.13       0.36 <b>0.21</b> threonine deaminase         36       YOL021C       DIS3       0.11       0.21 <b>0.21</b> 37       YOR247W       3.99       5.53 <b>0.21</b> 38       YER117W       RPL23B       1.82       3.53 <b>0.21</b> 39       YMR276W       DSK2       0.54       0.64       0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33 | YDR471W   | RPL27B       | 0.82  | 1.28  | 0.21       | 60S ribosomal protein L27, identical to Yhr010p      |
| 35       YER086W       ILV1       0.13       0.36       0.21       threonine deaminase         36       YOL021C       DIS3       0.11       0.21       0.21         37       YOR247W       3.99       5.53       0.21         38       YER117W       RPL23B       1.82       3.53       0.21         39       YMR276W       DSK2       0.54       0.64       0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34 | YOR310C   | NOP5         | 0.42  | 0.76  | 0.21       | nucleolar protein                                    |
| 36       YOL021C       DIS3       0.11       0.21       0.21         37       YOR247W       3.99       5.53       0.21         38       YER117W       RPL23B       1.82       3.53       0.21         39       YMR276W       DSK2       0.54       0.64       0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35 | YER086W   | ILV1         | 0.13  | 0.36  | 0.21       | threonine deaminase                                  |
| 37       YOR247W       3.99       5.53 <b>0.21</b> 38       YER117W       RPL23B       1.82       3.53 <b>0.21</b> 39       YMR276W       DSK2       0.54       0.64       0.21       ubiquitin-like protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36 | YOL021C   | DIS3         | 0.11  | 0.21  | 0.21       |                                                      |
| 38         YER117W         RPL23B         1.82         3.53 <b>0.21</b> Ribosomal protein L23B (L17a) (YL32)           39         YMR276W         DSK2         0.54         0.64         0.21         ubiquitin-like protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 37 | YOR247W   |              | 3.99  | 5.53  | 0.21       |                                                      |
| 39  YMR276W  DSK2  0.54  0.64  0.21  ubiauitin-like protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 38 | YER117W   | RPL23B       | 1.82  | 3.53  | 0.21       | Ribosomal protein L23B (L17a) (YL32)                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39 | YMR276W   | DSK2         | 0.54  | 0.64  | 0.21       | ubiquitin-like protein                               |
| 40 YLR333C RPS25B 1.58 2.59 <b>0.21</b> Ribosomal protein S25B (S31) (rp45) (YS23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40 | YLR333C   | RPS25B       | 1.58  | 2.59  | 0.21       | Ribosomal protein S25B (S31) (rp45) (YS23)           |

| 41 | YDR450W | RPS18A | 1.45 | 3.12 | 0.2  | Ribosomal protein S18A                                                                                         |
|----|---------|--------|------|------|------|----------------------------------------------------------------------------------------------------------------|
| 42 | YOR021C |        | 0.11 | 0.23 | 0.2  |                                                                                                                |
| 43 | YMR321C |        | 0.46 | 0.63 | 0.2  |                                                                                                                |
| 44 | YIL069C | RPS24B | 0.45 | 0.93 | 0.2  | 40S ribosomal protein S24B                                                                                     |
| 45 | YIL018W | RPL2B  | 8.69 | 15.9 | 0.2  | Ribosomal protein L2B (L5) (rp8) (YL6)                                                                         |
| 46 | YGR124W | ASN2   | 0.25 | 0.25 | 0.2  | asparagine synthetase                                                                                          |
| 47 | YGL198W |        | 0.21 | 0.82 | 0.2  |                                                                                                                |
| 48 | YEL040W | UTR2   | 0.36 | 0.75 | 0.2  |                                                                                                                |
| 49 | YHR193C | EGD2   | 1.12 | 2.16 | 0.19 | GAL4 enhancer protein, homolog of human<br>alpha NAC subunit of the nascent-polypeptide-<br>associated complex |
| 50 | YLR286C | CTS1   | 1.1  | 1.61 | 0.19 | Endochitinase                                                                                                  |

### ORFs most abundant in mating type a relative to mating type **a** culture.

| R  | ID        | GENE   | а    | alpha | log<br>a/α | Brief SGD Gene Description                                                                                                       |
|----|-----------|--------|------|-------|------------|----------------------------------------------------------------------------------------------------------------------------------|
| 1  | YDR461W   | MFA1   | 4.42 | 0.04  | 1.98       | a-factor mating pheromone precursor                                                                                              |
| 2  | YNL145W   | MFA2   | 7.14 | 0.09  | 1.64       | mating a-factor pheromone precursor                                                                                              |
| 3  | YGL032C   | AGA2   | 0.6  | 0.07  | 0.9        | adhesion subunit of a-agglutinin                                                                                                 |
| 4  | YFL026W   | STE2   | 0.57 | 0.07  | 0.8        | alpha-factor pheromone receptor\; seven-                                                                                         |
|    |           |        |      |       |            | transmembrane domain protein                                                                                                     |
| 5  | YIL015W   | BAR1   | 0.45 | 0.07  | 0.68       | encodes a-cell barrier activity on alpha factor                                                                                  |
| 6  | YCR024C-A | PMP1   | 1.83 | 0.54  | 0.6        | Proteolipid associated with plasma membrane H(+)-<br>ATPase (Pma1p)                                                              |
| 7  | YJL164C   | SRA3   | 0.47 | 0.15  | 0.56       | putative catalytic subunit of cAMP-dependent protein kinase                                                                      |
| 8  | YLL040C   | VPS13  | 0.35 | 0.11  | 0.55       |                                                                                                                                  |
| 9  | YKR071C   |        | 0.35 | 0.11  | 0.53       |                                                                                                                                  |
| 10 | YBR147W   |        | 0.39 | 0.11  | 0.52       |                                                                                                                                  |
| 11 | YJR086W   | STE18  | 0.35 | 0.11  | 0.51       | gamma subunit of G protein coupled to mating factor receptors                                                                    |
| 12 | YML027W   | YOX1   | 0.35 | 0.15  | 0.5        | Homeobox-domain containing protein                                                                                               |
| 13 | YMR042W   | ARG80  | 0.35 | 0.14  | 0.5        | Regulator of arginine-responsive genes with ARG81 and ARG82                                                                      |
| 14 | YMR047C   | NUP116 | 0.35 | 0.15  | 0.5        | Nuclear pore complex protein that is member of GLFG repeat-containing family of nucleoporins and is highly homologous to Nup100p |
| 15 | YKR018C   |        | 0.35 | 0.19  | 0.49       | inging noniologous to reaproop                                                                                                   |
| 16 | YLL031C   |        | 0.35 | 0.17  | 0.49       |                                                                                                                                  |
| 17 | YKL214C   |        | 0.35 | 0.14  | 0.48       |                                                                                                                                  |
| 18 | YKL170W   | MRPL38 | 0.35 | 0.12  | 0.47       | mitochondrial ribosomal protein L14                                                                                              |
| 19 | YMR119W   |        | 0.35 | 0.14  | 0.47       | 1                                                                                                                                |
| 20 | YBR011C   | IPP1   | 1.17 | 0.63  | 0.46       | Inorganic pyrophosphatase                                                                                                        |
| 21 | YBR106W   | PHO88  | 2.11 | 0.76  | 0.46       | May be a membrane protein involved in inorganic<br>phosphate transport and regulation of Pho81p<br>function                      |
| 22 | YAL061W   |        | 0.46 | 0.16  | 0.45       |                                                                                                                                  |
| 23 | YBL015W   | ACH1   | 0.46 | 0.11  | 0.44       | acetyl CoA hydrolase                                                                                                             |
| 24 | YKL128C   | PMU1   | 0.35 | 0.15  | 0.44       | Phospo-mutase homolog                                                                                                            |
| 25 | YMR003W   |        | 0.35 | 0.13  | 0.44       |                                                                                                                                  |
| 26 | YPR149W   | NCE102 | 5.06 | 1.28  | 0.44       | involved in secretion of proteins that lack classical secretory signal sequences                                                 |
| 27 | YCR012W   | PGK1   | 23.1 | 5.85  | 0.44       | 3-phosphoglycerate kinase                                                                                                        |
| 28 | YKL066W   |        | 0.35 | 0.13  | 0.43       |                                                                                                                                  |
| 29 | YBR268W   | MRPL37 | 0.26 | 0.05  | 0.42       | Probable mitochondrial protein L37                                                                                               |
| 30 | YDR343C   | HXT6   | 6    | 2.42  | 0.42       | Hexose transporter                                                                                                               |
| 31 | YPR165W   | RHO1   | 1.57 | 0.41  | 0.4        | GTP-binding protein of the rho subfamily of ras-like proteins                                                                    |
| 32 | YBR072W   | HSP26  | 0.68 | 0.24  | 0.4        | heat shock protein 26                                                                                                            |
| 33 | YMR090W   |        | 0.35 | 0.21  | 0.39       |                                                                                                                                  |
| 34 | YPL220W   | RPL1A  | 9.9  | 5.87  | 0.39       | Ribosomal protein L1A, forms part of the 60S ribosomal subunit                                                                   |
| 35 | YML075C   | HMG1   | 0.35 | 0.17  | 0.38       | 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-<br>CoA) reductase isozyme                                                            |

| 36 | YJL210W | PEX2  | 0.6  | 0.26 | 0.38 | CH3HC4 zinc-binding integral peroxisomal membrane protein        |
|----|---------|-------|------|------|------|------------------------------------------------------------------|
| 37 | YBL045C | COR1  | 0.4  | 0.17 | 0.37 | 44 kDa core protein of yeast coenzyme QH2 cytochrome c reductase |
| 38 | YJR103W | URA8  | 0.35 | 0.17 | 0.36 | CTP synthase                                                     |
| 39 | YOL058W | ARG1  | 0.65 | 0.22 | 0.35 | arginosuccinate synthetase                                       |
| 40 | YPL271W | ATP15 | 2.42 | 0.58 | 0.35 | nuclear gene for ATP synthase epsilon subunit                    |
| 41 | YKL196C | YKT6  | 0.35 | 0.16 | 0.34 | v-SNARE                                                          |
| 42 | YLR028C | ADE16 | 0.35 | 0.23 | 0.34 | 5-aminoimidazole-4-carboxamide ribonucleotide                    |
|    |         |       |      |      |      | (AICAR) transformylase\/IMP cyclohydrolase                       |
| 43 | YMR038C | LYS7  | 0.35 | 0.22 | 0.34 |                                                                  |
| 44 | YMR184W |       | 0.35 | 0.2  | 0.34 |                                                                  |
| 45 | YDL047W | SIT4  | 0.09 | 0.05 | 0.33 | SIT4 suppress mutations in DBF2                                  |
| 46 | YDR490C |       | 0.12 | 0.05 | 0.33 |                                                                  |
| 47 | YDR506C |       | 0.09 | 0.07 | 0.33 |                                                                  |
| 48 | YDR342C | HXT7  | 6.13 | 3.01 | 0.33 | Hexose transporter                                               |
| 49 | YBR107C |       | 0.09 | 0.06 | 0.32 |                                                                  |
| 50 | YEL031W | SPF1  | 0.21 | 0.07 | 0.32 | P-type ATPase                                                    |

#### ORFs most abundant in galactose vs. glucose-fed culture.

| R  | ID         | Gene     | glu   | gal  | log     | Brief SGD Gene Description                                              |
|----|------------|----------|-------|------|---------|-------------------------------------------------------------------------|
| 1  | VDD020W    | CAL 1    | 0.00  | 7 10 | gal/glu |                                                                         |
| 1  | YBR020W    | GALI     | 0.09  | 7.12 | 1.81    | galactokinase                                                           |
| 2  | YBR018C    | GAL/     | 0.09  | 3.39 | 1.02    | galactose-1-phosphate uridyi transferase                                |
| 3  | YBR019C    | GAL10    | 0.09  | 3.24 | 1.57    | UDP-glucose 4-epimerase                                                 |
| 4  | YOR120W    | GCYI     | 0.11  | 3.21 | 1.09    | Similar to mammalian aldo\/keto reductases                              |
| 5  | YLR081W    | GAL2     | 0.35  | 2.84 | 0.91    | galactose permease                                                      |
| 6  | YPL066W    |          | 0.11  | 0.76 | 0.8     |                                                                         |
| 7  | YPL067C    |          | 0.21  | 1.76 | 0.77    |                                                                         |
| 8  | YMR318C    |          | 0.37  | 1.89 | 0.6     |                                                                         |
| 9  | YNL015W    | PBI2     | 0.95  | 3.03 | 0.59    | Proteinase inhibitor I2B (PBI2), that inhibits protease<br>Prb1p (yscB) |
| 10 | YOL058W    | ARG1     | 0.65  | 1.99 | 0.53    | arginosuccinate synthetase                                              |
| 11 | YGL055W    | OLE1     | 0.65  | 2.44 | 0.51    | delta-9-fatty acid desaturase                                           |
| 12 | YHR033W    |          | 0.21  | 0.65 | 0.5     |                                                                         |
| 13 | YDR009W    | GAL3     | 0.09  | 0.29 | 0.49    | galactokinase                                                           |
| 14 | YGR244C    |          | 0.17  | 0.53 | 0.48    |                                                                         |
| 15 | YNL052W    | COX5A    | 1.09  | 2.69 | 0.47    | Cytochrome-c oxidase chain Va                                           |
| 16 | YMR256C    | COX7     | 0.54  | 2.43 | 0.45    | subunit VII of cytochrome c oxidase                                     |
| 17 | YOL031C    |          | 0.11  | 0.43 | 0.45    |                                                                         |
| 18 | YGL121C    |          | 0.15  | 0.43 | 0.44    |                                                                         |
| 19 | YGR232W    |          | 0.19  | 0.56 | 0.42    |                                                                         |
| 20 | YGR234W    | YHB1     | 0.37  | 1 38 | 0.41    | Flavohemoglobin                                                         |
| 21 | YNI 239W   | I AP3    | 0.26  | 0.88 | 0 41    | Aminopentidase of cysteine protease family                              |
| 21 | YPL 262W   | FUM1     | 0.20  | 3 11 | 0.11    | mitochondrial and cytoplasmic fumarase (fumarate                        |
|    | 11 2202 11 | 10001    | 0.77  | 5.11 | 0.4     | hydralase)                                                              |
| 23 | YGL126W    | SCS3     | 0.31  | 0.81 | 0.39    |                                                                         |
| 24 | YHR193C    | EGD2     | 1.12  | 2.79 | 0.38    | GAL4 enhancer protein, homolog of human alpha NAC                       |
|    |            |          |       | ,    | 0.00    | subunit of the nascent-polypeptide-associated complex                   |
| 25 | YER069W    | ARG5,6   | 0.27  | 0.5  | 0.37    | N-acetyl-gamma-glutamyl-phosphate reductase and                         |
| 26 | YGI 187C   | COX4     | 0.88  | 1 9/ | 0.37    | subunit IV of cytochrome c oxidase                                      |
| 20 | VER067W    | CONT     | 0.00  | 1.03 | 0.36    | subulit IV of cytochionic c oxicuse                                     |
| 27 | VOR288C    | MPD1     | 0.33  | 0.53 | 0.30    | Disulfida isomarasa ralatad protain                                     |
| 20 | VDI 134C   |          | 0.10  | 0.55 | 0.30    | Disumde isomerase related protein                                       |
| 29 | VUD001W    | OCP 10   | 0.24  | 0.77 | 0.30    | 8.5 kDa subunit of the ubigunal sytochrome c                            |
| 30 | $\Delta$   | QUNIO    | 0.01  | 2.1  | 0.35    | oxidoreductase complex                                                  |
| 31 | YHR018C    | ARG4     | 1 1 1 | 2.01 | 0.35    | argininosuccinate lyase                                                 |
| 32 | YHR057C    | CYP2     | 0.11  | 0.51 | 0.35    | Pentidylprolyl isomerase (cyclophilin) FR or secreted                   |
| 33 | YHR179W    | OYF2     | 0.78  | 1.1  | 0.35    | NAPDH dehydrogenase (old vellow enzyme) isoform 2                       |
| 34 | VNI 104C   | LEIM     | 1 2   | 1.1  | 0.35    | alpha-isopropylmalate synthese (2-Isopropylmalate                       |
| 54 | INLI04C    | LLUT     | 1.2   | 1.70 | 0.55    | Synthese)                                                               |
| 35 | YNL112W    | DBP2     | 0.16  | 0.44 | 0.35    | ATP-dependent RNA helicase of DEAD box family                           |
| 36 | YPR020W    |          | 0.32  | 0.61 | 0.35    | r                                                                       |
| 37 | YPR145W    | ASN1     | 0.46  | 0.96 | 0.35    | asparagine synthetase                                                   |
| 38 | YGL117W    | 1 101 11 | 0.08  | 0.28 | 0.34    | asparasine synthetise                                                   |
| 30 | YGR183C    | OCB0     | 1 45  | 3 17 | 0 34    | 7.3 kDa subunit 9 of the ubiquinol cytochrome c                         |
| 57 | 101(1050   | QUIV     | 1.75  | 5.17 | 0.37    | oxidoreductase complex                                                  |
| 40 | YHR008C    | SOD2     | 0.62  | 1.24 | 0.34    | Manganese-containing superoxide dismutase                               |
|    |            |          |       |      |         |                                                                         |

| 41 | YIL050W | PCL7   | 0.1  | 0.29 | 0.34 |
|----|---------|--------|------|------|------|
| 42 | YOL143C | RIB4   | 0.32 | 0.66 | 0.34 |
|    |         |        |      |      |      |
| 43 | YGR008C | STF2   | 1.26 | 1.79 | 0.33 |
| 44 | YGR037C | ACB1   | 2.26 | 6.31 | 0.33 |
|    |         |        |      |      |      |
| 45 | YHR051W | COX6   | 0.56 | 2.02 | 0.33 |
| 46 | YHR141C | RPL42B | 1.03 | 2.78 | 0.33 |
| 47 | YOR202W | HIS3   | 0.23 | 0.69 | 0.33 |
| 48 | YFL030W |        | 0.14 | 0.69 | 0.32 |
| 49 | YHR071W | PCL5   | 0.07 | 0.18 | 0.32 |
| 50 | YNL259C | ATX1   | 0.22 | 0.35 | 0.32 |
|    |         |        |      |      |      |

6,7-dimethyl-8-ribityllumazine synthase (DMRL synthase)

Acyl-CoA-binding protein (ACBP)\/Diazepam binding inhibitor (DBI)\/endozepine (EP)

- subunit VI of cytochrome c oxidase
- Ribosomal protein L42B (YL27) (L41) (YP44)
- imidazoleglycerol-phosphate dehydratase

#### PHO85 cyclin

Antioxidant protein and metal homeostasis factor, protects against oxygen toxicity

## ORFs most abundant in glucose- vs. galactose-fed culture.

| R  | ID        | Gene   | glu   | gal  | log     | Brief SGD Gene Description                                                                            |
|----|-----------|--------|-------|------|---------|-------------------------------------------------------------------------------------------------------|
|    |           |        |       |      | glu/gal |                                                                                                       |
| 1  | YDR345C   | HXT3   | 3.77  | 0.09 | 1.4     | High-affinity glucose transporter                                                                     |
| 2  | YGL189C   | RPS26A | 14.83 | 1.19 | 0.89    |                                                                                                       |
| 3  | YHR094C   | HXT1   | 0.84  | 0.07 | 0.8     | High-affinity hexose (glucose) transporter                                                            |
| 4  | YOL154W   |        | 1.89  | 0.17 | 0.78    |                                                                                                       |
| 5  | YGL030W   | RPL30  | 4.86  | 0.89 | 0.73    | Large ribosomal subunit protein L30 (L32) (rp72) (YL38)                                               |
| 6  | YFL045C   | SEC53  | 1.25  | 0.29 | 0.71    | phosphomannomutase                                                                                    |
| 7  | YBR106W   | PHO88  | 2.11  | 0.34 | 0.7     | May be a membrane protein involved in inorganic phosphate transport and regulation of Pho81p function |
| 8  | YER190W   |        | 0.73  | 0.1  | 0.69    |                                                                                                       |
| 9  | YBR011C   | IPP1   | 1.17  | 0.41 | 0.58    | Inorganic pyrophosphatase                                                                             |
| 10 | YER178W   | PDA1   | 1.88  | 0.32 | 0.54    | alpha subunit of pyruvate dehydrogenase (E1 alpha)                                                    |
| 11 | YCR005C   | CIT2   | 1.05  | 0.19 | 0.52    | non-mitochondrial citrate synthase                                                                    |
| 12 | 25srRnaa  |        | 1.54  | 0.32 | 0.51    |                                                                                                       |
| 13 | YHR092C   | HXT4   | 0.76  | 0.12 | 0.51    | High-affinity glucose transporter                                                                     |
| 14 | YFR024C   |        | 0.27  | 0.07 | 0.51    |                                                                                                       |
| 15 | YJR073C   | OPI3   | 14.51 | 4.73 | 0.47    | Methylene-fatty-acyl-phospholipid synthase<br>(unsaturated phospholipid N-methyltransferase)          |
| 16 | YKL096W   | CWP1   | 4.38  | 1.36 | 0.47    | cell wall mannoprotein                                                                                |
| 17 | YLL024C   | SSA2   | 2.07  | 0.76 | 0.46    | member of 70 kDa heat shock protein family                                                            |
| 18 | YJL190C   | RPS22A | 19.08 | 3.19 | 0.44    | Ribosomal protein S22A (S24) (rp50) (YS22)                                                            |
| 19 | YFR051C   | RET2   | 0.55  | 0.16 | 0.43    |                                                                                                       |
| 20 | YKL035W   |        | 2.32  | 0.81 | 0.42    |                                                                                                       |
| 21 | YBR072W   | HSP26  | 0.68  | 0.18 | 0.39    | heat shock protein 26                                                                                 |
| 22 | YJL191W   | RPS14B | 2.33  | 0.94 | 0.39    | Ribosomal protein S14B (rp59)                                                                         |
| 23 | YGL256W   | ADH4   | 2.66  | 0.52 | 0.39    | alcohol dehydrogenase isoenzyme IV                                                                    |
| 24 | YCR024C-A | PMP1   | 1.83  | 0.8  | 0.38    | Proteolipid associated with plasma membrane H(+)-<br>ATPase (Pma1p)                                   |
| 25 | YBL087C   | RPL23A | 2.07  | 1.01 | 0.38    | Ribosomal protein L23A (L17a) (YL32)                                                                  |
| 26 | YNL054W   | VAC7   | 0.11  | 0.05 | 0.37    | -                                                                                                     |
| 27 | YJL158C   | CIS3   | 9.57  | 3.2  | 0.36    | Protein with homology to Hsp150p and Pir1p, Pir2p, and Pir3p                                          |
| 28 | YOR352W   |        | 0.11  | 0.08 | 0.36    |                                                                                                       |
| 29 | YCR012W   | PGK1   | 23.1  | 9.14 | 0.35    | 3-phosphoglycerate kinase                                                                             |
| 30 | YJR009C   | TDH2   | 7.93  | 3.96 | 0.35    | glyceraldehyde 3-phosphate dehydrogenase                                                              |
| 31 | YOR377W   | ATF1   | 0.11  | 0.05 | 0.35    | Alcohol acetyltransferase                                                                             |
| 32 | YML073C   | RPL6A  | 3.12  | 1.66 | 0.35    | Ribosomal protein L6A (L17) (rp18) (YL16)                                                             |
| 33 | YLL045C   | RPL8B  | 1.68  | 0.74 | 0.34    | Ribosomal protein L8B (L4) (rp6) (YL5)                                                                |
| 34 | YGL209W   | MIG2   | 0.21  | 0.08 | 0.33    | Protein containing zinc fingers very similar to zinc fingers in Mig1p                                 |
| 35 | YOL158C   |        | 0.11  | 0.05 | 0.33    |                                                                                                       |
| 36 | YPR174C   |        | 0.11  | 0.07 | 0.33    |                                                                                                       |
| 37 | YJR094W-A | RPL43B | 3.91  | 1.9  | 0.33    | Ribosomal protein L43B                                                                                |
| 38 | YBR101C   |        | 0.29  | 0.11 | 0.32    | -                                                                                                     |
| 39 | YGL157W   |        | 0.26  | 0.07 | 0.32    |                                                                                                       |
| 40 | YDR171W   | HSP42  | 0.5   | 0.27 | 0.31    | Similar to HSP26\; expression is regulated by stress conditions                                       |

| 41 | YNL084C   | END3   | 0.11  | 0.07  | 0.31 | Protein necessary for internalization of alpha-factor receptor when bound to ligand |
|----|-----------|--------|-------|-------|------|-------------------------------------------------------------------------------------|
| 42 | YPR061C   |        | 0.11  | 0.07  | 0.31 |                                                                                     |
| 43 | YLR109W   |        | 3.58  | 1.96  | 0.31 |                                                                                     |
| 44 | YPR091C   |        | 0.11  | 0.05  | 0.3  |                                                                                     |
| 45 | YJR123W   | RPS5   | 5.23  | 1.26  | 0.3  | ribosomal protein RPS5 (mammalian S5) (previously called rp14, S2 or YS8)           |
| 46 | YLR043C   | TRX1   | 2.64  | 2.07  | 0.3  | thioredoxin                                                                         |
| 47 | YKL097W-A | CWP2   | 40.86 | 15.05 | 0.29 | cell wall mannoprotein                                                              |
| 48 | YFL021W   | GAT1   | 0.17  | 0.07  | 0.29 | transcriptional activator with GATA-1-type Zn finger                                |
|    |           |        |       |       |      | DNA-binding motif                                                                   |
| 49 | YMR116C   | BEL1   | 9.06  | 3.58  | 0.29 |                                                                                     |
| 50 | YLR264W   | RPS28B | 2.16  | 0.52  | 0.29 | Ribosomal protein S28B (S33) (YS27)                                                 |

#### ORFs most abundant in heat-shocked vs. 30 °C culture.

| R  | ID        | Gene  | 30°C | heat  | log       | Brief SGD Gene Description                       |
|----|-----------|-------|------|-------|-----------|--------------------------------------------------|
|    |           |       |      |       | heat/30°C |                                                  |
| 1  | YFL014W   | HSP12 | 2.53 | 16.82 | 0.89      | 12 kDa heat shock protein                        |
| 2  | YDR453C   |       | 0.2  | 1.66  | 0.88      |                                                  |
| 3  | YPL223C   | GRE1  | 0.11 | 1.04  | 0.83      | Induced by osmotic stress                        |
| 4  | YGL121C   |       | 0.15 | 1.53  | 0.82      |                                                  |
| 5  | YLR303W   | MET17 | 0.39 | 3.15  | 0.77      | O-Acetylhomoserine-O-Acetylserine Sulfhydralase  |
| 6  | YBR072W   | HSP26 | 0.68 | 4.62  | 0.75      | heat shock protein 26                            |
| 7  | YGR256W   | GND2  | 0.08 | 0.53  | 0.75      | 6-phosphogluconate dehydrogenase                 |
| 8  | YLR178C   | TFS1  | 0.39 | 3.31  | 0.65      | suppressor of cdc25                              |
| 9  | YDR533C   |       | 1.53 | 9.8   | 0.65      |                                                  |
| 10 | YDR019C   | GCV1  | 0.16 | 1     | 0.64      | glycine cleavage T protein (T subunit of glycine |
|    |           |       |      |       |           | decarboxylase complex                            |
| 11 | YGL055W   | OLE1  | 0.65 | 3.08  | 0.62      | delta-9-fatty acid desaturase                    |
| 12 | YLR058C   | SHM2  | 1.52 | 6.78  | 0.59      | serine hydroxymethyltransferase                  |
| 13 | YGR250C   |       | 0.07 | 0.52  | 0.59      |                                                  |
| 14 | YLL039C   | UBI4  | 0.35 | 2.2   | 0.57      | ubiquitin                                        |
| 15 | YDR055W   |       | 1.54 | 5.63  | 0.57      |                                                  |
| 16 | YHR104W   | GRE3  | 0.43 | 1.63  | 0.57      | Induced by osmotic stress\; similar to xylose    |
|    |           |       |      |       |           | reductase from other fungi                       |
| 17 | YDR214W   |       | 0.27 | 1.09  | 0.53      |                                                  |
| 18 | YLR216C   | CPR6  | 0.35 | 1.4   | 0.53      | a cyclophilin related to the mammalian CyP-40\;  |
|    |           |       |      |       |           | physically interacts with RPD3 gene product      |
| 19 | YDR070C   |       | 0.51 | 2.18  | 0.52      |                                                  |
| 20 | YMR174C   | PAI3  | 0.35 | 1.45  | 0.51      | Cytoplasmic inhibitor of proteinase Pep4p        |
| 21 | YNL281W   |       | 0.16 | 0.69  | 0.51      |                                                  |
| 22 | YER103W   | SSA4  | 0.26 | 0.84  | 0.5       | member of 70 kDa heat shock protein family       |
| 23 | YER062C   | HOR2  | 0.59 | 2.05  | 0.5       | DL-glycerol-3-phosphatase                        |
| 24 | YMR175W   | SIP18 | 0.35 | 1.33  | 0.5       |                                                  |
| 25 | YKL163W   | PIR3  | 1.28 | 9.38  | 0.49      | Protein containing tandem internal repeats       |
| 26 | YGL196W   |       | 0.31 | 0.96  | 0.48      |                                                  |
| 27 | YOR120W   | GCY1  | 0.11 | 0.72  | 0.48      | Similar to mammalian aldo//keto reductases       |
| 28 | YPR127W   |       | 0.16 | 0.79  | 0.47      |                                                  |
| 29 | YHR007C   | ERG11 | 1.02 | 2.6   | 0.47      | cytochrome P450 lanosterol 14a-demethylase       |
| 30 | YML128C   |       | 0.35 | 1.06  | 0.47      |                                                  |
| 31 | YPR157W   |       | 0.11 | 0.53  | 0.47      |                                                  |
| 32 | YMR246W   | FAA4  | 0.2  | 0.65  | 0.47      | long-chain fatty acidCoA ligase and synthetase 4 |
| 33 | YDL222C   |       | 0.23 | 0.97  | 0.45      |                                                  |
| 34 | YBR117C   | TKL2  | 0.09 | 0.3   | 0.44      | transketolase, homologous to tkl1                |
| 35 | YGR088W   | CTT1  | 0.11 | 0.67  | 0.44      | cytoplasmic catalase T                           |
| 36 | YOL053C-A | DDR2  | 5.4  | 16.53 | 0.44      |                                                  |
| 37 | YHR055C   | CUP1  | 6.8  | 15.95 | 0.43      | copper-binding metallothionein                   |
| 38 | YMR276W   | DSK2  | 0.54 | 1.2   | 0.43      | ubiquitin-like protein                           |
| 39 | YPR035W   | GLN1  | 1.04 | 2.74  | 0.43      | glutamine synthetase                             |
| 40 | YOR020C   | HSP10 | 1.22 | 2.71  | 0.42      | 10 kDa mitochondrial heat shock protein          |
| 41 | YER042W   |       | 0.07 | 0.29  | 0.41      | *                                                |
| 42 | YGR043C   |       | 0.07 | 0.37  | 0.41      |                                                  |
| 43 | YIR038C   |       | 0.66 | 1.67  | 0.41      |                                                  |

| 44 | YOR007C | SGT2  | 0.71 | 1.86 | 0.41 |
|----|---------|-------|------|------|------|
| 45 | YML092C | PRE8  | 0.56 | 2.15 | 0.39 |
| 46 | YBR054W | YRO2  | 1.05 | 2.94 | 0.39 |
| 47 | YPL240C | HSP82 | 0.15 | 0.67 | 0.39 |
| 48 | YDL223C |       | 0.11 | 0.42 | 0.39 |
| 49 | YER160C |       | 0.12 | 0.39 | 0.39 |
| 50 | YLR375W | STP3  | 0.76 | 2.35 | 0.39 |
|    |         |       |      |      |      |

| small glutamine-rich tetratricopeptide repeat |
|-----------------------------------------------|
| containing protein                            |
| proteasome component Y7                       |
| Homolog to HSP30 heat shock protein Yro1p     |
| heat shock protein                            |
|                                               |
|                                               |

Involved in pre-tRNA splicing and in uptake of branched-chain amino acids

#### ORFs most abundant in 30 °C vs. heat-shocked culture.

| R        | ID         | Gene           | 30°C        | heat  | log<br>heat/30°<br>C | Brief SGD Gene Description                           |
|----------|------------|----------------|-------------|-------|----------------------|------------------------------------------------------|
| 1        | YJL052W    | TDH1           | 9.02        | 0.05  | -1.69                | Glyceraldehyde-3-phosphate dehydrogenase 1           |
| 2        | YOL154W    |                | 1.89        | 0.08  | -0.99                |                                                      |
| 3        | YGR234W    | YHB1           | 0.37        | 0.11  | -0.62                | Flavohemoglobin                                      |
| 4        | YBR010W    | HHT1           | 5.04        | 1.29  | -0.53                | Histone H3 (HHT1 and HHT2 code for identical         |
|          |            |                |             |       |                      | proteins)                                            |
| 5        | YBL072C    | RPS8A          | 23.04       | 7.03  | -0.49                | Ribosomal protein rp19 (YS9) (Mammalian S8)          |
| 6        | YBL002W    | HTB2           | 2.74        | 0.73  | -0.48                | Histone H2B (HTB1 and HTB2 code for nearly           |
|          |            |                |             |       |                      | identical proteins)                                  |
| 7        | YBL003C    | HTA2           | 1.31        | 0.47  | -0.48                | Histone H2A (HTA1 and HTA2 code for nearly           |
| 0        | VEDALEC    | 001/1          | 0.16        | 0.05  | 0.46                 | identical proteins)                                  |
| 8        | YFR015C    | GSYI           | 0.16        | 0.05  | -0.46                | Glycogen synthase (UDP-gluocsestarch                 |
| 0        | VPP000C    | UUE1           | 17          | 0.55  | 0 41                 | glucosyltransferase)                                 |
| 9        | 1 DK009C   | ппгі           | 1./         | 0.55  | -0.41                | proteins)                                            |
| 10       | YIR034C    | LYS1           | 4.01        | 2.33  | -0.4                 | saccharopine dehydrogenase                           |
| 11       | YNL030W    | HHF2           | 2.55        | 1.03  | -0.39                | Histone H4 (HHF1 and HHF2 code for identical         |
|          |            |                |             |       |                      | proteins)                                            |
| 12       | YGL256W    | ADH4           | 2.66        | 0.99  | -0.38                | alcohol dehydrogenase isoenzyme IV                   |
| 13       | YCR034W    | FEN1           | 0.75        | 0.22  | -0.37                | Probable subunit of 1,3-beta-glucan synthase\;       |
|          |            |                |             |       |                      | homolog of ELO1                                      |
| 14       | YNL117W    | MLS1           | 0.11        | 0.05  | -0.36                | carbon-catabolite sensitive malate synthase          |
| 15       | YNL199C    | GCR2           | 0.11        | 0.08  | -0.35                | Activates transcription of glycolytic genes\;        |
|          |            |                |             |       |                      | homologous to GCR1\; may function in complex         |
| 16       | VDI 127C   |                | 0.34        | 0.12  | 0.34                 | with Gcr2p                                           |
| 17       | VPR188C    | IIIOI          | 0.54        | 0.12  | -0.34                |                                                      |
| 18       | VMR283C    | DIT1           | 0.14        | 0.07  | -0.34                | Initiator methioning tRNA 2' O ribosyl phosphate     |
| 10       | T MIK205C  | KIII           | 0.11        | 0.00  | -0.34                | transferase                                          |
| 19       | YGL255W    | ZRT1           | 4.53        | 1.99  | -0.34                |                                                      |
| 20       | YJL158C    | CIS3           | 9.57        | 4.62  | -0.33                | Protein with homology to Hsp150p and Pir1p, Pir2p.   |
|          |            |                |             |       |                      | and Pir3p                                            |
| 21       | YDR382W    | RPP2B          | 30.31       | 13.72 | -0.33                | Ribosomal protein P2B (YP2b) (L45)                   |
| 22       | YPL195W    | APL5           | 0.11        | 0.06  | -0.33                | delta-like subunit of the yeast AP-3 adaptin         |
|          |            |                |             |       |                      | component of the membrane-associated clathrin        |
| • •      |            |                | 0.44        | 0.4.4 | 0.00                 | assembly complex                                     |
| 23       | YBL015W    | ACHI           | 0.46        | 0.14  | -0.33                | acetyl CoA hydrolase                                 |
| 24       | YCR024C-A  | A PMPI         | 1.83        | 1.02  | -0.32                | Proteolipid associated with plasma membrane $H(+)$ - |
| 25       | VBI 002W   | <b>PDI 3</b> 2 | 3 17        | 17    | -0.32                | Ribosomal protein L 32                               |
| 25       | VDL 081C   | $RPP1\Delta$   | J.+7<br>7 2 | 2 72  | -0.32                | A cidic ribosomal protein $P1A$ (VP1a) (A1)          |
| 20       | VDR516C    | KIIIA          | 0.54        | 0.26  | -0.31                | Actual Hoosonial protein FIA (111a) (A1)             |
| 27<br>28 | YOR081C    |                | 0.11        | 0.20  | -0.31                |                                                      |
| 20<br>20 | VOR154W    |                | 0.11        | 0.11  | -0.31                |                                                      |
| 27<br>30 | YOI 053W   |                | 0.11        | 0.07  | -0.31                |                                                      |
| 31       | YII 190C   | RPS22A         | 19 08       | 6.52  | -0.3                 | Ribosomal protein \$224 (\$24) (rp50) (¥\$22)        |
| 32       | YII 088W   | ARG3           | 0.28        | 0.52  | -0.29                | Ornithine carbamovltransferase                       |
| 32       | YMR2/0C    | CUSI           | 0.20        | 0.1   | -0.29                | U2 snRNP protein                                     |
| 55       | 111112-100 | 0001           | 0.11        | 0.00  | -0.47                |                                                      |

| 34 | YBR115C | LYS2   | 1.82  | 0.66  | -0.28 | alpha aminoadipate reductase                                                              |
|----|---------|--------|-------|-------|-------|-------------------------------------------------------------------------------------------|
| 35 | YBL027W | RPL19B | 0.64  | 0.23  | -0.28 | Ribosomal protein L19B (YL14) (L23) (rpl5L)                                               |
| 36 | YOR290C | SNF2   | 0.11  | 0.06  | -0.27 | transcriptional regulator                                                                 |
| 37 | YDL182W | LYS20  | 6.35  | 3.4   | -0.27 | homocitrate synthase, highly homologous to YDL131W                                        |
| 38 | YPL046C | ELC1   | 0.11  | 0.07  | -0.27 | Elongin C transcription elongation factor                                                 |
| 39 | YJR073C | OPI3   | 14.51 | 9.55  | -0.26 | Methylene-fatty-acyl-phospholipid synthase (unsaturated phospholipid N-methyltransferase) |
| 40 | YDR064W | RPS13  | 7.08  | 4.32  | -0.26 | Ribosomal protein S13 (S27a) (YS15)                                                       |
| 41 | YPR143W |        | 0.11  | 0.07  | -0.26 |                                                                                           |
| 42 | YML073C | RPL6A  | 3.12  | 1.81  | -0.25 | Ribosomal protein L6A (L17) (rp18) (YL16)                                                 |
| 43 | YDL130W | RPP1B  | 20.92 | 13.86 | -0.25 | Ribosomal protein P1B (L44') (YP1b) (Ax)                                                  |
| 44 | YPL139C | UME1   | 0.11  | 0.08  | -0.25 | Transcriptional modulator                                                                 |
| 45 | YPL260W |        | 0.11  | 0.1   | -0.25 |                                                                                           |
| 46 | YHL015W | RPS20  | 3.39  | 3.35  | -0.25 | Ribosomal protein S20                                                                     |
| 47 | YIL052C | RPL34B | 2.34  | 1.76  | -0.25 | Ribosomal protein L34B                                                                    |
| 48 | YCR005C | CIT2   | 1.05  | 0.48  | -0.24 | non-mitochondrial citrate synthase                                                        |
| 49 | YDR133C |        | 10.29 | 5.16  | -0.24 |                                                                                           |
| 50 | YBR268W | MRPL37 | 0.26  | 0.11  | -0.24 | Probable mitochondrial protein L37                                                        |

Appendix G

# Sizes of Intergenic Regions in S. cerevisiae,

E. coli and H. influenzae

This appendix contains the size distribution of intergenic regions for three organisms—*Saccharomyces cerevisiae*, *Eschericia coli*, and Haemophilus influenzae. The size of intergenic regions in *S. cerevisiae* is relevant to Chapter 3, in which a choice was made about how much upstream non-coding sequence to examine, i.e., at what distance from translation start are we unlikely to find regulatory sequences? The size of intergenic regions for prokaryotes *E. coli* and *H. influenzae* is not relevant to any other work in this thesis, but I include it here as a reference.

For each organism, each intergenic region was classified as being one of three types: divergent, convergent or tandem. A divergent region is a region between two flanking genes which have opposite directions of translation. A divergent intergenic region must then contain transcription regulation signals for two genes. A convergent region is defined as having two flanking genes, both having directions of translation oriented towards the intergenic region. Therefore, a convergent intergenic region is flanked by two genes, one oriented away from and one towards the intergenic region, so that a tandem intergenic region contains the transcription signals for one gene (or possibly none if the intergenic region is within an operon). In addition to these three types, we might also consider the intron to be a type of intergenic region.

Convergent intergenic regions have the shortest length distribution in all three of the organisms examined, which was to be expected since these regions will in general not contain any transcriptional control sequences. Tandem intergenic regions were the next highest length distribution in all three organisms, consistent with the expectation that these regions will, in general, contain the transcriptional control elements of one gene.

G-2

The largest intergenic regions are divergent regions, which is to be expected since these will often contain transcriptional control elements for two genes.

In Chapter 3, AlignACE was used to find conserved upstream DNA elements. It was important to have an estimate of how great a distance upstream of translation start one might expect to find transcriptional regulatory elements. It is instructive to look at the size distribution of tandem intergenic regions, since these should in general contain a set of transcriptional elements for one (and only one) gene. Setting an upper length bound of 600 base pairs seemed reasonble, since more than 75% of tandem intergenic regions that are greater than zero in length are less than 600 base pairs long. Un upper limit of 975 base pairs would be required to include the full width of 90% of the intergenic regions with non-negative length.

It is also worth noting that the distribution of tandem regions in the two eubacterial genomes appeared bimodal. Presumably this is due to the fact that operon structure is found in these organisms, with shorter intergenic regions corresponding to genes within operons.

It is intriguing to find that intron lengths in *S. cerevisiae* also form a bimodal distribution. This may be an artifact due to the software used to predict intron positions, or it reflect distinct types of introns (perhaps the difference is in length is due to introns containing genes). This observation bears further investigation.

For the purpose of this appendix, the collection of regions between open reading frames (ORFs) was taken as a surrogate for intergenic regions, i.e., non-protein-coding regions such as tRNAs and rRNAs were not included as genes. This decision was made for the sake of convenience and excluded roughly 400 genes from *S. cerevisiae*, and

G-3

roughly 100 *E. coli* & *H. influenzae* genes. Thus, the distributions presented here are slightly biased towards larger intergenic regions.

The positions of start and stop codons for each ORF in *S. cerevisiae* were obtained from SGD, and are current as of August 1997. The positions of start and stop codons in *E. coli* were derived from the M52 version of the *E. coli* K-12 sequence (September 1997) and were obtained from NCBI at ftp://ncbi.nlm.nih.gov/genbank/genomes/bacteria/Ecoli/. The positions of start and stop codons for *H. influenzae* are current as of February 1998 and were obtained from the Institute for Genomic Research (TIGR) Microbial Database at http://www.tigr.org/tdb/mdb/hidb/hidb.html.
Size Distribution of Convergent Intergenic Regions in S. cerevisiae.







Size Distribution of Tandem Intergenic Regions in S. cerevisiae.







Length (bp)

Size Distribution of Convergent Intergenic Regions in E. coli.







Length (bp)





Size Distribution of Convergent Intergenic Regions in *H. influenzae*.



Size Distribution of Divergent Intergenic Regions in *H. influenzae*.





