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Background—Recognition of myocardial ischemia is critical both for the diagnosis of coronary artery disease and the
selection and evaluation of therapy. Recent advances in proteomic and metabolic profiling technologies may offer the
possibility of identifying novel biomarkers and pathways activated in myocardial ischemia.

Methods and Results—Blood samples were obtained before and after exercise stress testing from 36 patients, 18 of whom
demonstrated inducible ischemia (cases) and 18 of whom did not (controls). Plasma was fractionated by liquid
chromatography, and profiling of analytes was performed with a high-sensitivity electrospray triple-quadrupole mass
spectrometer under selected reaction monitoring conditions. Lactic acid and metabolites involved in skeletal muscle
AMP catabolism increased after exercise in both cases and controls. In contrast, there was significant discordant
regulation of multiple metabolites that either increased or decreased in cases but remained unchanged in controls.
Functional pathway trend analysis with the use of novel software revealed that 6 members of the citric acid pathway
were among the 23 most changed metabolites in cases (adjusted P�0.04). Furthermore, changes in 6 metabolites,
including citric acid, differentiated cases from controls with a high degree of accuracy (P�0.0001; cross-validated
c-statistic�0.83).

Conclusions—We report the novel application of metabolomics to acute myocardial ischemia, in which we identified novel
biomarkers of ischemia, and from pathway trend analysis, coordinate changes in groups of functionally related
metabolites. (Circulation. 2005;112:3868-3875.)
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Coronary artery disease is a leading cause of morbidity
and mortality worldwide.1 Recognition of myocardial

ischemia is critical both for diagnosing coronary heart disease
and for selecting and evaluating the response to therapeutic
interventions. Currently, myocardial ischemia is diagnosed
through a combination of a history consistent with typical
angina pectoris and labile ECG ST-segment and T-wave
changes, occurring either spontaneously or on provocation
with exercise testing.2,3 This approach, however, is often
unsatisfactory because of the transient nature of ECG changes
as well as the subjective nature of history taking. Exercise
testing with myocardial perfusion imaging is relatively accu-
rate but adds substantially to the cost4 and is difficult to
implement rapidly in settings such as the emergency depart-
ment. Although several biomarkers accurately diagnose pa-
tients with irreversible injury secondary to myocardial infarc-

tion, none are suitable for detecting the more subtle insult of
myocardial ischemia.5

Recent advances in proteomic and metabolic profiling
technologies have enhanced the feasibility of high-throughput
patient screening for the diagnosis of disease states.6 The
profiling of low-molecular-weight metabolites is particularly
relevant to exercise physiology and myocardial ischemia.
Small biochemicals are the end result of the entire chain of
regulatory changes that occur in response to physiological
stressors, disease processes, or drug therapy. In addition to
serving as biomarkers, circulating metabolites may them-
selves participate as regulatory signals, such as in the control
of blood pressure.7 Three technologies for measuring large
sets of biochemical metabolites appear to have the most
promise for wide application in diagnostic biochemical pro-
filing: Nuclear magnetic resonance (NMR) spectroscopy,8,9
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mass spectrometry,10,11 and liquid chromatography.12 Cou-
pling bioinformatics and biostatistics with these technology
platforms permits the identification and quantification of
molecules to characterize the whole organism’s response to a
given intervention or disease.

Nonetheless, an important limitation to this approach is the
profound degree of interindividual variability and, for a
disease state such as myocardial ischemia, the inherent
unpredictability of the onset of an acute coronary syndrome.
To circumvent these problems, we applied metabolic profil-
ing technologies with the use of liquid chromatography
coupled with high-sensitivity electrospray mass spectrometry
to blood samples obtained from patients undergoing exercise
stress testing. This approach is particularly powerful because
serial sampling can be performed in patients before and after
a controlled ischemic insult, thereby allowing each patient to
serve as his or her own biological control. Our goals were
threefold. First, we wanted to demonstrate a proof of concept
that current technologies are sufficiently robust to identify
perturbations in circulating metabolites. Second, we hoped to
identify and characterize specific metabolic pathways and
circulating metabolites that change depending on the pres-
ence of myocardial ischemia. Such metabolites and their
pathways might ultimately serve as targets for therapeutic
intervention or as substrates for molecular imaging. Third, we
wanted to investigate whether metabolic profiling could be
used to help identify patients with acute myocardial ischemia
and thus potentially add to our diagnostic armamentarium.

Methods
Patients
Patients who underwent stress testing with myocardial perfusion
imaging at Brigham and Women’s Hospital and Massachusetts
General Hospital were enrolled in a prospective biomarker cohort
study. The Human Research Committee approved the study protocol,
and all patients provided written, informed consent. All patients who
were referred for stress testing for the evaluation of possible
myocardial ischemia were eligible for participation. Patients who
underwent pharmacological testing were excluded. For these analy-
ses, blood samples from a total of 36 patients, 18 with clear-cut
inducible ischemia (cases) and 18 without (controls), were selected
for the metabolic profiling described next.

Study Protocol
Data were obtained on each patient’s age, sex, race, weight, cardiac
risk factors, prior cardiac disease, and cardiac medications. Patients
underwent exercise testing with the standard Bruce protocol.13

Symptoms, heart rate, blood pressure, and a 12-lead ECG were
recorded before the test, midway through each stage, and during
recovery. The stress test was terminated if there was physical
exhaustion, severe angina, a �2-mm horizontal or downsloping
ST-segment depression, a �20-mm Hg fall in systolic blood pres-
sure, or sustained ventricular arrhythmia. Duration of the stress test,
metabolic equivalents achieved, peak heart rate, and peak blood
pressure were recorded. If the patient developed angina during the
test, the timing, quality (typical versus atypical), and effect on the
test (limiting or nonlimiting) were noted. The maximal horizontal or
downsloping ST-segment changes were recorded in each ECG lead.

Single-Photon Emission Computed Tomography
Myocardial Perfusion Imaging
A stress-rest imaging protocol was used. 99Tc-tetrofosmin was
administered at peak stress, and imaging was performed soon

thereafter. Four hours later, a second injection was administered, and
repeated imaging was performed. Quantitative analysis of perfusion
was performed with the CEqual method to calculate the percent
reversible and fixed perfusion defects.14 Patients with a �5%
reversible perfusion defect were selected as cases, and those without
any perfusion defect were selected as controls. Left ventricular
ejection fraction was calculated with the use of commercially
available software.15

High-Performance Liquid Chromatography and
Mass Spectrometry Analysis
Blood samples were obtained immediately before, immediately after,
and 4 hours after stress testing. Blood samples were placed on ice
and processed within 60 minutes. Plasma was stored at �80°C, and
aliquots were thawed for these analyses. Amino acids and amines
were separated on a Luna phenyl-hexyl column (Phenomenex) by
reverse-phase chromatography with an acetonitrile/water/0.1% ace-
tic acid mixture at pH 3.5 to 4.0 for a run time of 1.5 minutes. Sugars
and ribonucleotides were separated on a Luna amino column
(Phenomenex) by normal-phase chromatography with an acetoni-
trile/water/0.25% ammonium hydroxide/10 mmol/L ammonium ac-
etate mixture at pH 11 for a run time of 3.5 minutes. Organic acids
were separated on a Synergi Polar-RP column (Phenomenex) by
reverse-phase chromatography with an acetonitrile/water/5 mmol/L
ammonium acetate mixture at pH 5.6 to 6.0 for a run time of 3.5
minutes. Columns were connected in parallel with an automated
switching valve on a robotic sample loader (Leap Technologies). A
triple-quadrupole mass spectrometer (API4000, Applied Biosystem/
Sciex) was operated in an automated switching polarity mode with a
turbo ion spray liquid chromatography/mass spectrometry interface
under selected reaction monitoring conditions. A total of 477
parent/daughter ion pairs were monitored through 6 selected reaction
monitoring experiments for each sample.

Peak areas for each parent/daughter ion pair were integrated, and
analytes with areas below the limit of detection of the liquid
chromatography–tandem mass spectrometry were excluded from
further analysis. Peak area ratios to an internal standard were
computed to normalize variation in injection volume. The peak area
ratios were then logarithmically transformed, and the logarithms of
peak area ratios per sample were normalized by subtracting the
median of all analytes to account for sample-to-sample variation in
blood concentration.

One hundred seventy-three of the analytes assayed were known,
having been evaluated by high-accuracy mass spectrometry in
studies of purified compounds spiked into plasma across a range of
concentrations. In prior studies, the coefficient of variation at typical
circulating plasma concentrations was �10% in 25% of the analytes,
10% to 20% in 35% of the analytes, 20% to 30% in 20% of the
analytes, and �30% in the remainder. Some of the low-molecular-
weight peaks seen reproducibly in human plasma have not yet been
unambiguously identified and are designated as such by the prefix
MET. A list of the known metabolites analyzed is included in the
Data Supplement Table I.

Statistical Analysis
For baseline characteristics of cases and controls, continuous vari-
ables were compared with Student’s t test, and categorical variables
were compared with Fisher’s exact test. Metabolites for which the
distribution of the logarithmically transformed levels in the study
population had absolute values of skewness and kurtosis �1 and a
nonsignificant Wilkes-Shapiro test were deemed to have a normal
distribution and analyzed with parametric tests; metabolites for
which the distribution failed to meet these criteria were analyzed
with nonparametric tests. The significance of the change in logarith-
mically transformed metabolite levels from pretest to posttest values
was assessed by paired Student’s t tests or Wilcoxon signed-rank
tests, as appropriate. Changes in metabolites are expressed as
percentage increases or decreases from the untransformed baseline
levels, and for the sake of consistence, medians and interquartile
ranges (IQRs) are used for all metabolites. To compare the correla-
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tion between logarithmically transformed metabolite levels and
degree of exertion or extent of ischemic myocardium, correlation
coefficients were calculated.

To perform functional trend analysis, we developed software
based on FuncAssociate (for details, see Berriz et al16; also http://
llama.med.harvard.edu/cgi/func/funcassociate). We characterized
metabolites with attributes from the KEGG database (www.
genome.jp/kegg). These attributes are of the form “participates in
reaction R,” “participates in pathway P,” or “is associated with
human disease D.” (Because we were particularly interested in
identifying pathways involving multiple metabolites, we used only
attributes that were associated with at least 3 metabolites. The total
number of attributes examined was 96.) We then ranked metabolites
as follows. For every metabolite, we applied a Wilcoxon rank-sum
test; for controls, we used a 1-sample test against the null hypothesis
of zero exercise-related change in the metabolite (to determine which
metabolites increased in controls simply in response to exercise); for
cases, we used a 2-sample test against the null hypothesis that
ischemic patients and control patients had the same exercise-related
response (to determine which metabolites increased in cases in
response to exercise but did not rise in controls in response to
exercise). The metabolites were then sorted by the signed signifi-
cance of each respective test. Signed significance is defined as the
negative of the logarithm (base 10) of the test probability value,
multiplied by the sign of the median (in the case of the list of
metabolites obtained from controls) or the difference in medians
between the 2 samples (in the case of the list of metabolites obtained
from cases). For the subsequent analysis, we discarded the unknown
metabolites. With this procedure, we generated 2 ranked lists of
metabolites, 1 for cases and 1 for controls. Then, for each of these 2
ranked lists of metabolites, together with the same lists in reverse
order (4 ranked lists in total), we used a cumulative hypergeometric
test (Fisher’s exact test) at each possible rank threshold to score
attributes of these metabolites according to their degree of overrep-
resentation among metabolites above the rank threshold. Specifi-
cally, for each metabolite attribute A and each “initial k-sublist” of
metabolites (which is the ranked list of metabolites consisting of the
first k metabolites in the original ranked list), we computed the
Fisher’s exact test probability value for the categorical variables
“belongs to initial k-sublist” and “has attribute A.” To each attribute,
we assigned the k-sublist with the smallest probability value and
ranked the attributes in ascending order by this probability value.
Then, for each ranked list of metabolites, we repeated this analysis
1000 times with random permutations of the original ranked metab-
olite list as input. The null hypothesis for each ranked list was that no
metabolite attribute is more enriched among the top-ranked metab-
olites than would be expected from a randomly ranked list of
metabolites. To limit type I errors, the multiple-hypothesis-corrected
(adjusted) probability value for a given metabolite attribute is the
fraction of random control runs with an unadjusted probability value
(for any metabolite attribute) less than or equal to the observed
unadjusted probability value for the metabolite attribute of interest.
(For example, if the unadjusted probability value was 0.002 and the
adjusted probability value was 0.01, this means that after generating
1000 random permutations of the data, the fraction of permutations
in which the unadjusted probability value was �0.002 was 0.01.)
This procedure has been described elsewhere in detail.16

Differences between the change (before versus after exercise
testing) in a metabolite in cases versus controls were compared by
Wilcoxon rank-sum tests. For metabolites that displayed signifi-
cantly discordant regulation in cases versus controls (P�0.01),
cutpoints were selected according to receiver-operator characteristic
curve analysis to maximize accuracy. A metabolic risk score was
computed by assigning patients 1 point for each metabolite for which
the change exceeded the cutpoint for ischemia. To estimate the
degree of optimism in the discriminatory ability of our score, 6-fold
cross-validation was performed.17,18 The dataset was randomly
divided into 6 subsets, each containing 3 cases and 3 controls. With
the methodology described earlier, a metabolic score was developed
in a training set containing 5 subsets. This score was then validated
in a testing set consisting of the remaining withheld subset. This

process was repeated so that each subject in the dataset was used in
1 testing set. The c-statistics in each testing set were then averaged
to provide a cross-validated c-statistic.

Results
A total of 36 patients undergoing exercise stress testing with
myocardial perfusion imaging served as the study population:
18 with no evidence of ischemia (controls) and 18 with
evidence of inducible ischemia (cases). The baseline charac-
teristics and stress test performance parameters for these
patients are listed in Table 1. The mean ages of the 2 groups
were comparable, although as expected, patients with induc-
ible ischemia had slightly more cardiac risk factors (3.0�0.9
versus 2.1�0.9) and were more likely to have a documented
history of coronary disease.

The exercise stress test results of cases and controls are
shown in Table 2. By design, all 18 cases had reversible
perfusion defects, with the mean percentage of myocardium
with a reversible perfusion defect being 17�8%, whereas no
controls had any degree of a reversible perfusion defect.
Although coronary angiography was not mandated by the
protocol of this study, 14 of the 18 cases did undergo
coronary angiography, and all 14 had angiographic confirma-

TABLE 1. Patient Characteristics

Controls
(n�18)

Cases
(n�18) P

Demographics

Age, y 64�10 65�11 0.66

Male 9 (50) 15 (83) 0.08

White 12 (67) 16 (89) 0.23

Cardiac risk factors

Hypertension 14 (78) 13 (72) �0.99

Diabetes 0.13

Insulin dependent 0 4 (22)

Non–insulin dependent 5 (28) 5 (28)

None 13 (72) 9 (50)

Smoking 0.04

Current 0 1(6

Former 7 (39) 13 (72)

Never 11 (61) 4 (22)

Hyperlipidemia 11 (61) 14 (78) 0.47

No. of cardiac risk factors 2.1�0.9 3.0�0.9 0.02

Prior cardiovascular disease

Coronary artery disease 5 (28) 15 (83) 0.002

Myocardial infarction 4 (22) 13 (72) 0.007

Coronary revascularization 5 (28) 12 (67) 0.04

Congestive heart failure 0 (0) 5 (28) 0.05

Peripheral arterial disease 0 (0) 3 (17) 0.23

Long-term cardiovascular medications

Aspirin 13 (72) 16 (89) 0.40

�-Blockers 14 (78) 16 (89) 0.66

Calcium channel blockers 4 (22) 8 (44) 0.29

Nitrates 2 (11) 8 (44) 0.06

Values are presented as mean�SD or n (%).
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tion of multivessel or severe, complex, single-vessel coronary
artery disease.

Metabolic Profiling
For each metabolite, the statistical significance of the change
in the circulating level from immediately before exercise to
immediately after exercise was calculated separately in cases
and controls. The results are plotted in Figure 1, in which the
position on the x axis represents the statistical significance of
the change in controls, and the position on the y axis
represents the statistical significance of the change in cases.
Metabolites on the right half of the scatterplot increased in
controls after stress testing, whereas metabolites on the left
half decreased. Similarly, metabolites on the top half of the
scatterplot increased in cases, whereas metabolites on the
bottom half decreased.

The majority of metabolites displayed concordant changes
in cases and controls (ie, increased in both or decreased in

both). The upper right quadrant of Figure 1 contains metab-
olites that increased in both cases and controls. For example,
immediately after exercise, median levels of lactic acid, an
end product of glycolysis when the amount of oxygen is
limiting, increased by 177% (IQR, 105% to 257%;
P�0.0001]. The changes observed after exercise were similar
in cases and controls (Figure 2A) and had resolved by 4 hours
after exercise. Similarly, median levels of metabolites in-
volved in skeletal muscle AMP catabolism increased after
exercise in both cases and controls (upper right quadrant of
Figure 1). These included hypoxanthine (46%; IQR, �8% to
106%; P�0.0004) and inosine (67%; IQR, �18% to 175%;
P�0.003). In addition, median levels of alanine, a nitrogen
transporter exported by skeletal muscle, also increased after
exercise in cases and controls (19%; IQR, 2% to 35%;
P�0.0001).

We then examined metabolites that demonstrated discor-
dant regulation between cases and controls. As shown at the
bottom center of Figure 1, plasma levels of �-aminobutyric
acid and MET 288 decreased strikingly in cases (�77%; IQR,
�37% to �94%; P�0.0004; and �65%; IQR, �23% to
�85%, P�0.001, respectively) but remained unchanged in
controls. The levels of �-aminobutyric acid in cases and
controls are shown over time in Figure 2B, which illustrates
how levels returned to baseline in cases by 4 hours. We also
observed significant decreases in the levels of oxaloacetate
(�25%; IQR, 5% to �39%; P�0.023), citrulline (�25%;
IQR, 2% to �36%; P�0.009), and argininosuccinate (�73%;
IQR, 25% to �84%; P�0.012) in cases only. Both oxaloa-
cetate (r��0.65, P�0.0035) and citrulline (r�0.46,
P�0.054) exhibited moderately strong trends toward corre-
lating with the extent of the perfusion defect during stress
testing. As shown in the lower right quadrant of Figure 1, 3
metabolites were significantly differentially regulated in

TABLE 2. Stress Test Performance Results

Parameters
Controls
(n�18)

Cases
(n�18) P

Duration, min 8.8�2.3 6.8�2.2 0.01

Metabolic equivalents 10.0�2.6 7.9�2.7 0.03

Ejection fraction �50% 2 (11) 5 (28) 0.40

Chest pain 7 (39) 9 (50) 0.74

ST-segment deviation �1 mm 2 (12) 10 (56) 0.01

Percentage of myocardium with any
perfusion defect, mean�SD

3�4 28�12 � � �

Percentage of myocardium with
reversible perfusion defect, mean�SD

0�0 17�8 � � �

Data are presented as mean�SD or n (%) of patients. Because cases and
controls were selected on the basis of their reversible perfusion defects during
stress testing, no statistical comparisons were performed.

Figure 1. X-y scatterplot of the statistical
significance (see Methods) of the
changes in metabolite levels from base-
line to immediately after exercise testing.
The position on the x axis represents the
statistical significance of the change in
controls, and the position on the y axis
represents the statistical significance of
the change in cases. Metabolites on the
right half of the scatterplot increased in
controls after stress testing, whereas
metabolites on the left half decreased.
Similarly, metabolites on the top half of
the scatterplot increased in cases after
exercise, whereas metabolites on the
bottom half decreased. Metabolites
whose concentrations changed signifi-
cantly (P�0.05) after stress testing in
either cases or controls are shown as
colored circles, the rest as black dots.
Red indicates that the concentration of
the metabolite increased; green, that it
decreased. The color of the rim of the
circle indicates the direction of change in
controls, whereas the center indicates the
direction of change in cases. Some of the
low-molecular-weight peaks seen repro-
ducibly in human plasma have not yet
been unambiguously identified and are
designated as such by the prefix MET.
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cases (decreased) and controls (increased), including uric acid
(P�0.0006), citric acid (P�0.008), and MET 200
(P�0.008). Conversely, MET 193 (P�0.0068) and MET 221
(P�0.01) increased in cases (with the changes in MET 193
persisting through 4 hours after the ischemic insult, Figure
2C) but decreased in controls (upper left of Figure 1). Of note,
in this small clinical cohort, there was no evidence of
significant heterogeneity in the magnitude of the changes in
metabolites in cases with and without diabetes, hyperlipid-
emia, heart failure, or peripheral arterial disease or in those
taking or not taking aspirin, �-blockers, calcium channel
blockers, or nitrates, consistent with the notion that the
changes are due to myocardial ischemia rather than cardiac
risk factors.

Functional Pathway Analysis
To determine whether our observations of changes in indi-
vidual metabolites in the setting of myocardial ischemia in
fact reflected coordinate changes in defined metabolic path-
ways, we developed software to identify functional or path-
way trends. This software was based on FuncAssociate,
originally designed to reveal pathway trends in high-
throughput mRNA expression data.16 We used a priori
annotation of metabolites according to their associated reac-
tions, pathways, and diseases from the KEGG database
(www.genome.jp/kegg). Analysis of all known metabolites in
our dataset revealed that members of the citric acid pathway
were significantly overrepresented in the list of metabolites
that changed specifically in the setting of myocardial ische-
mia, with 6 members of the citric acid cycle pathway falling
within the top 23 most-changed metabolites (P�0.00031,
P�0.04 after adjusting for multiple testing; see Methods).

Ischemia Risk Score
On the basis of these observations, we then investigated
whether metabolic profiling could be used to accurately

distinguish patients with ischemia from those without. With
receiver-operator characteristic curve analysis, cutpoints were
selected for the change in the 6 most discordantly regulated
metabolites (Figure 3). A metabolic ischemia risk score was
created by assigning patients 1 point for each metabolite for
which the change with exercise exceeded the cutpoint for
ischemia (Figure 4). The score yielded a highly statistically
significant relation to the probability of ischemia
(P�0.0001). Six-fold cross-validation was performed in
which a metabolic score was developed in a training subset
and then validated in a distinct testing subset. This process
was repeated 6 times, and the c-statistic was averaged over
the iterations. This revealed excellent discriminatory ability,
with a c-statistic of 0.83.

Discussion
Investigators have begun to incorporate a number of emerg-
ing technologies as part of a systems biology approach to the
identification of disease states. One specific focus of recent
investigation has tested the concept that perturbations that
arise either as a cause or a consequence of disease may be
detected as particular patterns of metabolites or proteins in
the blood. To that end, we now demonstrate the application of
metabolomics to myocardial ischemia in a carefully charac-
terized cohort of 36 patients undergoing exercise stress
testing. Our study has 3 major findings. First, using state-of-
the-art metabolic profiling, we were able to demonstrate
significant changes after exercise stress testing in circulating
levels of multiple metabolites. To our knowledge, this is the
first example of metabolomics applied to acute myocardial
ischemia in human subjects. Second, we were able to identify
distinct clusters of related metabolites that demonstrated
coordinate responses to either exercise in some cases or to
ischemia in others. Third, we were able to use metabolic
profiling to differentiate patients who developed inducible

Figure 2. Median and IQRs of normalized metabolite levels (logarithmically transformed values) in patients with ischemia (closed
squares) and in those without (open squares) at all 3 time points (baseline, immediately after stress testing, and 4 hours after stress
testing). The degree of statistical significance for the change compared with baseline levels is indicated by *P�0.05, **P�0.01, or
***P�0.001. The degree of statistical significance for the comparison between the change in cases versus controls is indicated by
†P�0.05, ††P�0.01, or †††P�0.001. GABA indicates �-aminobutyric acid; other abbreviations are as defined in text.

3872 Circulation December 20/27, 2005



ischemia from those who did not with a high degree of
accuracy.

Metabolic Profiling Approaches
NMR has been used successfully for “metabolic footprinting”
of lower organisms such as the yeast Saccharomyces cerevi-
siae.8,19 In those studies, metabolic profiling of conditioned
medium was used to “diagnose” otherwise-silent mutant
phenotypes. In terms of cardiovascular biology, 1 report also
applied pattern-recognition techniques to proton NMR spec-
tra of human sera to aid in the noninvasive diagnosis of
chronic coronary artery disease, although no studies to date
have explored biomarkers of acute myocardial ischemia.9 In
the previously published studies, however, the metabolites
that underlay the spectroscopy peaks were not unambigu-
ously identified. Furthermore, NMR is much less sensitive
than the mass spectrometry–based approach used for the
present studies.10,20 An important rationale for unequivocally
identifying analytes or surveying known analytes is to gain
insight into the functionally relevant cellular mechanisms
contributing to disease pathways. Having hundreds of named

metabolites allowed us to identify multiple participants in
particular biological pathways moving in tandem, which
enhanced confidence that individual participants in that path-
way were truly correlated with the perturbation. In principle,
incorporating knowledge of pathways into candidate marker
triage increases the likelihood that selected biomarkers will
be validated in subsequent prospective studies. The use of
pathway analysis should also prove advantageous in our
ongoing efforts to identify novel peaks according to recently
developed techniques, such as Fourier transform mass spec-
trometry. Thus, a key goal of future investigation is to
develop a more comprehensive survey of metabolites to
better inform underlying biological processes, both by iden-
tifying the novel peaks and by incorporating more known
compounds into the platform.

Functional Pathway Analysis
Through application of novel functional trend software, we
have demonstrated coordinate, highly statistically significant
changes in circulating levels of metabolites belonging to the
citric acid pathway. Moreover, though not a direct participant

Figure 3. Box-and-whisker plots of the changes seen immediately after stress testing in 6 metabolites in cases and controls. The line in
the box represents the median change in the normalized logarithm value; the lower and upper boundaries of the box represent the 25th
and 75th percentiles, respectively; the lower and upper whiskers represent the 5th and 95th percentiles, respectively; and open circles
represent the outliers. For each metabolite, P values shown below cases and controls indicate the significance of the change from
baseline. P values shown at the top measure the significance in the difference in the change between cases and controls. GABA indi-
cates �-aminobutyric acid; other abbreviations are as defined in text.
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in the citric acid cycle, �-aminobutyric acid is an end product
of the metabolism of 1 of the members of the citric acid cycle
(�-ketoglutarate), and citrulline and argininosuccinate are
members of the urea cycle, which feeds into the citric acid
cycle. All 3 of these metabolites also decreased in cases but
not in controls.

The citric acid cycle plays a central role in oxidative
phosphorylation in the myocardium. Cardiomyocyte levels of
citric acid cycle intermediates are tightly regulated to ensure
adequate throughput of substrates derived from glycolysis
and �-oxidation of fatty acids. In normal cardiomyocytes,
there is a constant rate of mitochondrial efflux of citric acid
cycle intermediates (cataplerosis). In the setting of acute
ischemia, preservation of citric acid cycle intermediates
becomes of paramount importance to defend ATP production.
Coronary occlusion in an in vivo porcine model resulted in an
abrupt 60% to 70% increase in myocardial citric acid con-
tent.21 Furthermore, by cannulating the anterior interventric-
ular vein in an in vivo porcine model, Panchal et al22

demonstrated that an abrupt decrease in left anterior descend-
ing coronary artery flow resulted in an 80% decrease in citric
acid efflux from the myocardium. These data support the
notion that the metabolic changes that we observed are a
direct consequence of myocardial ischemia and extend prior
studies by their direct application to humans.

Limitations
Because high-throughput metabolomics methodologies are
still under development, our overall approach to enhance
biomarker and pathway discovery emphasized the in-depth
analysis of a small, extremely well-phenotyped patient co-
hort. However, our study has several potential limitations that
should be considered. First, although serial sampling in
patients who served as their own biological controls helped

diminish interindividual variability and signal-to-noise prob-
lems, our study population was nevertheless small. Thus, it is
important to note that changes in metabolites that failed to
reach nominal significance in our study still may be scientif-
ically important and bear further investigation. For this
reason, biological pathway trend analysis offers increased
power to detect subtle but significant differences. Further
testing in larger cohorts will provide the opportunity for both
confirmation and exploration of subgroups of interest, includ-
ing those based on sex, race, and comorbidities, which our
study was underpowered to do. Moreover, larger datasets will
provide sufficient precision in the estimates of the utility of
each marker to allow for appropriate relative weighting of
each component. Second, we selected cases and controls on
the basis of clear-cut evidence on perfusion stress testing
imaging for or against myocardial ischemia, respectively.
This approach may have influenced which metabolites were
altered, the magnitude of the perturbations, and the utility of
our diagnostic score. Future evaluation of patients with more
modest degrees of ischemia will be important. On the other
hand, the ischemic insult in our experimental model was
brief. This is an unavoidable consequence of our model, in
which prolonged ischemia is not permitted during exercise
stress testing. In contrast, spontaneous ischemia tends to be
more severe and more prolonged than that induced during
stress testing and thus bodes well for the utility of these
biomarkers in the setting of acute coronary syndromes.
However, whether ischemia due to coronary plaque rupture
and decreased supply generates the same metabolic profile as
ischemia due to increased myocardial demand remains to be
seen. Third, even metabolites whose levels changed exclu-
sively in cases and not in controls may have derived from a
noncardiac source. Data from animal studies support a
cardiac source for several of our metabolites, but future
studies of coronary sinus samples will be necessary to
confirm this supposition. Fourth, although our metabolic
profile score had excellent discriminatory power in 6-fold
cross-validation, these findings must be further tested in a
separate, large validation cohort, which will also permit
comparison with and adjustment for traditional cardiovascu-
lar risk factors and other exercise test performance
parameters.

Conclusions
Taken together, our findings provide important evidence that
current technologies can be used to identify clinically rele-
vant perturbations in circulating metabolites. Furthermore,
consideration of metabolites as pathway members rather than
stand-alone entities begins to shed insight into exercise
performance and myocardial ischemia. We expect that
metabolomic studies will increasingly add to our diagnostic
armamentarium and ultimately identify new targets for ther-
apeutic intervention.
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