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SUMMARY

How disease-associated mutations impair protein
activities in the context of biological networks remains
mostly undetermined. Although a few renowned al-
leles are well characterized, functional information is
missing for over 100,000 disease-associated variants.
Here we functionally profile several thousand mis-
sense mutations across a spectrum of Mendelian
disorders using various interaction assays. The ma-
jority of disease-associated alleles exhibit wild-type
chaperone binding profiles, suggesting they preserve
protein folding or stability. While common variants
from healthy individuals rarely affect interactions,
two-thirds of disease-associated alleles perturb pro-
tein-protein interactions, with half corresponding to
‘‘edgetic’’ alleles affecting only a subset of interac-
tions while leaving most other interactions unper-
turbed. With transcription factors, many alleles that
leave protein-protein interactions intact affect DNA
binding. Different mutations in the same gene leading
to different interaction profiles often result in distinct
disease phenotypes. Thus disease-associated alleles
that perturb distinct protein activities rather than
grossly affecting folding and stability are relatively
widespread.

INTRODUCTION

Over a hundred thousand genetic variants have been identified

across a large number of Mendelian disorders (Amberger et al.,

2011), complex traits (Hindorff et al., 2009), and cancer types
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Figure 1. Systematic Characterization of

Human Disease Missense Mutations

(A) Two possible effects of missense disease

mutations: protein folding/stability changes and

molecular interaction perturbations.

(B) Understanding mutational effects by edgo-

typing links genotype to phenotype. Solid and

dashed lines represent retained and perturbed

interactions, respectively.

(C) Experimental pipeline for characterizing

alterations of molecular interactions, including

protein-chaperone (PCI), protein-protein (PPI) and

protein-DNA (PDI) interactions. WT: Wild-type,

Mut: mutation. TF: transcription factor. ‘‘1,’’ de-

tected PPI; ‘‘0,’’ not detected PPI. Dashed oval:

variants in the same gene. See also Figure S1.
(Chin et al., 2011). However, many fundamental questions re-

garding genotype-phenotype relationships remain unresolved

(Vidal et al., 2011). One critical challenge is to distinguish causal

disease mutations from non-pathogenic polymorphisms. Even

when causal mutations are identified, the functional conse-

quence of such mutations is often elusive (Sahni et al., 2013).

Genotypic information alone rarely elucidates the mechanistic

insights pertaining to disease pathogenesis. Although genotype-

phenotype relationships can be modeled under the assumption

that most disease-associatedmutations lead to complete loss of

protein function, e.g., through radical changes such as protein

misfolding and instability (Subramanian and Kumar, 2006) (Fig-

ure 1A), the reality is often more complex, as in the case of

mutations affecting the same gene but giving rise to clinically
648 Cell 161, 647–660, April 23, 2015 ª2015 Elsevier Inc.
distinguishable diseases (Zhong et al.,

2009). In addition, since genes and gene

products do not function in isolation but

interact with each other in the context

of interactome networks (Vidal et al.,

2011), it is likely that many diseases result

from perturbations of such complex net-

works (Goh et al., 2007).

Missense mutations are among the

most common sequence alterations in

Mendelian disorders, accounting for

more than half of all reported mutations

in the Human Gene Mutation Database

(HGMD) (Stenson et al., 2014). In princi-

ple, missense mutations may have no

functional consequences, disrupt the

three-dimensional structure of the corre-

sponding protein, or exert specific effects

on particular molecular or biochemical

interactions (Figure 1A), such as protein-

protein interactions (PPIs), protein-DNA

interactions (PDIs), or enzyme-substrate

interactions, while leaving all other func-

tional properties unperturbed. We previ-

ously reported that a considerable por-

tion of Mendelian disease mutations

could indeed be predicted computation-
ally to cause interaction-specific, or ‘‘edgetic,’’ perturbations

(Zhong et al., 2009). However, only a small number of genes

and associated mutations were experimentally tested in that

study, and the extent to which disease mutations globally lead

to interaction perturbations remains to be determined.

Here we describe a multi-pronged approach to systematically

decipher molecular interaction perturbations associated with

missense mutations. Since chaperones and associated quality

control factors (QCFs) can salvage unstable proteins by assisting

with folding, and an increase in protein-chaperone interactions

(PCIs) has been observed for a number of disease mutants

(Whitesell and Lindquist, 2005), our systematic approach begins

with characterizing PCIs for large numbers of disease-associ-

ated alleles, followed by systematic measurements of PPI and



PDI profile changes caused by mutations, a strategy referred to

as ‘‘edgotyping’’ (Figure 1B).

We provide evidence for widespread interaction perturbations

across a broad spectrum of human Mendelian disorders. Our

results suggest that interaction profiling helps distinguish dis-

ease-causing mutations from common variants. Furthermore,

the integration of different types of molecular interactions ex-

pands our ability to understand complex genotype-phenotype

relationships.

RESULTS

Human Mutation ORFeome Version 1.1
To globally characterize disease-associated alleles, we selected

mutations associated with a wide range of disorders, including

cancer susceptibility and heart, respiratory, and neurological

diseases. We retrieved from HGMD (Stenson et al., 2014) a list

of �16,400 mutations affecting over 1,200 genes for which we

have a wild-type (WT) open-reading frame (ORF) clone in our hu-

man ‘‘ORFeome’’ collection (Yang et al., 2011) and selected up

to four mutations per gene (Figure 1C; Tables S1A and S1B;

Extended Experimental Procedures). Using properties related to

RNA abundance, GO annotation, and protein domains (Extended

Experimental Procedures), we verified there is no significant bias

between our selected genes and the rest of the human genome

or all genes represented in HGMD (Figures S1B–S1G).

Altogether, we cloned and sequence-verified 2,890 human

mutant ORFs (hmORFs), each harboring a single nucleotide

change that results in an amino acid change relative to the cor-

responding WT ORF of 1,140 genes. To our knowledge, this hu-

man mutation ORFeome version 1.1 resource (hmORFeome1.1;

Figure S1A) is the most extensive human mutation collection re-

ported to date.

Disease Mutations and Protein Folding and Stability
Using enhanced binding to a chaperone as an indicator of pro-

tein instability or misfolding, we examined how disease muta-

tions impact protein folding and disposition. We determined

the extent to which hmORF-encoded proteins and their WT

counterparts interact with QCFs using a quantitative high-

throughput LUMIER assay (Taipale et al., 2012; Taipale et al.,

2014) (Figure 1C and Table S2A). We selected the following

QCFs based on their broad specificity (Taipale et al., 2014):

(1) the cytoplasmic chaperones HSP90 and HSC70, (2) their

co-chaperones BAG2 and CHIP/STUB1, (3) the proteasomal

regulatory subunit PSMD2 (formerly known as RPN1), and (4)

the ER chaperones GRP78/BIP and GRP94 (Extended Experi-

mental Procedures). We did not survey mitochondrial chaper-

ones since only �7% of disease-associated gene products

are predicted to localize solely in mitochondria (Huntley et al.,

2015).

Increased interaction between a QCF and mutant or WT

protein, as measured by the LUMIER assay, indicates a muta-

tion-induced perturbation in conformational stability, often asso-

ciated with compromised or complete loss of function (Taipale

et al., 2012). The interaction profiles of most mutant proteins

correlated with their WT counterparts. However, compared to

a background control set, we observed a significant enrichment
of mutant alleles showing increased interaction with QCFs (Fig-

ures 2A–2H and S2A) but little or no enrichment for decreased

interaction (Figures 2A and S2B; Extended Experimental Proce-

dures). The interaction profiles of mutant proteins with the

different cytoplasmic QCFs were highly correlated, distinct

from those with ER factors (Figure 2I). These results highlight

the coordination and specificity of cellular quality control path-

ways. Altogether �28% of the tested alleles exhibited increased

binding to at least one of the seven QCFs tested. Although this

fraction is likely a conservatively low estimate due to limited

assay sensitivity, the strong correlation between chaperone

interaction profiles (Figure 2I) suggests that the estimate would

not increase substantially by assaying more chaperones. We

validated several mutant-specific interactions with endogenous

chaperones by co-immunoprecipitation followed by western

blot, corroborating the results obtained with the LUMIER assay

(Figure 2J).

We next estimated protein abundance using semiquantitative

ELISA, which provides a proxy for steady-state protein stability.

Although the expression levels of mutant alleles correlated with

their WT counterparts (Figure S2C), mutant proteins exhibiting

enhanced interactions with cytoplasmic, but not ER, chaperones

were detected at lower steady-state levels than their WT coun-

terparts (p < 1.0 3 10�4; Figure 3A). This is possibly a result of

retention in the ER of mutant proteins that would normally be

secreted and therefore not be detected by an assay that cap-

tures intracellular proteins. Interestingly, recessive alleles ex-

hibited lower protein abundance levels and increased binding

with QCFs compared with proteins encoded by dominant alleles

(Figures S2D and S2E). This is consistent with the hypothesis

that recessive mutations are more likely to result in loss-of-func-

tion phenotypes than dominant mutations (Lesage and Brice,

2009).

To gain insight into the structural properties of mutant proteins

that exhibit increased binding to QCFs, we assessed the impact

of different disease mutations on predicted protein structures.

The disease alleles associated with increased binding to QCFs

corresponded significantly more often to mutations of residues

buried in the core of the protein (Figure 3B and Table S1C),

and less often to mutations in intrinsically disordered regions

(Figure 3C) when compared to mutant proteins with no change

in binding. Next, we estimated the relative ‘‘deleteriousness’’

associated with distinct genetic mutations using PolyPhen-2 al-

gorithm (Adzhubei et al., 2010). Deleterious mutations predicted

by PolyPhen were significantly enriched in alleles that exhibited

increased binding to QCFs (Figure S2F).

Previous studies suggested that increased chaperone binding

reflects a change in protein stability (Falsone et al., 2004; Taipale

et al., 2012). To provide further evidence for this, we assessed

protein stability in cellular lysates by measuring solubility in a

cellular thermal shift assay (CeTSA). We found that the majority

(5 of 6) of mutant proteins with increased chaperone binding

also exhibited decreased stability as measured by CeTSA (Fig-

ures S3A–S3D). In addition, computational predictions by the

FoldX program (Schymkowitz et al., 2005) suggest that mutant

proteins with increased binding to QCFs are likely to be signifi-

cantly less stable than their WT counterpart (Figure 3D and Table

S2B). Taken together, experimental and computational analyses
Cell 161, 647–660, April 23, 2015 ª2015 Elsevier Inc. 649
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Figure 2. Most Disease Missense Mutations Do Not Impair Protein Folding or Stability

(A) Differential Z score distributions in LUMIER assay. Normalized differential Z scores are calculated as the difference in chaperone binding between all mutant/

WT pairs expressed at detectable levels (n = 12,131). Non-expressed pairs serve as controls (n = 1,567).

(legend continued on next page)
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Figure 3. Mutant Proteins with Enhanced

Binding to QCFs Are Likely to Be Unstable

(A) Protein expression levels measured by ELISA.

x axis shows all tested mutants (All), mutants with

no change (non-binding) or an increase in binding

to QCFs.

(B) Solvent accessibility of mutant proteins.

(C) Disorder analysis of mutant proteins.

(D) Stability predictions by FoldX. DDG, free en-

ergy change.

Dashed line (A and D) represents the median of all

mutants. p values (A) and (D) by one-sided Wil-

coxon rank sum test; (B) and (C) by Chi-square

test. For n values, see Table S7B. *p < 0.05; **p <

0.01; ***p < 0.001. See also Figures S2 and S3.
suggest that mutant proteins with enhanced binding to QCFs

have a destabilized protein structure.

Our quantitative survey of allele-specific interactions esti-

mates that the majority of missense disease mutations do not

dramatically impact protein structure or folding (Tables S1D

and S2). Therefore, they may exert their deleterious effects

through other mechanisms such as perturbation of molecular

interactions.

Disease Mutations and PPI Perturbations
In principle, the effects of missense diseasemutations onmolec-

ular interactions (Zhong et al., 2009), or ‘‘edgotype’’ (Sahni et al.,

2013), could range from no apparent detectable change in

interactions (‘‘quasi-WT’’), to specific loss of some interaction(s)

(‘‘edgetic’’), to an apparent complete loss of interactions (‘‘quasi-

null’’) (Figure 4A). To systematically characterize PPI perturba-

tions associated with disease mutations and identify potential

gain of interactions, we used the yeast two-hybrid (Y2H) interac-

tion assay followed by a stringent validation assay. After autoac-

tivator removal, we screened 2,449 mutant proteins and their

1,072 corresponding WT proteins for interactions with proteins

encoded by the �7,200 ORFs in the human ORFeome v1.1

(Rual et al., 2004). Mutant and WT proteins were then tested

pair-wise against all partners found both in these Y2H screens
(B–H) Interaction scatter plots for 2,332 disease alleles. Alleles were assayed for interaction with QCFs HSP

GRP78 (G), and GRP94 (H). EGFR L858R and v-Src can interact with HSP90 (Shimamura et al., 2005; Taipale

interact with GRP78 (Köllner et al., 2006; Sörgjerd et al., 2006); hence used as controls. Filled circles w

chaperone binding. Correlations by Pearson coefficient of determination, R2.

(I) Clustering analysis based on chaperone interaction profile similarity.

(J) Validation by co-immunoprecipitation (co-IP). LUMIER scores are shown below the blots.

See also Figure S2.
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and in our human interactome map

HI-II-14 (Rolland et al., 2014) (Figure 1C).

Altogether, we obtained interaction pro-

files for 460 mutant proteins and their

220 WT counterparts and found 521 per-

turbed interactions out of 1,316 PPIs

(Table S3A).

To validate these results, we used the

orthogonal in vivo Gaussia princeps lucif-

erase protein complementation assay (GPCA) performed in hu-

man 293T cells (Cassonnet et al., 2011) (Table S3B). Unperturbed

interactionswere recovered at a rate statistically indistinguishable

from that of a well-documented positive reference set (PRS),

similar to the interactionsof theWTalleles (Braun et al., 2009;Ven-

katesan et al., 2009). Perturbed interactions were recovered at a

rate as low as a negative control ‘‘random reference set’’ (RRS)

(Figures 4B and S4A), demonstrating the high quality of the identi-

fied perturbations induced by disease mutations.

To analyze global and topological characteristics of gene

products with edgetic, quasi-null, or quasi-WT mutations, we

used the human interactome map HI-II-14 (Rolland et al.,

2014). According to the studied network properties (between-

ness, k-core centrality, degree, closeness), the nodes (genes)

examined in our edgotyping study appear unbiased, in that their

topological properties are statistically indistinguishable from

other genes in the network (Figures S4B–S4F). Interestingly,

we found that the genes carrying edgetic mutations tend to be

more central than either non-edgetic genes or the rest of the

network (Table S4).

Out of a total of 197 mutations, corresponding to 89 WT pro-

teins with two or more interaction partners, our interaction

profiling identified 26% as quasi-null alleles, 31% edgetic and

43% quasi-WT (Figure 4C and Table S3C). We also analyzed
90 (B), HSC70 (C), BAG2 (D), CHIP (E), PMSD2 (F),

et al., 2012), and TTR D18G and ELANE G181V can

ith black border represent significantly increased

60, April 23, 2015 ª2015 Elsevier Inc. 651



PRS(n=92) 

RRS(n=92) 

Unperturbed interactions(n=466) 

Perturbed interactions(n=208) 

P
er

ce
nt

ag
e 

of
 p

ai
rs

 r
ec

ov
er

ed

0 

10 

20 

30 

40 

50 

60 

1 2 3 4 5 6 

Score threshold

1%RRS 

Non-disease variants 

QN  E QW 

n = 43

UnionHSC70HSP90

ND

*

NDND

P
er

ce
nt

ag
e 

w
ith

 in
cr

ea
se

d 
ch

ap
er

on
e 

bi
nd

in
g

0

10

20

30
*

P = 1.0x10-5

P = 1.6x10-4

QW E QN

-4

-2

0

2

4

QW E QN
-5

0

5

10

15

P = 2.0x10-5

P = 3.0x10-2

QW E QN
-5

0

5

10

15
P = 4.3x10-4

P = 4.7x10-2

D
iff

er
en

tia
l Z

 s
co

re
s 

(H
S

P
90

)

Quasi-null (QN) 

Edgetic (E)  

Quasi-wild-type (QW)

Interaction perturbed by mutation 
Interaction unperturbed by mutation 

QN  E QW 

Disease mutations 

n = 62

n = 84

n = 51

D
iff

er
en

tia
l Z

 s
co

re
s 

(H
S

C
70

)

D
iff

er
en

tia
l e

xp
re

ss
io

n 
(lo

g2
)

A CB

D E F

G H

n = 2 n = 2

Figure 4. Interaction Perturbation Profiles Distinguish Disease Mutations from Non-Disease Variants

(A) Three classes of PPI profiles (edgotypes) for mutations.

(B) Percentage of protein pairs recovered in GPCA at increasing score thresholds. Shading indicates SE of the proportion.

(C) Distribution of different edgotype classes for disease mutations.

(D and E) Differential LUMIER interaction scores among different edgotype classes, for binding to HSP90 (D) andHSC70 (E). p values by one-sided unpaired t test.

(F) Differential expression among different edgotype classes (ELISA log2 ratio of mutant over WT). QW: n = 75, E: n = 49, QN: n = 42. p values by one-sided

Wilcoxon rank sum test.

(G) Distribution of different edgotype classes for non-disease variants.

(H) Increased binding to HSP90, HSC70, or either (Union) for non-disease (N) or disease (D) variant proteins. p values by one-sided Fisher’s exact test. Error bars

indicate SE of the proportion. *p < 0.05.

See also Figures S4 and S5.
disease mutations annotated by ClinVar (Landrum et al., 2014)

and found the distribution of quasi-null, edgetic, and quasi-WT

alleles was statistically indistinguishable from that of HGMD (Fig-
652 Cell 161, 647–660, April 23, 2015 ª2015 Elsevier Inc.
ure S4G). We only identified two mutations that conferred PPI

gains, suggesting that gain of interactions may be a rare event

in human disease.



Protein Folding and Expression Levels of Edgetic
Mutations
Differences between edgotype classes could be due to protein

folding and/or relative expression levels. Quasi-null proteins

associated significantly more with cytoplasmic, but not ER,

chaperones, whereas edgetic and quasi-WT proteins did not

significantly change their chaperone association (Figures 4D–

4E, and S5A–S5E). Quasi-null proteins appeared to be poorly

expressed, while edgetic and quasi-WT proteins were ex-

pressed at levels similar to those of their WT controls (Figure 4F).

We validated several mutant-chaperone interactions and ex-

pression profiles by co-immunoprecipitation with endogenous

chaperones, followed by western blot (Figure S5F). All tested

quasi-null proteins exhibited more binding to HSP90 and

HSC70, although they were expressed at lower levels than their

WT controls. However, the edgetic TAT-P220S protein and the

quasi-WT NCF2-R395W protein did not show any detectable

chaperone association. Among mutant proteins with no change

in chaperone binding, edgetic (28%) and quasi-WT (57%)

proteins comprised the majority, while quasi-null proteins

comprised a significantly lower percentage (15%) (Figure S5G).

Altogether, these results suggest that quasi-null proteins are

more often unstable/misfolded and diminished in their steady-

state expression levels. In contrast, edgetic and quasi-WT pro-

teins likely exhibit normal folding and expression levels, further

supporting the idea that they may cause disease through inter-

action perturbations or other mechanisms rather than simple

loss of protein function.

Disease-Causing Mutations Versus Common Variants
Genome-wide association studies have identified hundreds of

loci linked to particular disorders. However, these loci often

contain several genes and multiple variants, making it chal-

lenging to distinguish causal mutations from non-pathogenic

variants. We observed previously that among binary interactions

found by WT proteins, disease-causing alleles were more likely

to perturb interactions than non-disease variants (Rolland

et al., 2014). We further investigated both disease-causing al-

leles from HGMD and common variants identified in healthy indi-

viduals from diverse geographical sites (1000 Genomes Project

Consortium, 2012) (Table S1A) with respect to the edgetic char-

acter and chaperone binding of their protein products. Interac-

tion profiling showed that only a small fraction of non-disease

alleles lost interactions (8%, Figure 4G), a 7-fold reduction rela-

tive to disease mutations (57%; p = 1.7 3 10�9; Figure 4C). In

addition, non-disease alleles on average did not alter chaperone

association (Table S2A), a characteristic distinct from disease

mutations annotated by HGMD (Figure 4H) or ClinVar (Fig-

ure S5H). Together, interaction perturbations can help distin-

guish disease-associated alleles from non-disease alleles.

To assess the predictive power of edgotyping to identify

disease-causing mutations, we determined its precision and

sensitivity in classifying an allele as causal based on interaction

perturbation profiles. As a ‘‘gold standard’’ for causal alleles, we

used a set of mutations annotated in HGMD as disease-causing

(‘‘DM’’ in Table S1A). As a negative control, we useda set of alleles

most likely not associated with disease. We observed that 96%

(105 of 109) of the alleles found to perturb interactions (E or QN)
were disease-causing (Figure S6A). Conversely, 61% (105 of

172) of disease-causing mutations annotated by HGMD were

interaction-perturbing (Figure S6B). Together, our prediction

achieved a precision (96%) and sensitivity (61%) significantly

higher than random expectation. It is possible that current incom-

pleteness of interaction network maps might limit the power of

edgotyping to properly classify disease-causing mutations. To

evaluate this possibility, we performed a down-sampling analysis

and found negligible effect onmutation classification over a broad

range of network sizes (Figure S6C).

Edgetic Mutations and Interaction Interfaces
To explore edgotypes from a structural point-of-view, we as-

sessed the possible impact of distinct classes of mutations on

protein function using PolyPhen-2 analysis (Adzhubei et al.,

2010). Interaction-perturbing mutations are significantly more

often predicted to be deleterious than non-interaction-perturb-

ing mutations (Figure 5A). We next investigated whether muta-

tions from the different classes might differ in evolutionary

conservation, based on the presumption that conservation of

amino acid residues is a property that generally reflects function-

ality (1000 Genomes Project Consortium, 2012; Subramanian

and Kumar, 2006; Sunyaev, 2012). The residues affected by

interaction-perturbing mutations are significantly more con-

served across species compared to non-interaction-perturbing

mutations (Figure S6D). However, PolyPhen and conservation

analysis could not distinguish between edgetic and quasi-null

mutations within the interaction-perturbing group.

Given that structural domains often mediate protein interac-

tions, different classes of mutation might vary in their locations

relative to protein domains. Interaction-perturbing mutations

are indeed significantly enriched within structural domains

compared to non-interaction-perturbing alleles (Figure 5B and

Table S1C). In addition to structural domains, intrinsically disor-

dered regions and linear motifs could also play a role in medi-

ating PPIs. However, we found interaction-perturbing disease

alleles to be depleted in intrinsically disordered regions (Fig-

ure S6E), and occurring in linear motifs as frequently as non-per-

turbing alleles (Figure S6F). These results suggest that mutations

perturbing PPIs are preferentially located within structural do-

mains. Nevertheless, none of the above properties could reliably

predict whether a mutation would give rise to an edgetic or

quasi-null PPI effect.

We next investigated whether edgetic and quasi-null muta-

tions differ in their physical location within three-dimensional

protein structures (Zhong et al., 2009). Edgetic mutations are

significantly more enriched in structurally exposed residues

compared to quasi-null mutations (Figure 5C). Consistently,

edgetic mutations do not tend to cause a change in hydropho-

bicity, a destabilizing feature that generally disrupts protein func-

tion (Balasubramanian et al., 2005), while quasi-null mutations

often lead to a decrease in hydrophobicity (Figure S6G).

We also investigated whether or not edgetic mutations are

more frequently located at an interface that supports interaction

with a partner protein. Starting from all available structures of co-

crystal complexes in the Protein Data Bank (PDB) involving a dis-

ease gene product, we determined the relative location of each

mutated residue within these structures (Extended Experimental
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Figure 5. Edgetic Mutations Perturb Inter-

action Interfaces with Protein Partners Ex-

pressed in Disease-Relevant Tissue

(A) PolyPhen-2 scores for mutations in different

edgotype classes. p values by one-sidedWilcoxon

rank sum test.

(B) Percentage of mutations within Pfam domains.

p values by one-sided position-shuffling test.

(C) Percentage of mutations in exposed residues.

QW: n = 83; E: n = 61; QN: n = 50.

(D) Percentage of mutations at PPI interfaces. QW:

n = 59; E: n = 32; QN: n = 16.

(E) Percentage of interfacial mutations for per-

turbed (n = 14) and unperturbed (n = 18) in-

teractions, compared to random mutations.

(F) Percentage of perturbed (n = 118) and unper-

turbed (n = 85) interactors expressed in disease

relevant tissues. Thirty random genes from RNA-

Seq dataset are assessed for each disease gene.

p values from (C) to (F) by one-sided Fisher’s exact

test. Error bars (B) to (F), SE of the proportion. See

also Figure S5.
Procedures and Table S5A). In contrast to quasi-null mutations,

edgetic mutations are significantly enriched at interaction inter-

faces identified from the corresponding co-crystal structures

(Figure 5D). Notably, edgetic mutations also exhibit a significant

tendency to reside at interaction interfaces with the perturbed

partners, as compared to unperturbed partners or random con-

trols (Figure 5E). These results suggest that edgetic mutations

are preferentially located at PPI interfaces, perturbing the corre-

sponding interaction.

Edgetic Mutations Perturb Interactions with Protein
Partners Expressed in Disease-Relevant Tissues
We hypothesized that protein interaction partners perturbed by

edgetic mutations are likely to function together within the tissue

known to be affected by the relevant disease. To test this, we

compared gene expression patterns for perturbed and unper-

turbed partners in disease-relevant tissues using RNA-seq

data from the Illumina Human Body Map 2.0 project. Perturbed

interactors exhibit a striking tendency to be expressed in dis-
654 Cell 161, 647–660, April 23, 2015 ª2015 Elsevier Inc.
ease-relevant tissues compared with un-

perturbed interactors or random genes

(Figures 5F and S6H; Table S5B). These

results indicate that disease mutations

most often perturb interactions that are

functionally relevant in the particular tis-

sue(s) affected by a specific disease.

Distinct Interaction Perturbations
May Underlie Diverse Disease
Phenotypes
Our edgotyping model suggests that

different mutations in the same gene

may result in different, pleiotropic pheno-

typic outcomes through perturbation of

distinct interactions (Figure 6A). To test

this, we compared mutation edgotype
classes and the resulting disease phenotypes. Among pleio-

tropic genes associated with two or more diseases, mutant al-

leles associated with different disease manifestations were

more likely to exhibit different edgotype classes of perturbed

PPI profiles (Table S5C).

This is exemplified by mutations in TPM3, which encodes

slow muscle alpha-tropomyosin. Three TPM3 edgetic mutations

L100M, R168G, and R245G are associated with fiber-type

disproportion myopathy through an unknown mechanism (Adz-

hubei et al., 2010; Clarke et al., 2008) (Figure 6B). These edgetic

mutations perturb five of the ten interaction partners of the WT

gene product. The majority of perturbed partners are expressed

in muscle, the tissue most relevant to this disease (Figure 6C).

One of the disrupted interactions is the interaction between

TPM3and troponin, whichwas shown to be vital for the transduc-

tion of calcium-induced signals required for muscle contraction

(Gunning et al., 1990). Two other perturbed interactors, HSF2,

involved in myotube regeneration (McArdle et al., 2006), and

CCHCR1, required for cytoskeleton organization (Tervaniemi



et al., 2012), could also be of disease relevance. In contrast to

these edgetic mutations, the quasi-WT mutation M9R causes a

different disease, nemaline myopathy. M9R might affect actin

binding, thus leading to the formation of abnormal nemaline

rods (Laing et al., 1995).

The possible disease relevance of our approach was further

illustrated by edgetic mutations in the gene EFHC1, mutations

in which can cause epilepsy. One perturbed partner, ZBED1,

plays a role in a major cell proliferation pathway affected by

EFHC1 knockouts (Yamashita et al., 2007), while another per-

turbed interactor, TCF4, is required for neuronal differentiation

(Flora et al., 2007) (Figure 6D).

We next reasoned that mutations perturbing a greater number

of interactions would be likely to have a larger impact on protein

function, and hence result in more severe phenotypic effects. We

used the age of disease onset as a proxy for severity and deter-

mined whether an increase in the fraction of interactions lost

correlated with an increase in severity for each pair of mutations

causing the same disease (as annotated by HGMD) (Figure 6E

and Table S5D). We found that mutations perturbing more PPIs

were associated with an earlier age of disease onset significantly

more often than random expectation (Figure 6E). Although

computational predictions based on PolyPhen-2 were able to

distinguish between interaction-perturbing versus non-perturb-

ing alleles (Figure 5A), they did not perform as well as our

approach in predicting disease severity (Figure S6I). This limita-

tion is consistent with the inability of PolyPhen-2 to distinguish

between edgetic and quasi-null mutations (Figure 5A).

Protein-DNA Interactions
We hypothesized that mutations for which no PPI perturbation

has yet been detected likely cause changes in other types of

molecular interactions. As a proof-of-concept, we examined

the effect of disease mutations on protein-DNA interactions

(PDIs) between human transcription factors (TFs) (Reece-Hoyes

et al., 2011a) and developmental enhancers (Fuxman Bass et al.,

2015). Our hmORFeome1.1 mutant library contains 70 TF ORFs

altogether harboring 173 mutations (Table S6A). A primary

screen using enhanced yeast-one hybrid (eY1H) assays (Re-

ece-Hoyes et al., 2011b) identified PDIs between 152 enhancers

(Visel et al., 2007) and 28 WT TFs (Figure 1C and Extended

Experimental Procedures). We then performed pairwise assays

to compare the PDIs of mutant TFs and their WT counterparts

in eY1H assays (Table S6B).

Using systematic PDI profiling, we determined edgotype clas-

ses for 58mutations in 22 TFs that bound at least two enhancers.

We identified 38% of the mutations as quasi-null, 43% as

edgetic (loss or gain of interaction), and 19% as quasi-WT (Fig-

ure 7A). More than 80%of TFmissense diseasemutations tested

either abrogated DNA binding or caused partial change of PDIs.

Interestingly, almost half of the mutations are edgetic, chal-

lenging the assumption that TF mutations that affect DNA bind-

ing do so in a similar fashion across their targets. Among these, a

significant fraction of mutations exhibit gain of PDIs, likely

because these mutations cause a reduction in DNA-binding

specificity and allow greater promiscuity in target recognition.

Given that TFs interact with their DNA targets through DNA-

binding domains (DBDs), we assessed whether disease muta-
tions perturbing PDIs are enrichedwithin DBDs.Mutations within

versus outside DBDs exhibited strikingly different PDI perturba-

tion patterns (p = 1.1 3 10�3; Figure 7B and Table S6C). Among

quasi-null mutations, the proportion of mutations within DBDs

was �10-fold higher than outside DBD regions. These results

confirm that most PDI perturbing mutations reside within the

DBDs of proteins, further supporting the quality and validity of

our PDI perturbation data.

Mutations within the same TF that cause different PDI changes

would affect the expression of different targets, resulting in

different diseases. We examined disease-causing TF mutations

in pleiotropic genes associated with two or more diseases.

Mutations with different PDI edgotype classes were likely to be

associated with different clinical manifestations (Figure 7C),

consistent with our results for PPI perturbations (Figure 6A).

Of the diseasemutations for which both PPI and PDI data were

available, about half did not perturb any PPIs (Figure 7D). Inter-

estingly, for �80% of these we did identify PDI perturbations.

For instance, mutations in the TGF-b-induced transcription fac-

tor TGIF1 cause holoprosencephaly (Gripp et al., 2000). While

the twomutant variants S28C and P63R are still able to bind their

protein partners CTBP1 andCTBP2 (quasi-WT for PPI), bothmu-

tations completely abrogated the ability of TGIF1 to bind any of

the tested DNA targets (quasi-null for PDI) (Figure S7A). Clearly,

integrating different types of molecular interactions will enhance

our ability to understand specific mechanisms that underlie

many genetic disorders.

To gain further insights into alternative molecular interaction

perturbations, we computationally examined the effect of dis-

ease mutations on protein-chemical interactions (Reva et al.,

2011). We found that the frequency with which disease muta-

tions are at protein-chemical interfaces is significantly higher

than that of non-disease variants (Figure S7B). In addition,

disease mutations that perturb PPIs have no discernable ten-

dency to locate at protein-chemical interfaces (Figure S7C),

suggesting that protein-protein and protein-chemical interfaces

do not tend to overlap. Interestingly, �13% of PPI non-perturb-

ing mutations are located at protein-chemical interfaces,

supporting the conclusion that these mutations could cause

disease through perturbation of alternative types of molecular

interactions.

We combined computational predictions and interaction

profiling to optimize our performance in disease mutation strati-

fication. Although computational methods such as PolyPhen-2

could predict interaction-perturbing alleles as deleterious (Fig-

ure 5A), they fail to explain many disease-causing mutations,

and misclassify them as ‘‘benign’’ (Figure S7D). Among these

misclassified mutations,�50% could be explained by molecular

interaction perturbations (PCI, PPI, or PDI). For instance, the

S140F mutation in PKP2 encoding the adhesion protein plako-

philin leads to arrhythmogenic right ventricular dysplasia (Gerull

et al., 2004). While PolyPhen-2 predicts S140F as benign, the

S140F mutant exhibited increased binding to the chaperones

HSC70 and BAG2, and lost all the PPIs of the WT protein (Table

S7A). All together, existing computational methods alone fail to

precisely predict disease causality. Examining different types

of molecular interaction perturbations is critical for a full compre-

hension of disease-causing mutations in human.
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Figure 6. Heterogeneous Genetic Mutations Give Rise to Diverse Disease Outcomes through Distinct Interaction Perturbations

(A) Schematic of pleiotropic disease outcomes resulting from distinct interaction patterns (edgotypes) caused by distinct mutations. Percentage of mutation pairs

causing different diseases out of all pairs with different or the same edgotype classes is shown. n = 52. Error bars, SE of the proportion. p values by one-sided

Fisher’s exact test.

(B) Example of edgotyping four disease mutations in the pleiotropic gene TPM3.

(legend continued on next page)
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Figure 7. Integration of Protein-Protein and Protein-DNA Interaction Perturbations

(A) PDI edgotype distribution for disease mutations in 22 TFs that bind to more than one enhancer.

(B) Histogram showing percentage of mutations within and outside DBDs as a function of the percentage of PDI loss. Numbers on x axis indicate bin range. p

values by one-sided Wilcoxon rank sum test.

(C) Percentage of TF mutation pairs that cause different diseases out of all pairs with different or the same PDI edgotype classes (n = 17). Error bars, SE of the

proportion. p values by one-sided Fisher’s exact test.

(D) PPI-PDI integration enables mutation characterization at higher resolution. Percentage of mutations is shown for: PPI and PDI unperturbed; PPI unperturbed

and PDI perturbed; PPI perturbed and PDI unperturbed; and PPI and PDI perturbed in the integrated network.

See also Figure S7.
DISCUSSION

In this systematic characterization of mutations across various

human Mendelian disorders, we have found surprisingly wide-
(C) Most perturbed partners of TPM3 are expressed in the disease-relevant tissu

(D) Edgetic mutations in EFHC1 perturb epilepsy-related protein partners.

(E) Correlation between the fraction of PPI perturbation and age of onset for mutat

to 100,000 random controls (n = 13; Extended Experimental Procedures).

See also Figure S6.
spread disease-specific perturbations of macromolecular inter-

actions. Approximately 60% of disease-associated missense

mutations perturb PPIs, among which half result in complete

loss of interactions, generally caused by protein misfolding and
e.

ion pairs causing the same disease. p values by comparing the observed value
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impaired expression, and the other half lead to edgetic perturba-

tions. Importantly, different mutations in the same gene fre-

quently result in different interaction perturbation profiles. This

strongly suggests that the ‘‘edgotype’’ of a mutation represents

a fundamental link between genotype and phenotype.

Our systematic edgotyping strategy provides a practical

approach to classifying candidate disease alleles emerging

from genome-wide association studies and from sporadic and

somatic mutation sequencing approaches. Edgotyping achieves

a high precision in identifying candidate disease-causing muta-

tions based on the interaction perturbations relative toWT alleles

(Figure S6A). However, the overall sensitivity of an edgotyping

approach is compromised due to the false negative rate inherent

to the assays used. We expect that a significant fraction of var-

iants currently viewed as non-interaction-perturbing (quasi-WT)

will eventually be proven to be edgetic and possibly cause

disease. This circumstance likely arises from the incomplete

nature of current human interactome network maps (Rolland

et al., 2014). Nevertheless, because edgetic mutations cannot

become quasi-WT or quasi-null even as interactome maps

improve, our estimate of edgetic mutations already provides a

reliable minimum lower bound for their frequency.

An alternative possibility is that quasi-WTmutations affect dis-

ease phenotypes through perturbation of different types of mo-

lecular interactions. Biological signaling is regulated at multiple

levels, and various types of molecular interactions are involved

(Sahni et al., 2013) as we have shown for PPI and PDI networks.

In addition, protein-RNA (Lee et al., 2006) and protein-metabolite

(Carpten et al., 2007) interactions have also been shown to be

involved in disease. Perturbations of these alternative interaction

networks will undoubtedly result in distinct disease conse-

quences. One can envision that integration of additional types

of interaction perturbation information with computational pre-

dictions will be necessary for a complete understanding of the

cellular networks governing a particular disease state (Fig-

ure S7D). As a major benefit, perturbed interactions spotlight

specific targets and pathways that are altered in a patient-spe-

cific context. This type of information could provide a much-

needed guide in efforts to developing better diagnostic tools

and more personalized medical treatments.
EXPERIMENTAL PROCEDURES

Using ORFs in the human ORFeome v8.1 collection as template, we PCR

amplified the two DNA fragments flanking the mutations, followed by a fusion

PCR to stitch the fragments together. The resulting fusion ORFs harboring the

mutations were Gateway cloned into the Donor vector pDONR223 to derive

Entry clones (Rual et al., 2004), which were subsequently verified by next-gen-

eration sequencing (Yang et al., 2011).

Interaction with chaperones and other QCFs was performed using a quan-

titative LUMIER assay (Taipale et al., 2012; Taipale et al., 2014). All wild-type

and mutant allele clones were transferred via Gateway recombination into a

mammalian expression vector containing a C-terminal 3xFLAG-V5 tag. Stable

HEK293T cell lines expressing luciferase-QCF fusion proteins were generated

by lentiviral infection, and plasmids carrying wild-type and disease mutation

alleles were transfected into the stable HEK293T lines (Taipale et al., 2012).

Following capture of FLAG-tagged proteins, luminescence was measured to

determine QCF-target interaction. Following luminescence measurement,

FLAG-tagged mutant and wild-type proteins were detected as described

(Taipale et al., 2012).
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We performed a binary protein-protein interaction screen for all mutant and

wild-type alleles as baits against �7,200 human prey proteins (Rual et al.,

2004). The identified interactions were combined with the known pairs cata-

loged by the human binary interaction dataset HI-II-14 (Rolland et al., 2014).

All first-pass pairs from the primary Y2H screens were subjected to pairwise

testing in which all interactors of any allele of a gene were then tested against

all alleles of that gene. The resulting verified protein-protein interaction profiles

of disease mutants were compared with their wild-type counterparts. We vali-

dated perturbed and unperturbed interactions from mutation-mediated

interaction perturbation data (‘‘edgotyping’’ data) using an orthogonal in vivo

Gaussia princeps luciferase protein complementation assay (GPCA). Human

HEK293T cells were co-transfected with each construct expressing comple-

mentary fragments of theGaussia luciferase fused in framewith the tested pro-

tein pairs and luciferase activity was measured as described (Cassonnet et al.,

2011).

An enhanced yeast one-hybrid (eY1H) assay was used to detect binary pro-

tein-DNA interactions (PDIs) between a DNA bait and a protein prey (Reece-

Hoyes et al., 2011a; Reece-Hoyes et al., 2011b). DNA baits corresponding

to human enhancers were retrieved from the Vista Enhancer Browser (http://

enhancer.lbl.gov) (Visel et al., 2007). Protein preys were a set of TFs for which

mutant clones are available in our human mutation ORFeome version 1.1. We

performed pairwise eY1H assays of an arrayed collection of TF preys

comprising all the wild-type TFs and their mutant clones against 152 available

enhancer baits.

Disease-causing mutations were annotated by HGMD, and the deleterious-

ness of amino acid substitutions was predicted by PolyPhen-2 program (Adz-

hubei et al., 2010). For structural features, distinct mutations were compared

with respect to protein domains from the Pfam database, and interaction

interfaces on co-crystal structures from PDB. Tissue-specific gene expression

was analyzed with normalized RNA-seq data from Human Body Map 2.0

(GSE30611). Network properties analyzed included betweenness centrality,

k-core centrality, degree, and closeness centrality (de Nooy et al., 2005).

Full details are provided in the Extended Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, seven

figures, and seven tables and can be found with this article online at http://dx.

doi.org/10.1016/j.cell.2015.04.013.
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