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Discovering functional relationships: biochemistry
versus genetics

Sharyl L. Wong, Lan V. Zhang and Frederick P. Roth

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave, Boston,

MA, 02115 USA
Biochemists and geneticists, represented by Doug and

Bill in classic essays, have long debated the merits of

their methods. We revisited this issue using genomic

data from the budding yeast, Saccharomyces cerevisiae,

and found that genetic interactions outperformed

protein interactions in predicting functional relation-

ships between genes. However, when combined, these

interaction types yielded superior performance, convin-

cing Doug and Bill to call a truce.
Introduction

For more than ten years, Doug, a retired biochemist, and
Bill, a retired geneticist, have lived on a hill overlooking a
car factory, debating their strategies for reverse engineer-
ing a car (see: http://www2.biology.ualberta.ca/locke.hp/
dougandbill.htm). Doug advocated rolling up his sleeves,
getting under the hood and determining how the parts fit
together. Bill preferred tying the hands of a different car-
factory worker each morning, then relaxing with a cup of
coffee and later examining the cars that emerged from the
factory.

One day, Doug and Bill strolled over the next hill. In the
midst of debate, they encountered Sharyl, a graduate
student in computational genomics. Having overheard
their debate, she interjected, ‘I don’t know much about
cars, but I detect an analogy to biochemistry and genetics.
I’m trying to discover functional relationships between
genes and proteins in yeast and I wonder which of your
strategies would work best.’

http://www2.biology.ualberta.ca/locke.hp/dougandbill.htm
http://www2.biology.ualberta.ca/locke.hp/dougandbill.htm
http://www.sciencedirect.com
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Differing approaches to determining gene function

To discover functional relationships, Doug would ask,
‘Which proteins physically interact with my favorite
protein?’ By contrast, Bill would perturb the DNA
sequence of a gene and observe the consequences in vivo,
asking ‘What are the genetic interaction partners of my
favorite gene?’ In other words, ‘Which genes produce
surprising phenotypes if mutated in combination with my
favorite gene?’ Sharyl described how the fields of
biochemistry and genetics had ‘gone genomic,’ scaling up
their classical approaches to discover functional relation-
ships with ever-greater efficiency. Their resulting sys-
tematic studies offered a playing field on which to assess
Doug and Bill’s dilemma. Sharyl then wondered, ‘Which
type of interaction – protein or genetic – is better at
revealing functional relationships?’ She pulled out her
laptop computer and set to work (Figure 1).
Box 1. Protein and genetic-interaction screens

† Synthetic genetic array (SGA) analysis is a high-throughput

method that assesses pairs of genes for genetic interaction [4,19].

A strain carrying a mutated query gene is crossed to an array of

w4700 strains, each mutated in a different non-essential yeast gene.

The resulting double mutants are then assessed for fitness. Slow

growth or lethality relative to each of the single-mutant strains is

declared synthetic sickness or lethality. In the SGA data set used

here, 159 query genes were crossed to the array, resulting in

w730 000 gene pairs tested for genetic interaction. Based on this

data set, the genetic network is between two and 54 times more

dense than the protein-interaction network.

† Affinity purification followed by mass spectrometry (APMS) is

used for high-throughput discovery of physical protein interactions.

A ‘bait’ protein is precipitated in a complex with its interacting

proteins. Members of this ‘pulled-down’ complex are then identified

by mass spectrometry. The two large APMS studies in yeast are
Protein versus genetic interactions in predicting

functional relationships

Because ‘gene function’ is vaguely defined, Sharyl used
the Gene Ontology (GO) vocabulary, which describes gene
products in terms of biological process, cellular component
and molecular function (http://www.geneontology.org/)
[1,2]. She defined threemeasures of functional relatedness
for a pair of genes: (i) shared GO biological process (shared
process); (ii) shared GO cellular component (shared
component); and (iii) shared GO molecular function
(shared function). For example, if two genes were assigned
to the same GO biological process category, Sharyl
considered the gene pair to have a ‘shared process’. To
avoid associations between genes in broadly defined
categories, she considered only specific GO categories –
those to which 200 or fewer genes (out of w6000 total
yeast genes) were assigned, including genes assigned to
more specific daughter categories. To represent the
biochemists, she chose a high-confidence protein-inter-
action data set based on affinity purification followed by
mass spectrometry (APMS) [3]. For the geneticists, she
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(a) Physical interaction (b) Genetic interaction
     (e.g. synthetic sick or lethal interaction)

Figure 1. Protein interaction versus genetic interaction. (a) A protein interaction

exists when two proteins are in physical contact, either direct or indirect (e.g. within

the same protein complex). (b) By contrast, a genetic interaction is determined

between two genes by comparing their single-mutant phenotypes with their

double-mutant phenotypes. Here, we focus on synthetic sick or lethal genetic

interactions, in which mutation of two genes causes a more severe growth defect

(represented by the face marked with an X) than mutation of either alone

(represented by happy faces) [4,19]. Yellow and blue circles represent proteins

and rectangles represent genes. Rectangles marked with an X represent mutated

genes.

www.sciencedirect.com
fielded a recent systematic genetic-interaction data set [4]
(Tables 1 and 2 in the supplementary data online; Box 1).

To level the playing field, she considered only the
104 409 gene pairs (the ‘arena’) assessed by both
approaches and for which both genes in each pair had a
GO annotation. In this arena, the number of gene pairs
sharing a specific GO process, component or function was
3841, 1803 and 1139, respectively. The arena contained 48
biochemical interactions and 729 genetic interactions,
derived primarily from screens involving the 17 genes
used both as baits in the protein-interaction screens and as
query genes crossed to 4500 mutants in synthetic genetic
array (SGA) analysis. Interestingly, there was no overlap
between the protein and genetic interactions (Table 3,
supplementarydata online).Aprevious related study [5] did
not consider whether gene pairs had been assessed for both
types of interaction and used literature-derived interaction
data, which are subject to inspection bias.

With a few taps on her keyboard, Sharyl let the games
begin. Two proteins exhibiting a protein interaction had a
shared process, component or function 42% (PZ2e-17),
31% (PZ2e-15) and 29% (PZ1e-16) of the time, respect-
ively. Genetic interactions were uniformly less-accurate
indicators of shared function, with corresponding rates of
known as the tandem affinity purification (TAP) [3] and high-

throughput mass spectrometric protein complex identification

(HMS-PCI) [6] studies. In both studies, the data can be interpreted

in twoways. The spoke interpretation defines an interaction between

a bait protein and each protein it pulls down. The matrix

interpretation, however, counts interactions between all pairs of

proteins pulled down by a bait. In the TAP study, bait constructs were

integrated into the yeast genome and expression was controlled by

an endogenous promoter. In the HMS-PCI study, however, the bait

construct was plamid-borne and expression was controlled by a

robust exogenous promoter. Thus, the TAP data set is more likely to

be physiologically relevant, although the HMS-PCI study could

detect interactions between gene products not normally expressed

in the condition examined. The TAP and HMS-PCI data sets

employed 1167 and 725 baits, respectively. A gene pair was

considered assessed for protein interaction, if at least one gene of

the pair was a bait and the other was not filtered out as a

‘promiscuous prey’ [6].

† Yeast-two-hybrid (Y2H) is a high-throughput method for assessing

direct physical interaction between two proteins (although indirect

‘bridged’ interactions can also be detected). Here our Y2H data set

consisted of the union of the interactions reported by Uetz et al. [18]

and the ‘core’ version (corresponding to interactions detected at

least three times) of the data set produced by Ito et al. [17].

http://www.geneontology.org/
http://www.sciencedirect.com


Glossary

Accuracy: is defined as the number of gene pairs with the same function

divided by the number of gene pairs with the given predictive characteristic. For

example, the number of pairs that both genetically interact and have shared

process divided by the number of pairs that genetically interact.

Sensitivity (or true positive rate): is defined as the number of gene pairs with

the same function that pass a given score threshold (i.e. true positives) divided

by the total number of gene pairs with the same function.

False positive rate (or 1 – specificity): is defined as the number of gene pairs

without the same function that pass a given score threshold (i.e. false positives)

divided by the total number of gene pairs without the same function.
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Figure 2. Performance when predicting ‘shared process’ with and without genetic

[4] and/or protein-interaction data from Gavin et al. [3]. (a) Each point on the curve

represents performance at a given threshold score (such that pairs above that

threshold are predicted to have shared function). ‘P’ and ‘G’ represent protein and

genetic-interaction data respectively. Using all high-throughput data yields the best

prediction performance. Notably, this performance is impaired more by the

omission of genetic interaction data than by omission of protein interaction data.

The same information is shown in (b) but in finer detail.
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19% (PZ2e-63), 15% (PZ2e-66) and 8% (PZ2e-28).
However, genetic interactions detected gene pairs with
shared function with much higher sensitivity (4–6%) than
biochemical interactions (0.5–1.2%; Table 4 in the
supplementary data online). When considering different
physical-interaction data sets [3,6] (Box 1), genetic
interactions were consistently more sensitive and some-
times more accurate (see Glossary; Table 4, supplemen-
tary data online). Thus, it was difficult to declare a clear
winner.

Combining genetic and protein interactions with other

data

Are genetic interactions combined with other types of
evidence more informative than protein interactions
combined with other evidence? Rather than considering
each type of interaction in isolation, several groups have
previously combined heterogeneous data, using machine
learning approaches to predict some property of a gene
pair or to predict gene function [7–12]. Therefore, Sharyl
combined multiple types of evidence [11] – including co-
localization [13], sequence homology [14], correlated
mRNA expression [15,16] and chromosomal distance
(Table 5, supplementary data online) – to predict shared
function. She chose a previously described probabilistic-
decision tree approach [12] and compared performance
with and without the benefit of protein and/or genetic-
interaction data. For each of shared process, component,
and function and for each choice of input data, she
performed cross-validation: she randomized all gene
pairs in the arena into four groups, and successively
scored each group using a model trained on the remaining
three. She then compared the prediction score of each gene
pair with its corresponding shared process, function or
component status. A plot of true- versus false-positive
rates revealed that genetic and protein interactions were
comparable at low sensitivities; however, as sensitivity
increased, genetic-interaction data enhanced performance
more than protein-interaction data. This trend was
observed for shared process (Figure 2), component
(Figure 1a, supplementary data online) and function
(Figure 1b, supplementary data online). Doug, the
biochemist, began to despair.

Before Bill could begin to gloat, however, Sharyl
showed that genetic- and protein-interaction data
together gave markedly better results than either alone,
suggesting that each offers distinctly different types of
information. Although protein interactions can represent
associations between genes in the same complex or
physically connected pathway, genetic interactions can
www.sciencedirect.com
additionally reflect relationships between genes in physi-
cally non-interacting pathways. She repeated this anal-
ysis with another APMS protein-interaction data set [6]
and then with the union of two yeast-two-hybrid (Y2H)
data sets [17,18] (Tables 1 and 3, and Figures 2 and 3 in
the supplementary data online), altering the arena
appropriately. In each case, genetics beat biochemistry
by a slim margin, but the combination of these comp-
lementary interaction types outperformed either alone.
Sharyl’s results convinced Doug and Bill to shake hands
and head back over the hill . until new data or new
technology call for a rematch.

http://www.sciencedirect.com
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